Skip to main content
Log in

Pharmacokinetic Variability of Therapeutic Antibodies in Humans: A Comprehensive Review of Population Pharmacokinetic Modeling Publications

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The pharmacokinetics of monoclonal antibodies is highly variable among patients. Several factors of variability, referred to as covariates in pharmacokinetic modeling, are known to influence this variability, such as body size, sex, antigen mass, serum albumin levels, or the presence of anti-drug antibodies. We propose a quantitative overview of the occurrence of assessment and detection of the main covariates associated with monoclonal antibody pharmacokinetics by comprehensively examining all population pharmacokinetic studies of monoclonal antibodies in humans. If some covariates are often assessed and detected (such as body size, antigen mass, or serum albumin levels), others are less frequently assessed but still may be relevant (e.g., anti-drug antibodies or endogenous immunoglobulin G levels). There is still a large heterogeneity in the relevance, availability, measurement, coding, detection, and interpretation of covariates. These issues deserve thorough investigation, which will help to design the optimal dosing strategy for every monoclonal antibody during its entire lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59.

    CAS  PubMed  Google Scholar 

  2. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    CAS  PubMed  Google Scholar 

  3. Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet. 2013;52(2):83–124.

    CAS  PubMed  Google Scholar 

  4. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68.

    CAS  PubMed  Google Scholar 

  5. Ternant D, Bejan-Angoulvant T, Passot C, Mulleman D, Paintaud G. Clinical pharmacokinetics and pharmacodynamics of monoclonal antibodies approved to treat rheumatoid arthritis. Clin Pharmacokinet. 2015;54(11):1107–23.

    CAS  PubMed  Google Scholar 

  6. Ternant D, Paintaud G. Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins. Expert Opin Biol Ther. 2005;5(Suppl. 1):S37–47.

    CAS  PubMed  Google Scholar 

  7. Ternant D, Azzopardi N, Raoul W, Bejan-Angoulvant T, Paintaud G. Influence of antigen mass on the pharmacokinetics of therapeutic antibodies in humans. Clin Pharmacokinet. 2019;58(2):169–87.

    CAS  PubMed  Google Scholar 

  8. Bajaj G, Suryawanshi S, Roy A, Gupta M. Evaluation of covariate effects on pharmacokinetics of monoclonal antibodies in oncology. Br J Clin Pharmacol. 2019;2019(29):13996.

    Google Scholar 

  9. Thomas VA, Balthasar JP. Understanding inter-individual variability in monoclonal antibody disposition. Antibodies (Basel). 2019;8(4). https://doi.org/10.3390/antib8040056.

  10. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507.

    CAS  PubMed  Google Scholar 

  11. Richter WF, Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab Dispos. 2014;42(11):1881–9.

    PubMed  Google Scholar 

  12. Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89(3):297–310.

    CAS  PubMed  Google Scholar 

  13. Vande Casteele N, Mould DR, Coarse J, Hasan I, Gils A, Feagan B, et al. Accounting for pharmacokinetic variability of certolizumab pegol in patients with Crohn’s disease. Clin Pharmacokinet. 2017;56(12):1513–23.

    CAS  PubMed  Google Scholar 

  14. Xu L, Lu T, Tuomi L, Jumbe N, Lu J, Eppler S, et al. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci. 2013;54(3):1616–24.

    CAS  PubMed  Google Scholar 

  15. Fronton L, Pilari S, Huisinga W. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models. J Pharmacokinet Pharmacodyn. 2014;41(2):87–107.

    CAS  PubMed  Google Scholar 

  16. Deng R, Jin F, Prabhu S, Iyer S. Monoclonal antibodies: what are the pharmacokinetic and pharmacodynamic considerations for drug development? Expert Opin Drug Metab Toxicol. 2012;8(2):141–60.

    CAS  PubMed  Google Scholar 

  17. Mould DR, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs. 2010;24(1):23–39.

    CAS  PubMed  Google Scholar 

  18. Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12(1):33–43.

    CAS  PubMed  Google Scholar 

  19. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–8.

    CAS  PubMed  Google Scholar 

  20. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970;49(4):673–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog. Allergy. 1969;13:1–110.

    CAS  Google Scholar 

  22. Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 2008;35(5):573–91. https://doi.org/10.1007/s10928-008-9102-8(Epub 2008 Nov 13).

