Skip to main content
Log in

Influence of Antigen Mass on the Pharmacokinetics of Therapeutic Antibodies in Humans

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Therapeutic antibodies are increasingly used to treat various diseases, including neoplasms and chronic inflammatory diseases. Antibodies exhibit complex pharmacokinetic properties, notably owing to the influence of antigen mass, i.e. the amount of antigenic targets to which the monoclonal antibody binds specifically. This review focuses on the influence of antigen mass on the pharmacokinetics of therapeutic antibodies quantified by pharmacokinetic modelling in humans. Out of 159 pharmacokinetic studies, 85 reported an influence of antigen mass. This influence led to non-linear elimination decay in 50 publications, which was described using target-mediated drug disposition or derived models, as quasi-steady-state, irreversible binding and Michaelis–Menten models. In 35 publications, the pharmacokinetics was apparently linear and the influence of antigen mass was described as a covariate of pharmacokinetic parameters. If some reported covariates, such as the circulating antigen level or tumour size, are likely to be correlated to antigen mass, others, such as disease activity or disease type, may contain little information on the amount of antigenic targets. In some cases, antigen targets exist in different forms, notably in the circulation and expressed at the cell surface. The influence of antigen mass should be soundly described during the early clinical phases of drug development. To maximise therapeutic efficacy, sufficient antibody doses should be administered to ensure the saturation of antigen targets by therapeutic antibodies in all patients. If necessary, antigen mass should be taken into account in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59. https://doi.org/10.2165/11535960-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  2. Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet. 2013;52(2):83–124.

    Article  CAS  PubMed  Google Scholar 

  3. Mould DR, Sweeney KR. The pharmacokinetics and pharmacodynamics of monoclonal antibodies: mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel. 2007;10(1):84–96.

    CAS  PubMed  Google Scholar 

  4. Ternant D, Bejan-Angoulvant T, Passot C, Mulleman D, Paintaud G. Clinical pharmacokinetics and pharmacodynamics of monoclonal antibodies approved to treat rheumatoid arthritis. Clin Pharmacokinet. 2015;54(11):1107–23.

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58. https://doi.org/10.1038/clpt.2008.170.

    Article  CAS  PubMed  Google Scholar 

  6. Fronton L, Pilari S, Huisinga W. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models. J Pharmacokinet Pharmacodyn. 2014;41(2):87–107.

    Article  CAS  PubMed  Google Scholar 

  7. Breedveld FC. Therapeutic monoclonal antibodies. Lancet. 2000;355(9205):735–40.

    Article  CAS  PubMed  Google Scholar 

  8. Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9(1):15–32.

    Article  CAS  PubMed  Google Scholar 

  9. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68.

    Article  CAS  PubMed  Google Scholar 

  10. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacomet Syst Pharmacol. 2017;6(9):576–88.

    Article  CAS  Google Scholar 

  11. Ternant D, Paintaud G. Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins. Expert Opin Biol Ther. 2005;5(Suppl. 1):S37–47.

    Article  CAS  PubMed  Google Scholar 

  12. Yu T, Enioutina EY, Brunner HI, Vinks AA, Sherwin CM. Clinical pharmacokinetics and pharmacodynamics of biologic therapeutics for treatment of systemic lupus erythematosus. Clin Pharmacokinet. 2017;56(2):107–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gill KL, Machavaram KK, Rose RH, Chetty M. Potential sources of inter-subject variability in monoclonal antibody pharmacokinetics. Clin Pharmacokinet. 2016;55(7):789–805.

    Article  CAS  PubMed  Google Scholar 

  14. Duffull SB, Wright DF, Winter HR. Interpreting population pharmacokinetic-pharmacodynamic analyses: a clinical viewpoint. Br J Clin Pharmacol. 2011;71(6):807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacomet Syst Pharmacol. 2013;2013(17):14.

    Google Scholar 

  16. Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5(5):445–79.

    Article  CAS  PubMed  Google Scholar 

  17. FDA. Infliximab. Clinical pharmacology review. Available from: http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm107704.pdf. Accessed 21 Aug 2014.

  18. US Food and Drug Administration. Infliximab label information. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/103772s5359lbl.pdf. Accessed 2 Mar 2018.

  19. Berinstein NL, Grillo-Lopez AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman M, et al. Association of serum rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1998;9(9):995–1001.

    Article  CAS  PubMed  Google Scholar 

  20. Gibiansky L, Gibiansky E. Target-mediated drug disposition model: approximations, identifiability of model parameters and applications to the population pharmacokinetic-pharmacodynamic modeling of biologics. Expert Opin Drug Metab Toxicol. 2009;5(7):803–12. https://doi.org/10.1517/17425250902992901.

    Article  CAS  PubMed  Google Scholar 

  21. Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 2008;35(5):573–91. https://doi.org/10.1007/s10928-008-9102-8.

    Article  CAS  PubMed  Google Scholar 

  22. Luu KT, Bergqvist S, Chen E, Hu-Lowe D, Kraynov E. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J Pharmacol Exp Ther. 2012;341(3):702–8.

    Article  CAS  PubMed  Google Scholar 

  23. Luu KT, Boni J. A method for optimizing dosage regimens in oncology by visualizing the safety and efficacy response surface: analysis of inotuzumab ozogamicin. Cancer Chemother Pharmacol. 2016;78(4):697–708.

    Article  CAS  PubMed  Google Scholar 

  24. Ma P. Theoretical considerations of target-mediated drug disposition models: simplifications and approximations. Pharm Res. 2012;29(3):866–82.

    Article  CAS  PubMed  Google Scholar 

  25. Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96. https://doi.org/10.1007/s11095-005-6650-0.

    Article  CAS  PubMed  Google Scholar 

  26. Peletier LA, Gabrielsson J. Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn. 2012;39(5):429–51.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dirks NL, Nolting A, Kovar A, Meibohm B. Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol. 2008;48(3):267–78. https://doi.org/10.1177/0091270007313393.

    Article  CAS  PubMed  Google Scholar 

  28. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–8.

