Skip to main content

Plant Tissue Culture and Crop Improvement

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of Climate Change

Abstract

Due to the drastically increasing population associated with limited natural and traditionally cultivated crops, novel methods are required to address this concern and thereby increase crop productivity. With the advent of various scientific technologies, such as plant tissue culture, crop improvement through various in vitro protocols involving genetic manipulation has come to the forefront. Plant tissue culture is an advanced in vitro protocol, through which regeneration of organs, tissues, or plant cells can be obtained on an artificially prepared nutrient medium. Employing various novel gene transfer methods, the preferred characteristic traits from one plant can be passed on to another plant simply by introducing the gene responsible for that particular character. In plant tissue culture, several techniques like protoplast fusion, anther culture, and embryo transfer have been used to produce new genetically variant cops. Tissue culture helps in mass multiplication and clonal propagation of plants from any tiny part of the plant tissue. In recent years, this technique has been vastly used for conservation of germplasm as well as in the commercialization of various crops. Cell culture techniques are playing a major role in enhancing crop improvement potential by producing somaclonal and gametoclonal variants. Several varieties of crops including but not limited to vegetable (resistant to pest and disease-free), fruits (seedless, pink fleshed), ornamental plants, and sporeless mushrooms have been developed. This was possible only due to the diverse advanced protocols that are rapidly expanding in the field of tissue culture. Keeping in view of the importance and impact of tissue culture in enhancing the quality and yield of crops, this chapter is focused on reviewing methodologies employed in plant tissue culture along with the challenges that lie ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguero C, Riquelme C, Tizio R (1995) Embryo rescue from seedless grapevine (Vitis vinifera L.) treated with growth-retardants. Vitis 34:73–76

    CAS  Google Scholar 

  • Anderson PC, Georgeson M (1989) Herbicide-tolerant mutants of corn. Genome 31(2):994–999

    CAS  Google Scholar 

  • Avery OT et al (1944) Studies on the chemical nature of the substance inducing transformation of Pneumococcal types. J Exp Med 79:137–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balla I, Brozik S (1993) Embryo culture of sweet cherry hybrids. In: II International cherry symposium, pp 385–386

    Google Scholar 

  • Baskaran P, Soós V, Balázs E, Van Staden J (2016) Shoot apical meristem injection: a novel and efficient method to obtain transformed cucumber plants. S Afr J Bot 103:210–215

    CAS  Google Scholar 

  • Brich RG (1997) Plant transformation: problems and strategies for practical application. AnnRevPlant PhysiolPlant MolBiol 48:297–326

    Google Scholar 

  • Brown DC, Thorpe TA (2011) Crop improvement through tissue culture. World J Microbiol Biotechnol 11:409–415

    Google Scholar 

  • Burgos L, Ledbetter CA (1993) Improved efficiency in apricot breeding: effects of embryo development and nutrient media on in vitro germination and seedling establishment. Plant Cell Tissue Organ Cult 35(3):217–222

    Google Scholar 

  • Cain DW, Emershad RL, Tarailo RE (1983) In-ovulo embryo culture and seedling development of seeded and seedless grapes (Vitis vinifera L.). Vitis 22:9–14

    Google Scholar 

  • Cao J, Duan X, McElroy D, Wu R (1992) Regeneration of herbicide resistant transgenic rice plants following micro projectile-mediated transformation of suspension culture cells. Plant Cell Rep 11:586–591

    CAS  PubMed  Google Scholar 

  • Chadipiralla K, Pachipala G, Allam US, Reddy PVB (2018) Recent advances in biotechnology (set of 3 volumes) vol 3, pp 137–154. isbn: 978-81-8329-936-7

    Google Scholar 

  • Chakraborty S, Pattanayak A, Mandal S, Das M, Roychowdhury R (2014) An overview of climate change: causes, trends and implications. In: Roychowdhury R (ed) Crop improvement in the era of climate change. IK International Publishing House, New Delhi, pp 1–29

    Google Scholar 

  • Chaleff RS (1988) A second mutant enhances resistance of a tobacco mutant of sulfonylurea herbicides. Theor Appl Genet 76:177–182

    PubMed  Google Scholar 

  • Chaleff RS, Ray TB (1984) Herbicide resistant mutants from tobacco cell cultures. Science 223:1148–1151

    CAS  PubMed  Google Scholar 

  • Chan MT, Lee TM, Chang HH (1992) Plant cell physiology. Oxford J 33(5):577–588

    CAS  Google Scholar 

  • Chen JL, Beversdorf WD (1994) A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L.) r. Theor Appl Genet 88:187–192