    Article  CAS  PubMed  Google Scholar 

  29. Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56(3):248–52.

    Article  CAS  PubMed  Google Scholar 

  30. Chapman GE. A pharmacokinetic/pharmacodynamic model for the action of anti-D immunoglobulin in effecting circulatory clearance of Rh D+ red cells. Transfus Med. 1996;6(3):227–33.

    Article  CAS  PubMed  Google Scholar 

  31. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  CAS  PubMed  Google Scholar 

  32. Lixoft. Target-mediated drug disposition (TMDD) model library. Accessed from: http://mlxtran.lixoft.com/libraries/target-mediated-drug-disposition-tmdd-model-library/. Accessed 18 May 2018.

  33. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res. 2006;23(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  34. Zheng Y, Scheerens H, Davis JC Jr, Deng R, Fischer SK, Woods C, et al. Translational pharmacokinetics and pharmacodynamics of an FcRn-variant anti-CD4 monoclonal antibody from preclinical model to phase I study. Clin Pharmacol Ther. 2011;89(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  35. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol. 2007;63(5):548–61.

    Article  CAS  PubMed  Google Scholar 

  36. Honma W, Gautier A, Paule I, Yamaguchi M, Lowe PJ. Ethnic sensitivity assessment of pharmacokinetics and pharmacodynamics of omalizumab with dosing table expansion. Drug Metab Pharmacokinet. 2016;31(3):173–84.

    Article  CAS  PubMed  Google Scholar 

  37. Lowe PJ, Tannenbaum S, Gautier A, Jimenez P. Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE-mediated) asthma. Br J Clin Pharmacol. 2009;68(1):61–76. https://doi.org/10.1111/j.365-2125.009.03401.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gibbs JP, Doshi S, Kuchimanchi M, Grover A, Emery MG, Dodds MG, et al. Impact of target-mediated elimination on the dose and regimen of evolocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9). J Clin Pharmacol. 2017;57(5):616–26.

    Article  CAS  PubMed  Google Scholar 

  39. Wei X, Gibiansky L, Wang Y, Fuh F, Erickson R, O’Byrne S, et al. Pharmacokinetic and pharmacodynamic modeling of serum etrolizumab and circulating beta7 receptor occupancy in patients with ulcerative colitis. J Clin Pharmacol. 2017. https://doi.org/10.1002/jcph.1031 (epub ahead of print).

  40. Bhattacharya I, Manukyan Z, Chan P, Heatherington A, Harnisch L. Application of quantitative pharmacology approaches in bridging pharmacokinetics and pharmacodynamics of domagrozumab from adult healthy subjects to pediatric patients with Duchenne muscular disease. J Clin Pharmacol. 2017. https://doi.org/10.1002/jcph.1015 (epub ahead of print).

  41. Gibiansky L, Sutjandra L, Doshi S, Zheng J, Sohn W, Peterson MC, et al. Population pharmacokinetic analysis of denosumab in patients with bone metastases from solid tumours. Clin. 2012;51(4):247–60. https://doi.org/10.2165/11598090-000000000-00000.

    Article  CAS  Google Scholar 

  42. Ait-Oudhia S, Lowe PJ, Mager DE. Bridging clinical outcomes of canakinumab treatment in patients with rheumatoid arthritis with a population model of IL-1beta kinetics. CPT Pharmacomet Syst Pharmacol. 2012;2012(26):6.

    Google Scholar 

  43. Chakraborty A, Tannenbaum S, Rordorf C, Lowe PJ, Floch D, Gram H, et al. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1beta monoclonal antibody. Clin Pharmacokinet. 2012;51(6):e1–18. https://doi.org/10.2165/11599820-000000000-00000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chakraborty A, Van LM, Skerjanec A, Floch D, Klein UR, Krammer G, et al. Pharmacokinetic and pharmacodynamic properties of canakinumab in patients with gouty arthritis. J Clin Pharmacol. 2013;53(12):1240–51.

    Article  CAS  PubMed  Google Scholar 

  45. Sun H, Van LM, Floch D, Jiang X, Klein UR, Abrams K, et al. Pharmacokinetics and pharmacodynamics of canakinumab in patients with systemic juvenile idiopathic arthritis. J Clin Pharmacol. 2016;56(12):1516–27.

    Article  CAS  PubMed  Google Scholar 

  46. Panoilia E, Schindler E, Samantas E, Aravantinos G, Kalofonos HP, Christodoulou C, et al. A pharmacokinetic binding model for bevacizumab and VEGF165 in colorectal cancer patients. Cancer Chemother Pharmacol. 2015;75(4):791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ng CM, Bai S, Takimoto CH, Tang MT, Tolcher AW. Mechanism-based receptor-binding model to describe the pharmacokinetic and pharmacodynamic of an anti-alpha5beta1 integrin monoclonal antibody (volociximab) in cancer patients. Cancer Chemother Pharmacol. 2010;65(2):207–17.

    Article  CAS  PubMed  Google Scholar 

  48. Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR. Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm. 1999;27(4):397–420.

    Article  CAS  PubMed  Google Scholar 

  49. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ. Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res. 2005;22(7):1088–100.

    Article  CAS  PubMed  Google Scholar 

  50. Struemper H, Sale M, Patel BR, Ostergaard M, Osterborg A, Wierda WG, et al. Population pharmacokinetics of ofatumumab in patients with chronic lymphocytic leukemia, follicular lymphoma, and rheumatoid arthritis. J Clin Pharmacol. 2014;54(7):818–27.

    Article  PubMed  Google Scholar 

  51. Gibiansky L, Passey C, Roy A, Bello A, Gupta M. Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma. J Pharmacokinet Pharmacodyn. 2016;43(3):243–57.

    Article  CAS  PubMed  Google Scholar 

  52. Tout M, Gagez AL, Lepretre S, Gouilleux-Gruart V, Azzopardi N, Delmer A, et al. Influence of FCGR3A-158 V/F genotype and baseline CD20 antigen count on target-mediated elimination of rituximab in patients with chronic lymphocytic leukemia: a study of FILO Group. Clin Pharmacokinet. 2016;2016:25.

    Google Scholar 

  53. Djebli N, Martinez JM, Lohan L, Khier S, Brunet A, Hurbin F, et al. Target-mediated drug disposition population pharmacokinetics model of alirocumab in healthy volunteers and patients: pooled analysis of randomized phase I/II/III studies. Clin Pharmacokinet. 2017;56(10):1155–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mager DE, Mascelli MA, Kleiman NS, Fitzgerald DJ, Abernethy DR. Simultaneous modeling of abciximab plasma concentrations and ex vivo pharmacodynamics in patients undergoing coronary angioplasty. J Pharmacol Exp Ther. 2003;307(3):969–76.

    Article  CAS  PubMed  Google Scholar 

  55. Yan X, Mager DE, Krzyzanski W. Selection between Michaelis–Menten and target-mediated drug disposition pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2010;37(1):25–47.

    Article  CAS  PubMed  Google Scholar 

  56. Admiraal R, van Kesteren C, Jol-van der Zijde CM, van Tol MJ, Bartelink IH, Bredius RG, et al. Population pharmacokinetic modeling of thymoglobulin((R)) in children receiving allogeneic-hematopoietic cell transplantation: towards improved survival through individualized dosing. Clin Pharmacokinet. 2015;54(4):435–46.

    Article  CAS  PubMed  Google Scholar 

  57. Chudasama VL, Schaedeli Stark F, Harrold JM, Tibbitts J, Girish SR, Gupta M, et al. Semi-mechanistic population pharmacokinetic model of multivalent trastuzumab emtansine in patients with metastatic breast cancer. Clin Pharmacol Ther. 2012;92(4):520–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frey N, Grange S, Woodworth T. Population pharmacokinetic analysis of tocilizumab in patients with rheumatoid arthritis. J Clin Pharmacol. 2010;50(7):754–66.

    Article  CAS  PubMed  Google Scholar 

  59. Galluppi GR, Wisniacki N, Stebbins C. Population pharmacokinetic and pharmacodynamic analysis of BIIB023, an anti-TNF-like weak inducer of apoptosis (anti-TWEAK) monoclonal antibody. Br J Clin Pharmacol. 2016;82(1):118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gatault P, Brachet G, Ternant D, Degenne D, Recipon G, Barbet C, et al. Therapeutic drug monitoring of eculizumab: rationale for an individualized dosing schedule. MAbs. 2015;7(6):1205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gupta A, Hussein Z, Hassan R, Wustner J, Maltzman JD, Wallin BA. Population pharmacokinetics and exposure-response relationship of amatuximab, an anti-mesothelin monoclonal antibody, in patients with malignant pleural mesothelioma and its application in dose selection. Cancer Chemother Pharmacol. 2016;77(4):733–43.

    Article  CAS  PubMed  Google Scholar 

  62. Jonsson EN, Xie R, Marshall SF, Arends RH. Population pharmacokinetics of tanezumab in phase 3 clinical trials for osteoarthritis pain. Br J Clin Pharmacol. 2016;81(4):688–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kloft C, Graefe EU, Tanswell P, Scott AM, Hofheinz R, Amelsberg A, et al. Population pharmacokinetics of sibrotuzumab, a novel therapeutic monoclonal antibody, in cancer patients. Invest New Drugs. 2004;22(1):39–52.

    Article  CAS  PubMed  Google Scholar 

  64. Kuester K, Kovar A, Lupfert C, Brockhaus B, Kloft C. Population pharmacokinetic data analysis of three phase I studies of matuzumab, a humanised anti-EGFR monoclonal antibody in clinical cancer development. Br J Cancer. 2008;98(5):900–6. https://doi.org/10.1038/sj.bjc.6604265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuester K, Kovar A, Lupfert C, Brockhaus B, Kloft C. Refinement of the population pharmacokinetic model for the monoclonal antibody matuzumab: external model evaluation and simulations. Clin Pharmacokinet. 2009;48(7):477–87. https://doi.org/10.2165/11313400-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  66. Long A, Chigutsa E, Wallin J. Population pharmacokinetics of necitumumab in cancer patients. Clin Pharmacokinet. 2016;56(5):505–14.

    Article  CAS  PubMed Central  Google Scholar 

  67. Ma P, Yang BB, Wang YM, Peterson M, Narayanan A, Sutjandra L, et al. Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol. 2009;49(10):1142–56. https://doi.org/10.1177/0091270009344989.

    Article  CAS  PubMed  Google Scholar 

  68. Muralidharan KK, Kuesters G, Plavina T, Subramanyam M, Mikol DD, Gopal S, et al. Population pharmacokinetics and target engagement of natalizumab in patients with multiple sclerosis. J Clin Pharmacol. 2017;57(8):1017–30.

    Article  CAS  PubMed  Google Scholar 

  69. Quartino AL, Hillenbach C, Li J, Li H, Wada RD, Visich J, et al. Population pharmacokinetic and exposure-response analysis for trastuzumab administered using a subcutaneous “manual syringe” injection or intravenously in women with HER2-positive early breast cancer. Cancer Chemother Pharmacol. 2016;77(1):77–88.

    Article  CAS  PubMed  Google Scholar 

  70. Rosario M, Dirks NL, Gastonguay MR, Fasanmade AA, Wyant T, Parikh A, et al. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment Pharmacol Ther. 2015;42(2):188–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu B, Joshi A, Ren S, Ng C. The application of mechanism-based PK/PD modeling in pharmacodynamic-based dose selection of muM17, a surrogate monoclonal antibody for efalizumab. J Pharm Sci. 2006;95(6):1258–68. https://doi.org/10.1002/jps.20475.