    CAS  PubMed  Google Scholar 

  • Chee PP, Slightom JL (1995) Transformation of soybean (Glycine max) via Agrobacterium tumefaciens and analysis of transformed plants. In: Gartland KMA, Davey MR (eds) Agrobacterium Protocols, Methods Mol Bio (vol. 44). Springer, Totowa, NJ, pp 101–119

    Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Ducan DR, Conner TW, Monsanto YW (1997) Genetic transformation of wheat mediated by Agrobacterium tumefacience. Plant Physiol 115:971–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker J, Duke SO (1995). Advances in agronomy

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified β-endotoxin gene of Bacillus thuringiensis. Biotechnology 11:1151–1155

    CAS  PubMed  Google Scholar 

  • Gamborg OL, Philips GC (2010) Plant cell tissue culture and organ culture fundamental methods. Springer, Berlin

    Google Scholar 

  • García-Gonzáles R, Catolica MD, Quiroz K, Carrasco B, Caligari P (2010) Plant tissue culture: current status, opportunities and challenges. Cienciae Investigacion Agaria 37(3):5–30

    Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–159

    CAS  PubMed  Google Scholar 

  • Hughes K (1983) Selection for herbicide resistance. In: Evans DA, Sharp WR et al (eds) Handbook of plant cell culture. MacMillan, New York, p 442

    Google Scholar 

  • Ignacimuthu S, Raveendar S (2011) Agrobacterium mediated transformation of Indica rice (Oryza sativa L.) for insect resistance. Natl Acad Agric Sci (South Korea) 179(2):277–286

    Google Scholar 

  • Imran M, Razzaq A, Ishfaq AH, Kaleem S, Khan AA, Qayyum A, Ahmad M (2012) Interaction of callus selection media and stress duration for in vitro selection of drought tolerant callus of wheat. Afr J Biotechnol 11(17):4000–4006

    Google Scholar 

  • Jones LE, Hildebrandt AC, Riker AJ, Wu JH (1960) Growth of somatic tobacco cells in microculture. Am J Bot 47(6):468–475

    Google Scholar 

  • Joseph R, Yeoh H-H, Loh C-S (2004) Induced mutations in cassava using somatic embryos and the identification of mutant plants with altered starch yield and composition. Plant Cell Rep 23:91–98

    CAS  PubMed  Google Scholar 

  • Kalbande BB, Patil AS (2016) Plant tissue culture independent Agrobacterium tumefaciens mediated in-planta transformation strategy for upland cotton (Gossypium hirsutum). J Genet Eng Biotechnol 14:9–18

    PubMed  PubMed Central  Google Scholar 

  • Kapildev G, Chinnathambi A, Sivanandhan G, Rajesh M, Vasudevan V, Mayavan S, Arun M, Jeyaraj M, Alharbi SA, Selvaraj N, Ganapathi A (2016) High-efficient Agrobacterium-mediated in planta transformation in black gram (Vigna mungo (L.) Hepper). Acta Physiol Plant 38:205

    Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225(5235):874–876

    CAS  PubMed  Google Scholar 

  • Kato H, Takeuchi M (1963) Morphogenesis In Vitro starting from single cells of carrot root. Plant Cell Physiol 4:243–245

    Google Scholar 

  • Keshavareddy G, Kumar ARV, Ramu VS (2018) Methods of plant transformation- a review. Int J Curr Microbiol App Sci 7:2319–7706

    Google Scholar 

  • Khan T, Reddy VS, Leelavathi S (2010) High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient agrobacterium – mediated transformation. Plant Cell Tissue Org Cult 101:323–330

    Google Scholar 

  • Kim MJ, An DJ, Moon KB, Cho HS, Min SR, Sohn JH, Jeon JH, Kim HS (2016) Highly efficient plant regeneration and agrobacterium-mediated transformation of Helianthus tuberosus L. Ind Crop Prod 83:670–679

    CAS  Google Scholar 

  • Kleinhof A, Behki R (1977) Prospects for plant genome modification by nonconventional methods. Annu Rev Genet 11:79–101

    Google Scholar 

  • Li L, Qu R, de Kochko A, Fauquet C, Beachy RN (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep 12:250–255

    PubMed  Google Scholar 

  • Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for agrobacterium-mediated transformation of Indica rice. Plant Cell Rep 28:1065–1074