    Article  CAS  PubMed  Google Scholar 

  72. Xu XS, Yan X, Puchalski T, Lonial S, Lokhorst HM, Voorhees PM, et al. Clinical implications of complex pharmacokinetics for daratumumab dose regimen in patients with relapsed/refractory multiple myeloma. Clin Pharmacol Ther. 2017;101(6):721–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mould DR, Davis CB, Minthorn EA, Kwok DC, Elliott MJ, Luggen ME, et al. A population pharmacokinetic-pharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis. Clin Pharmacol Ther. 1999;66(3):246–57.

    Article  CAS  PubMed  Google Scholar 

  74. Mould DR, Baumann A, Kuhlmann J, Keating MJ, Weitman S, Hillmen P, et al. Population pharmacokinetics-pharmacodynamics of alemtuzumab (Campath) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin Pharmacol. 2007;64(3):278–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wiczling P, Rosenzweig M, Vaickus L, Jusko WJ. Pharmacokinetics and pharmacodynamics of a chimeric/humanized anti-CD3 monoclonal antibody, otelixizumab (TRX4), in subjects with psoriasis and with type 1 diabetes mellitus. J Clin Pharmacol. 2010;50(5):494–506.

    Article  CAS  PubMed  Google Scholar 

  76. Scherer N, Dings C, Bohm M, Laufs U, Lehr T. Alternative treatment regimens with the PCSK9 inhibitors alirocumab and evolocumab: a pharmacokinetic and pharmacodynamic modeling approach. J Clin Pharmacol. 2017;57(7):846–54.

    Article  CAS  PubMed  Google Scholar 

  77. Endres CJ, Salinger DH, Kock K, Gastonguay MR, Martin DA, Klekotka P, et al. Population pharmacokinetics of brodalumab in healthy adults and adults with psoriasis from single and multiple dose studies. J Clin Pharmacol. 2014;54(11):1230–8.

    Article  CAS  PubMed  Google Scholar 

  78. Kovalenko P, DiCioccio AT, Davis JD, Li M, Ardeleanu M, Graham N, et al. Exploratory population PK analysis of dupilumab, a fully human monoclonal antibody against IL-4Ralpha, in atopic dermatitis patients and normal volunteers. CPT Pharmacomet Syst Pharmacol. 2016;5(11):617–24.

    Article  CAS  Google Scholar 

  79. Azzopardi N, Lecomte T, Ternant D, Boisdron-Celle M, Piller F, Morel A, et al. Cetuximab pharmacokinetics influences progression-free survival of metastatic colorectal cancer patients. Clin Cancer Res. 2011;17(19):6329–37.

    Article  CAS  PubMed  Google Scholar 

  80. Pointreau Y, Azzopardi N, Ternant D, Calais G, Paintaud G. Cetuximab pharmacokinetics influences overall survival in patients with head and neck cancer. Ther Drug Monit. 2017;38(5):567–72.

    Google Scholar 

  81. Thibault G, Paintaud G, Legendre C, Merville P, Coulon M, Chasseuil E, et al. CD25 blockade in kidney transplant patients randomized to standard-dose or high-dose basiliximab with cyclosporine, or high-dose basiliximab in a calcineurin inhibitor-free regimen. Transpl Int. 2016;29(2):184–95.

    Article  CAS  PubMed  Google Scholar 

  82. Shen T, James DE, Krueger KA. Population pharmacokinetics (PK) and pharmacodynamics (PD) analysis of LY3015014, a monoclonal antibody to protein convertase subtilisin/kexin type 9 (PCSK9) in healthy subjects and hypercholesterolemia patients. Pharm Res. 2017;34(1):185–92.

    Article  CAS  PubMed  Google Scholar 

  83. Struemper H, Chen C, Cai W. Population pharmacokinetics of belimumab following intravenous administration in patients with systemic lupus erythematosus. J Clin Pharmacol. 2013;53(7):711–20.

    Article  PubMed  Google Scholar 

  84. Zhang X, Peyret T, Gosselin NH, Marier JF, Imel EA, Carpenter TO. Population pharmacokinetic and pharmacodynamic analyses from a 4-month intradose escalation and its subsequent 12-month dose titration studies for a human monoclonal anti-FGF23 antibody (KRN23) in adults with X-linked hypophosphatemia. J Clin Pharmacol. 2016;56(4):429–38.

    Article  CAS  PubMed  Google Scholar 

  85. Zheng B, Yu XQ, Greth W, Robbie GJ. Population pharmacokinetic analysis of sifalimumab from a clinical phase IIb trial in systemic lupus erythematosus patients. Br J Clin Pharmacol. 2016;81(5):918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ternant D, Buchler M, Beneton M, Alvan G, Ohresser M, Touchard G, et al. Interindividual variability in the concentration-effect relationship of antilymphocyte globulins: a possible influence of FcgammaRIIIa genetic polymorphism. Br J Clin Pharmacol. 2008;65(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  87. Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-based population pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacomet Syst Pharmacol. 2017;6(1):58–66.

    Article  CAS  Google Scholar 

  88. Gibiansky L, Frey N. Linking interleukin-6 receptor blockade with tocilizumab and its hematological effects using a modeling approach. J Pharmacokinet Pharmacodyn. 2014;39(1):5–16.

    Article  CAS  Google Scholar 

  89. Li H, Yu J, Liu C, Liu J, Subramaniam S, Zhao H, et al. Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response. J Pharmacokinet Pharmacodyn. 2017;44(5):403–14.

    Article  CAS  PubMed  Google Scholar 

  90. Li J, Zhi J, Wenger M, Valente N, Dmoszynska A, Robak T, et al. Population pharmacokinetics of rituximab in patients with chronic lymphocytic leukemia. J Clin Pharmacol. 2012;52(12):1918–26.

    Article  CAS  PubMed  Google Scholar 

  91. Gibiansky E, Gibiansky L, Carlile DJ, Jamois C, Buchheit V, Frey N. Population pharmacokinetics of obinutuzumab (GA101) in chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma and exposure-response in CLL. CPT Pharmacomet Syst Pharmacol. 2014;2014(29):42.

    Google Scholar 

  92. Sun YN, Lu JF, Joshi A, Compton P, Kwon P, Bruno RA. Population pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) following long-term subcutaneous weekly dosing in psoriasis subjects. J Clin Pharmacol. 2005;45(4):468–76. https://doi.org/10.1177/0091270004272731.

    Article  CAS  PubMed  Google Scholar 

  93. Cosson VF, Ng VW, Lehle M, Lum BL. Population pharmacokinetics and exposure-response analyses of trastuzumab in patients with advanced gastric or gastroesophageal junction cancer. Cancer Chemother Pharmacol. 2014;73(4):737–47.

    Article  CAS  PubMed  Google Scholar 

  94. Bernadou G, Campone M, Merlin JL, Gouilleux-Gruart V, Bachelot T, Lokiec F, et al. Influence of tumour burden on trastuzumab pharmacokinetics in HER2 positive non-metastatic breast cancer. Br J Clin Pharmacol. 2016;81(5):941–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P. Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol. 2005;56(4):361–9.

    Article  CAS  PubMed  Google Scholar 

  96. Blasco H, Chatelut E, de Bretagne IB, Congy-Jolivet N, Le Guellec C. Pharmacokinetics of rituximab associated with CHOP chemotherapy in B-cell non-Hodgkin lymphoma. Fundam Clin Pharmacol. 2009;23(5):601–8. https://doi.org/10.1111/j.472-8206.2009.00714.x.

    Article  CAS  PubMed  Google Scholar 

  97. Regazzi MB, Iacona I, Avanzini MA, Arcaini L, Merlini G, Perfetti V, et al. Pharmacokinetic behavior of rituximab: a study of different schedules of administration for heterogeneous clinical settings. Ther Drug Monit. 2005;27(6):785–92.

    Article  CAS  PubMed  Google Scholar 

  98. Tout M, Casasnovas O, Meignan M, Lamy T, Morschhauser F, Salles G, et al. Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma Study Association report. Blood. 2017;129(19):2616–23.

    Article  CAS  PubMed  Google Scholar 

  99. Lioger B, Edupuganti SR, Mulleman D, Passot C, Desvignes C, Bejan-Angoulvant T, et al. Antigenic burden and serum IgG concentrations influence rituximab pharmacokinetics in rheumatoid arthritis patients. Br J Clin Pharmacol. 2017;83(8):1773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ng CM, Bruno R, Combs D, Davies B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol. 2005;45(7):792–801.

    Article  CAS  PubMed  Google Scholar 

  101. Aubourg A, Picon L, Lecomte T, Bejan-Angoulvant T, Paintaud G, Ternant D. A robust estimation of infliximab pharmacokinetic parameters in Crohn’s disease. Eur J Clin Pharmacol. 2015;71(12):1541–2.

    Article  PubMed  Google Scholar 

  102. Brandse JF, Mould D, Smeekes O, Ashruf Y, Kuin S, Strik A, et al. A real-life population pharmacokinetic study reveals factors associated with clearance and immunogenicity of infliximab in inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(4):650–60.

    Article  PubMed  Google Scholar 

  103. Buurman DJ, Maurer JM, Keizer RJ, Kosterink JG, Dijkstra G. Population pharmacokinetics of infliximab in patients with inflammatory bowel disease: potential implications for dosing in clinical practice. Aliment Pharmacol Ther. 2015;42(5):529–39.

    Article  CAS  PubMed  Google Scholar 

  104. Dotan I, Ron Y, Yanai H, Becker S, Fishman S, Yahav L, et al. Patient factors that increase infliximab clearance and shorten half-life in inflammatory bowel disease: a population pharmacokinetic study. Inflamm Bowel Dis. 2014;20(12):2247–59.

    Article  PubMed  Google Scholar 

  105. Fasanmade AA, Adedokun OJ, Blank M, Zhou H, Davis HM. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther. 2011;33(7):946–64.

    Article  CAS  PubMed  Google Scholar 

  106. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Passot C, Mulleman D, Bejan-Angoulvant T, Aubourg A, Willot S, Lecomte T, et al. The underlying inflammatory chronic disease influences infliximab pharmacokinetics. MAbs. 2016;8(7):1407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ternant D, Arnoult C, Pugniere M, Dhommee C, Drocourt D, Perouzel E, et al. IgG1 Allotypes influence the pharmacokinetics of therapeutic monoclonal antibodies through FcRn binding. J Immunol. 2016;196(2):607–13. https://doi.org/10.4049/jimmunol.1501780.

    Article  CAS  PubMed  Google Scholar 

  109. Ternant D, Aubourg A, Magdelaine-Beuzelin C, Degenne D, Watier H, Picon L, et al. Infliximab pharmacokinetics in inflammatory bowel disease patients. Ther Drug Monit. 2008;30(4):523–9. https://doi.org/10.1097/FTD.0b013e318180e300.

    Article  CAS  PubMed  Google Scholar 

  110. Ternant D, Berkane Z, Picon L, Gouilleux-Gruart V, Colombel JF, Allez M, et al. Assessment of the influence of inflammation and FCGR3A genotype on infliximab pharmacokinetics and time to relapse in patients with Crohn’s disease. Clin Pharmacokinet. 2015;54(5):551–62.

    Article  CAS  PubMed  Google Scholar 

  111. Ternant D, Ducourau E, Perdriger A, Corondan A, Le Goff B, Devauchelle-Pensec V, et al. Relationship between inflammation and infliximab pharmacokinetics in rheumatoid arthritis. Br J Clin Pharmacol. 2014;78(1):118–28.

    Article  CAS  PubMed  Google Scholar 

  112. Ternant D, Mulleman D, Degenne D, Willot S, Guillaumin JM, Watier H, et al. An enzyme-linked immunosorbent assay for therapeutic drug monitoring of infliximab. Ther Drug Monit. 2006;28(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  113. Ternant D, Mulleman D, Lauferon F, Vignault C, Ducourau E, Wendling D, et al. Influence of methotrexate on infliximab pharmacokinetics and pharmacodynamics in ankylosing spondylitis. Br J Clin Pharmacol. 2011;2011(22):1365–2125.