    CAS  PubMed  Google Scholar 

  • Liu J, Su Q, An L, Yang A (2009) Transfer of a minimal linear marker-free and vector-free smGFP cassette into soybean via ovary-drip transformation. Biotechnol Lett 31:295–303

    CAS  PubMed  Google Scholar 

  • Maliga P, Fejes E, Steinback K, Menczel L (1987) Cell culture approaches for obtainingherbicide-resistant chloroplasts in crop plants. ACS Symp Ser 334:115

    CAS  Google Scholar 

  • Manickavasagam M, Subramanyam K, Ishwarya R, Elayaraja D, Ganapathi (2015) Assessment of factors influencing the tissue culture-independent agrobacterium-mediated in planta genetic transformation of okra (Abelmoschus esculentus (L.) Moench). Plant Cell Tissue Organ Cult 123:309–320

    CAS  Google Scholar 

  • Manipal S, Shekhawat V (2010) Plant biotechnology – in-vitro principles, techniques and applications. MJP Publishers, Chennai, pp 105–124

    Google Scholar 

  • Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, Ganapathi A (2015) Agrobacterium mediated in planta genetic transformation of sugarcane sets. Plant Cell Rep 34:1835–1848

    CAS  PubMed  Google Scholar 

  • Mayers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A (2010) Nuclear and plastid genetic engineering of plants:omparision of opportunities and challenges. Biotechnol Adv 28:747–756

    Google Scholar 

  • Montoya AL, Chilton MD, Gordon MP, Sciaky D, Nester EW (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol 129:101–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mu G, Chang N, Xiang K, Sheng Y, Zhang Z, Pan G (2012) Genetic transformation of maize female inflorescence flowering floral dip method mediated by agrobacterium. Biotechnology 11:178–183

    CAS  Google Scholar 

  • Naing AH, Ai TN, Jeon SM, Lim SH, Kim CK (2016) An efficient protocol for agrobacterium-mediated genetic transformation of recalcitrant Chrysanthemum cultivar Shinma. Acta Physiol Plant 38:1–9

    CAS  Google Scholar 

  • Nanasato Y, Konagaya K, Okuzaki A, Tsuda M, Tabei Y (2013) Improvement of agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol Rep 7:267–276

    PubMed  Google Scholar 

  • Nomura K, Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol 79:988–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palla KJ, Pijut PM (2015) Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls. Plant Cell Tissue Organ Cult 120:631–641

    CAS  Google Scholar 

  • Parker WB, Somers DA, Wyse DI, Keith RA, Burton JD, Gronwald JW, Gengebach BG (1990) Selection and characterization of sethoxydim- tolerant maiz tissue cultures. Plant Physiol 92:1220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potrykus CT, Harms H, Lorz (1979) Multiple –drop –array (MDM)technique for the large-scale testing of culture media variations in hanging microdrop culture of single cell system. I: The technique. Plant Sci Lett 14(3):231–235

    Google Scholar 

  • Prasad MBNV, Sahijram L, A Rekha (1996) Role of embryo culture techniques in the improvement of seedless lime fruit quality. National symposium on horticulture biotechnology, Bangalore, India, Oct 28–30

    Google Scholar 

  • Rajesh S, Krishnaveni S, Sudhakar D, Raveendran M, Sivakumar P, Gnanam R, Manickam A (2008) Agrobacterium mediated transformation of Indica Rice (Oryza sativa L.), IR64 with Mungbean LEA protein gene for water-stress tolerance. Am J Plant Physiol 3:101–110

    CAS  Google Scholar 

  • Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AA, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27:753–763

    PubMed  Google Scholar 

  • Ravanfar SA, Abdul AM (2015) Shoot tip regeneration and optimization of Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) cv. Green marvel. Plant Biotechnol Rep 9:27–36

    Google Scholar 

  • Reddy BS, Karmakar J, Roychowdhury R, Dey N (2013) Optimization of callus induction and callus multiplication in rice (Oryza sativa L.) landraces. Res Plant Biol 3(5):41–44

    Google Scholar 

  • Roychowdhury R, Taoutaou A, Hakeem KR, Gawwad MR, Tah J (2014) Molecular marker-assisted technologies for crop improvement. In: Roychowdhury R (ed) Crop improvement in the era of climate change. IK International Publishing House, New Delhi, pp 241–258