    Google Scholar 

  114. Xu Z, Seitz K, Fasanmade A, Ford J, Williamson P, Xu W, et al. Population pharmacokinetics of infliximab in patients with ankylosing spondylitis. J Clin Pharmacol. 2008;48(6):681–95.

    Article  CAS  PubMed  Google Scholar 

  115. Mostafa NM, Nader AM, Noertersheuser P, Okun M, Awni WM. Impact of immunogenicity on pharmacokinetics, efficacy and safety of adalimumab in adult patients with moderate to severe chronic plaque psoriasis. J Eur Acad Dermatol Venereol. 2017;31(3):490–7.

    Article  CAS  PubMed  Google Scholar 

  116. Nader A, Beck D, Noertersheuser P, Williams D, Mostafa N. Population pharmacokinetics and immunogenicity of adalimumab in adult patients with moderate-to-severe hidradenitis suppurativa. Clin Pharmacokinet. 2017;56(9):1091–102.

    Article  CAS  PubMed  Google Scholar 

  117. Ternant D, Ducourau E, Fuzibet P, Vignault C, Watier H, Lequerre T, et al. Pharmacokinetics and concentration-effect relationship of adalimumab in rheumatoid arthritis. Br J Clin Pharmacol. 2015;79(2):286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ternant D, Karmiris K, Vermeire S, Desvignes C, Azzopardi N, Bejan-Angoulvant T, et al. Pharmacokinetics of adalimumab in Crohn’s disease. Eur J Clin Pharmacol. 2015;71(9):1155–7.

    Article  PubMed  Google Scholar 

  119. Ternant D, Paintaud G, Trachtman H, Gipson DS, Joy MS. A possible influence of age on absorption and elimination of adalimumab in focal segmental glomerulosclerosis (FSGS). Eur J Clin Pharmacol. 2016;72(2):253–5.

    Article  PubMed  Google Scholar 

  120. Weisman MH, Moreland LW, Furst DE, Weinblatt ME, Keystone EC, Paulus HE, et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther. 2003;25(6):1700–21.

    Article  CAS  PubMed  Google Scholar 

  121. Berends SE, Strik AS, Van Selm JC, Lowenberg M, Ponsioen CY, D’Haens GR, et al. Explaining interpatient variability in adalimumab pharmacokinetics in patients with Crohn’s disease. Ther Drug Monit. 2018;40(2):202–11.

    Article  CAS  PubMed  Google Scholar 

  122. Sharma S, Eckert D, Hyams JS, Mensing S, Thakkar RB, Robinson AM, et al. Pharmacokinetics and exposure-efficacy relationship of adalimumab in pediatric patients with moderate to severe Crohn’s disease: results from a randomized, multicenter, phase-3 study. Inflamm Bowel Dis. 2015;21(4):783–92.

    Article  PubMed  Google Scholar 

  123. Vande Casteele N, Mould DR, Coarse J, Hasan I, Gils A, Feagan B, et al. Accounting for pharmacokinetic variability of certolizumab pegol in patients with Crohn’s disease. Clin Pharmacokinet. 2017;56(12):1513–23.

    Article  CAS  PubMed  Google Scholar 

  124. Wade JR, Parker G, Kosutic G, Feagen BG, Sandborn WJ, Laveille C, et al. Population pharmacokinetic analysis of certolizumab pegol in patients with Crohn’s disease. J Clin Pharmacol. 2015;55(8):866–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hu C, Xu Z, Zhang Y, Rahman MU, Davis HM, Zhou H. Population approach for exposure-response modeling of golimumab in patients with rheumatoid arthritis. J Clin Pharmacol. 2011;51(5):639–48.

    Article  CAS  PubMed  Google Scholar 

  126. Xu Z, Vu T, Lee H, Hu C, Ling J, Yan H, et al. Population pharmacokinetics of golimumab, an anti-tumor necrosis factor-alpha human monoclonal antibody, in patients with psoriatic arthritis. J Clin Pharmacol. 2009;49(9):1056–70. https://doi.org/10.1177/0091270009339192.

    Article  CAS  PubMed  Google Scholar 

  127. Xu ZH, Lee H, Vu T, Hu C, Yan H, Baker D, et al. Population pharmacokinetics of golimumab in patients with ankylosing spondylitis: impact of body weight and immunogenicity. Int. 2010;48(9):596–607.

    CAS  Google Scholar 

  128. Zhou H, Jang H, Fleischmann RM, Bouman-Thio E, Xu Z, Marini JC, et al. Pharmacokinetics and safety of golimumab, a fully human anti-TNF-alpha monoclonal antibody, in subjects with rheumatoid arthritis. J Clin Pharmacol. 2007;47(3):383–96.

    Article  CAS  PubMed  Google Scholar 

  129. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970;49(4):673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Caulet M, Lecomte T, Bouche O, Rollin J, Gouilleux-Gruart V, Azzopardi N, et al. Bevacizumab pharmacokinetics influence overall and progression-free survival in metastatic colorectal cancer patients. Clin Pharmacokinet. 2016;55(11):1381–94.

    Article  CAS  PubMed  Google Scholar 

  131. Lu D, Girish S, Gao Y, Wang B, Yi JH, Guardino E, et al. Population pharmacokinetics of trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer: clinical implications of the effect of covariates. Cancer Chemother Pharmacol. 2014;74(2):399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jodele S, Fukuda T, Mizuno K, Vinks AA, Laskin BL, Goebel J, et al. Variable eculizumab clearance requires pharmacodynamic monitoring to optimize therapy for thrombotic microangiopathy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(2):307–15.

    Article  CAS  PubMed  Google Scholar 

  133. Gupta M, Lorusso PM, Wang B, Yi JH, Burris HA 3rd, Beeram M, et al. Clinical implications of pathophysiological and demographic covariates on the population pharmacokinetics of trastuzumab emtansine, a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer. J Clin Pharmacol. 2012;52(5):691–703.

    Article  CAS  PubMed  Google Scholar 

  134. Stroh M, Winter H, Marchand M, Claret L, Eppler S, Ruppel J, et al. Clinical pharmacokinetics and pharmacodynamics of atezolizumab in metastatic urothelial carcinoma. Clin Pharmacol Ther. 2017;102(2):305–12.

    Article  CAS  PubMed  Google Scholar 

  135. Mo G, Baldwin JR, Luffer-Atlas D, Ilaria RL Jr, Conti I, Heathman M, et al. Population pharmacokinetic modeling of olaratumab, an anti-PDGFRalpha human monoclonal antibody, in patients with advanced and/or metastatic cancer. Clin Pharmacokinet. 2018;57(3):355–65.

    Article  CAS  PubMed  Google Scholar 

  136. Ahamadi M, Freshwater T, Prohn M, Li CH, de Alwis DP, de Greef R, et al. Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized anti-PD-1 monoclonal antibody in advanced solid tumors. CPT Pharmacomet Syst Pharmacol. 2017;6(1):49–57.

    Article  CAS  Google Scholar 

  137. Wang E, Kang D, Bae KS, Marshall MA, Pavlov D, Parivar K. Population pharmacokinetic and pharmacodynamic analysis of tremelimumab in patients with metastatic melanoma. J Clin Pharmacol. 2014;54(10):1108–16.

    Article  CAS  PubMed  Google Scholar 

  138. Yao Z, Hu C, Zhu Y, Xu Z, Randazzo B, Wasfi Y, et al. Population pharmacokinetic Modeling of guselkumab, a human IgG1lambda monoclonal antibody targeting IL-23, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2018;58(5):613–27.

    Article  CAS  PubMed  Google Scholar 

  139. Bendtzen K, Geborek P, Svenson M, Larsson L, Kapetanovic MC, Saxne T. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab. Arthritis Rheum. 2006;54(12):3782–9.

    Article  CAS  PubMed  Google Scholar 

  140. Wolbink GJ, Voskuyl AE, Lems WF, de Groot E, Nurmohamed MT, Tak PP, et al. Relationship between serum trough infliximab levels, pretreatment C reactive protein levels, and clinical response to infliximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis. 2005;64(5):704–7.

    Article  CAS  PubMed  Google Scholar 

  141. Elliott MJ, Feldmann M, Maini RN. TNF alpha blockade in rheumatoid arthritis: rationale, clinical outcomes and mechanisms of action. Int J Immunopharmacol. 1995;17(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  142. Elliott MJ, Maini RN. Anti-cytokine therapy in rheumatoid arthritis. Baillieres Clin Rheumatol. 1995;9(4):633–52.

    Article  CAS  PubMed  Google Scholar 

  143. Maini RN, Elliott MJ, Brennan FM, Williams RO, Chu CQ, Paleolog E, et al. Monoclonal anti-TNF alpha antibody as a probe of pathogenesis and therapy of rheumatoid disease. Immunol Rev. 1995;144:195–223.

    Article  CAS  PubMed  Google Scholar 

  144. Han K, Peyret T, Quartino A, Gosselin NH, Gururangan S, Casanova M, et al. Bevacizumab dosing strategy in paediatric cancer patients based on population pharmacokinetic analysis with external validation. Br J Clin Pharmacol. 2016;81(1):148–60.

    Article  CAS  PubMed  Google Scholar 

  145. Hua F, Ribbing J, Reinisch W, Cataldi F, Martin S. A pharmacokinetic comparison of anrukinzumab, an anti- IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients. Br J Clin Pharmacol. 2015;80(1):101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhu M, Gosselin NH, Kuchimanchi M, Johnson J, McCaffery I, Mouksassi MS, et al. Differential pharmacokinetics of ganitumab in patients with metastatic pancreatic cancer versus other advanced solid cancers. Clin Pharmacol Drug Dev. 2013;2(4):367–78.

    Article  CAS  PubMed  Google Scholar 

  147. Azzopardi N, Dupuis-Girod S, Ternant D, Fargeton AE, Ginon I, Faure F, et al. Dose-response relationship of bevacizumab in hereditary hemorrhagic telangiectasia. MAbs. 2015;7(3):630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Han K, Peyret T, Marchand M, Quartino A, Gosselin NH, Girish S, et al. Population pharmacokinetics of bevacizumab in cancer patients with external validation. Cancer Chemother Pharmacol. 2016;78(2):341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lu JF, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol. 2008;62(5):779–86. https://doi.org/10.1007/s00280-007-0664-8.

    Article  CAS  PubMed  Google Scholar 

  150. Turner DC, Navid F, Daw NC, Mao S, Wu J, Santana VM, et al. Population pharmacokinetics of bevacizumab in children with osteosarcoma: implications for dosing. Clin Cancer Res. 2014;20(10):2783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Muller C, Murawski N, Wiesen MH, Held G, Poeschel V, Zeynalova S, et al. The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood. 2012;119(14):3276–84.

    Article  CAS  PubMed  Google Scholar 

  152. Fischer SK, Yang J, Anand B, Cowan K, Hendricks R, Li J, et al. The assay design used for measurement of therapeutic antibody concentrations can affect pharmacokinetic parameters: case studies. MAbs. 2012;4(5):623–31. https://doi.org/10.4161/mabs.20814.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Gratacos J, Collado A, Filella X, Sanmarti R, Canete J, Llena J, et al. Serum cytokines (IL-6, TNF-alpha, IL-1 beta and IFN-gamma) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol. 1994;33(10):927–31.

    Article  CAS  PubMed  Google Scholar 

  154. Manicourt DH, Triki R, Fukuda K, Devogelaer JP, Nagant de Deuxchaisnes C, Thonar EJ. Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis: relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum. 1993;36(4):490–9.