    Google Scholar 

  • Sainger M, Chaudhary D, Dahiya S, Jaiwal R, Jaiwal PK (2015) Development of an efficient in vitro plant regeneration system amenable to agrobacterium-mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper). Physiol Mol Biol Plants 21:505–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Setter TLI (2003) Waters review of prospects for germplasm improvement for water logging tolerance in wheat, barley and oats. Plant Soil 253(1):1–34

    CAS  Google Scholar 

  • Shah HS, Ali S, Jan SA, Din JU, Ali GM (2015) Piercing and incubation method of in planta transformation producing stable transgenic plants by over expressing DREB1A gene in tomato (Solanum lycopersicum mill). Plant Cell Tissue Org Cult 120:1139–1157

    CAS  Google Scholar 

  • Sharp WR, Sondahl MR, Caldas LS, Maraffa SB (1980) The physiology of in vitro asexual embryogenesis. Hortic Rev 2:268–310

    CAS  Google Scholar 

  • Shivani I, Hari SM, Susan E (2007) Genetic transformation of Chick pea (Cicer arietium L.) with insecticidal crystalprotein gene using particle gun bombardment. Plant cell rep 26(6):755

    Google Scholar 

  • Singh G, Shetty S (2011) Impact of tissue culture on agriculture in India. Invited Rev Biotechnol Bioinf Bioeng 3:279–288

    Google Scholar 

  • Sivanandhan G, Kapil Dev G, Theboral J, Selvaraj N, Ganapathi A, Manickavasagam M (2015) Sonication, vacuum infiltration and thiol compounds enhance the agrobacterium-mediated transformation frequency of Withania somnifera (L) Dunal. PLoS One 10:e0124693

    PubMed  PubMed Central  Google Scholar 

  • Smith MK, Drew RA (1990) New current applications of tissue culture in plant propagation and improvement. Aust J Plant Physiol 17:267–289

    Google Scholar 

  • Sobhanian N, Habashy AA, Farshad FE, Tohidfar M (2012) Optimizing regeneration and reporter gene (gus) transformation of alfalfa (Medicago sativa). Ann Biol Res 3:2419–2427

    CAS  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Google Scholar 

  • Swasson EB, Coumans MP, Brown GL, Patel JD, Beversdorf (1988) The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep 7(2):83–87

    Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320

    Google Scholar 

  • Tashiro Y, Onimaru H, Shigyo M, Isshiki S, Miyazaki S (1995) Isozyme mutation induced by treatment of cultured shoot tips with alkylating agent in ginger cultivars (Zinger officinale Rose.). Bull Fac Agric Saga Univ 79:29–35

    CAS  Google Scholar 

  • Tohidfar M, Mohsenpour M (2010) Effective factor in cotton (Gossypium Spp) transformation using agrobacterium. J Agric Biotechnol 2:1–24

    Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Biotechnology 6:1072–1074

    CAS  Google Scholar 

  • Tuberosa R, Lucchese C (1990) Selection of maize cell lines tolerant to the non-selective herbicide Basta. Chim Oggi 8:43–46

    CAS  Google Scholar 

  • Waheed A, Jhsan H, Mohammad TW, Kiran KS, Mysore BM (2014) Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens. PLoS One 9(5):e96979

    PubMed  PubMed Central  Google Scholar 

  • Williams KC, O’Rourke PK (1974) Decorticated safflower meal as protein supplement in diets fed either restrictively or ad libitum to barrow and gilt pigs over 45 kg live weight. Aust J Exp Agric Husb 14(66):12–16

    Google Scholar 

  • Xu K, Huang X, Wu M, Wang Y, Chang Y, Liu K, Zhang J, Zhang Y, Zhang F, Yi L, Li T, Wang R, Tan G, Li C (2014) A rapid highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS One 9:e83556

    PubMed  PubMed Central  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber CM (2009) Evidence for stable transformation of wheat by floral dip in agrobacterium tumefaciens. Plant Cell Rep 28:903–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zenkteler E, Zenkteler M (2016) Development of haploid embryos and plants of Lactuca sativa induced by distant pollination with Helianthus annuus and H. tuberosus. Euphytica 208:439–451

    Google Scholar 

  • Zhou GY, Weng J, Zeng Y, Huang J, Qian S, Liu G (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chadipiralla, K., Gayathri, P., Rajani, V., Reddy, P.V.B. (2020). Plant Tissue Culture and Crop Improvement. In: Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S. (eds) Sustainable Agriculture in the Era of Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-45669-6_18

Download citation

Publish with us

Policies and ethics