    Article  CAS  PubMed  Google Scholar 

  155. Manicourt DH, Poilvache P, Van Egeren A, Devogelaer JP, Lenz ME, Thonar EJ. Synovial fluid levels of tumor necrosis factor alpha and oncostatin M correlate with levels of markers of the degradation of crosslinked collagen and cartilage aggrecan in rheumatoid arthritis but not in osteoarthritis. Arthritis Rheum. 2000;43(2):281–8. https://doi.org/10.1002/529-0131(200002)43:2<281:AID-ANR7>3.0.CO;2-7.

    Article  CAS  PubMed  Google Scholar 

  156. Ferri N, Bellosta S, Baldessin L, Boccia D, Racagni G, Corsini A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol Res. 2016;111:592–9.

    Article  CAS  PubMed  Google Scholar 

  157. Pouw MF, Krieckaert CL, Nurmohamed MT, van der Kleij D, Aarden L, Rispens T, et al. Key findings towards optimising adalimumab treatment: the concentration-effect curve. Ann Rheum Dis. 2015;74(3):513–8.

    Article  CAS  PubMed  Google Scholar 

  158. Baert F, Noman M, Vermeire S, Van Assche G, D’Haens G, Carbonez A, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348(7):601–8.

    Article  CAS  PubMed  Google Scholar 

  159. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.

    Article  CAS  PubMed  Google Scholar 

  160. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–7.

    Article  CAS  PubMed  Google Scholar 

  161. Zhang W, Gordon M, Schultheis AM, Yang DY, Nagashima F, Azuma M, et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol. 2007;25(24):3712–8.

    Article  CAS  PubMed  Google Scholar 

  162. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26(11):1789–96. https://doi.org/10.1200/JCO.2007.14.8957.

    Article  CAS  PubMed  Google Scholar 

  163. Ternant D, Buchler M, Thibault G, Ohresser M, Watier H, Lebranchu Y, et al. Influence of FcgammaRIIIA genetic polymorphism on T-lymphocyte depletion induced by rabbit antithymocyte globulins in kidney transplant patients. Pharmacogenet Genomics. 2014;24(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  164. Scallon B, Cai A, Solowski N, Rosenberg A, Song XY, Shealy D, et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther. 2002;301(2):418–26.

    Article  CAS  PubMed  Google Scholar 

  165. Scallon BJ, Trinh H, Nedelman M, Brennan FM, Feldmann M, Ghrayeb J. Functional comparisons of different tumour necrosis factor receptor/IgG fusion proteins. Cytokine. 1995;7(8):759–70.

    Article  CAS  PubMed  Google Scholar 

  166. Louis E, El Ghoul Z, Vermeire S, Dall’Ozzo S, Rutgeerts P, Paintaud G, et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment Pharmacol Ther. 2004;19(5):511–9.

    Article  CAS  PubMed  Google Scholar 

  167. Louis EJ, Watier HE, Schreiber S, Hampe J, Taillard F, Olson A, et al. Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn’s disease: a subanalysis of the ACCENT I study. Pharmacogenet Genomics. 2006;16(12):911–4.

    Article  CAS  PubMed  Google Scholar 

  168. Kut C, Mac Gabhann F, Popel AS. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer. 2007;97(7):978–85. https://doi.org/10.1038/sj.bjc.6603923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gibiansky L, Gibiansky E. Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn. 2010;37(4):323–46.

    Article  CAS  PubMed  Google Scholar 

  170. Xin Y, Xiang H, Jin D, Theil FP, Joshi A, Damico-Beyer LA, et al. Population pharmacokinetic and pharmacodynamic modeling of MNRP1685A in cynomolgus monkeys using two-target quasi-steady-state (QSS) model. J Pharmacokinet Pharmacodyn. 2012;39(2):217–26.

    Article  CAS  PubMed  Google Scholar 

  171. Li L, Gardner I, Dostalek M, Jamei M. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model. AAPS J. 2014;16(5):1097–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Darrouzain F, Bian S, Desvignes C, Bris C, Watier H, Paintaud G, et al. Immunoassays for measuring serum concentrations of monoclonal antibodies and anti-biopharmaceutical antibodies in patients. Ther Drug Monit. 2017;39(4):316–21.

    Article  CAS  PubMed  Google Scholar 

  173. Park WS, Han S, Lee J, Hong T, Won J, Lim Y, et al. Use of a target-mediated drug disposition model to predict the human pharmacokinetics and target occupancy of GC1118, an anti-epidermal growth factor receptor antibody. Basic Clin Pharmacol Toxicol. 2017;120(3):243–9.

    Article  CAS  PubMed  Google Scholar 

  174. Davda JP, Dodds MG, Gibbs MA, Wisdom W, Gibbs J. A model-based meta-analysis of monoclonal antibody pharmacokinetics to guide optimal first-in-human study design. MAbs. 2014;6(4):1094–102.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kamath AV. Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov Today Technol. 2016;22:75–83.

    Article  Google Scholar 

  176. Passot C, Pouw MF, Mulleman D, Bejan-Angoulvant T, Paintaud G, Dreesen E, et al. Therapeutic drug monitoring of biopharmaceuticals may benefit from pharmacokinetic and pharmacokinetic-pharmacodynamic modeling. Ther Drug Monit. 2017;39(4):322–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ternant.

Ethics declarations

Funding

This work was partly supported by the French Higher Education and Research Ministry under the program ‘Investissements d’avenir’ Grant Agreement: LabEx MAbImprove ANR-10-LABX-53-01.

Conflict of interest

David Ternant has given lectures for Amgen and Sanofi. Gilles Paintaud reports grants received by his research team, from Novartis, Roche Pharma, Sanofi-Genzyme, Chugai and Pfizer, outside of the submitted work. Theodora Bejan-Angoulvant, William Raoul and Nicolas Azzopardi have no conflicts of interest directly relevant to the content of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ternant, D., Azzopardi, N., Raoul, W. et al. Influence of Antigen Mass on the Pharmacokinetics of Therapeutic Antibodies in Humans. Clin Pharmacokinet 58, 169–187 (2019). https://doi.org/10.1007/s40262-018-0680-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-0680-3

Navigation