    Article  CAS  PubMed  Google Scholar 

  23. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    CAS  PubMed  Google Scholar 

  24. Brandse JF, Mould D, Smeekes O, Ashruf Y, Kuin S, Strik A, et al. A real-life population pharmacokinetic study reveals factors associated with clearance and immunogenicity of infliximab in inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(4):650–60.

    PubMed  Google Scholar 

  25. Buurman DJ, Maurer JM, Keizer RJ, Kosterink JG, Dijkstra G. Population pharmacokinetics of infliximab in patients with inflammatory bowel disease: potential implications for dosing in clinical practice. Aliment Pharmacol Ther. 2015;42(5):529–39.

    CAS  PubMed  Google Scholar 

  26. Dotan I, Ron Y, Yanai H, Becker S, Fishman S, Yahav L, et al. Patient factors that increase infliximab clearance and shorten half-life in inflammatory bowel disease: a population pharmacokinetic study. Inflamm Bowel Dis. 2014;20(12):2247–59.

    PubMed  Google Scholar 

  27. Eser A, Primas C, Reinisch S, Vogelsang H, Novacek G, Mould DR, et al. Prediction of individual serum infliximab concentrations in inflammatory bowel disease by a Bayesian dashboard system. J Clin Pharmacol. 2018;58(6):790–802.

    CAS  PubMed  Google Scholar 

  28. Fasanmade AA, Adedokun OJ, Blank M, Zhou H, Davis HM. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther. 2011;33(7):946–64.

    CAS  PubMed  Google Scholar 

  29. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Petitcollin A, Brochard C, Siproudhis L, Tron C, Verdier MC, Lemaitre F, et al. Pharmacokinetic parameters of infliximab influence the rate of relapse after de-escalation in adults with inflammatory bowel diseases. Clin Pharmacol Ther. 2019;106(3):605–15.

    CAS  PubMed  Google Scholar 

  31. Petitcollin A, Leuret O, Tron C, Lemaitre F, Verdier MC, Paintaud G, et al. Modeling immunization to infliximab in children with Crohn’s disease using population pharmacokinetics: a pilot study. Inflamm Bowel Dis. 2018;24(8):1745–54.

    PubMed  Google Scholar 

  32. Ternant D, Aubourg A, Magdelaine-Beuzelin C, Degenne D, Watier H, Picon L, et al. Infliximab pharmacokinetics in inflammatory bowel disease patients. Ther Drug Monit. 2008;30(4):523–9. https://doi.org/10.1097/FTD.0b013e318180e300.

    Article  CAS  PubMed  Google Scholar 

  33. Ternant D, Ducourau E, Perdriger A, Corondan A, Le Goff B, Devauchelle-Pensec V, et al. Relationship between inflammation and infliximab pharmacokinetics in rheumatoid arthritis. Br J Clin Pharmacol. 2014;78(1):118–28.

    CAS  PubMed  Google Scholar 

  34. Xu Z, Seitz K, Fasanmade A, Ford J, Williamson P, Xu W, et al. Population pharmacokinetics of infliximab in patients with ankylosing spondylitis. J Clin Pharmacol. 2008;48(6):681–95.

    CAS  PubMed  Google Scholar 

  35. Nader A, Beck D, Noertersheuser P, Williams D, Mostafa N. Population pharmacokinetics and immunogenicity of adalimumab in adult patients with moderate-to-severe hidradenitis suppurativa. Clin Pharmacokinet. 2017;56(9):1091–102.

    CAS  PubMed  Google Scholar 

  36. Sharma S, Eckert D, Hyams JS, Mensing S, Thakkar RB, Robinson AM, et al. Pharmacokinetics and exposure-efficacy relationship of adalimumab in pediatric patients with moderate to severe Crohn’s disease: results from a randomized, multicenter, phase-3 study. Inflamm Bowel Dis. 2015;21(4):783–92.

    PubMed  Google Scholar 

  37. Ternant D, Karmiris K, Vermeire S, Desvignes C, Azzopardi N, Bejan-Angoulvant T, et al. Pharmacokinetics of adalimumab in Crohn’s disease. Eur J Clin Pharmacol. 2015;71(9):1155–7.

    PubMed  Google Scholar 

  38. Xu Z, Vu T, Lee H, Hu C, Ling J, Yan H, et al. Population pharmacokinetics of golimumab, an anti-tumor necrosis factor-alpha human monoclonal antibody, in patients with psoriatic arthritis. J Clin Pharmacol. 2009;49(9):1056–70. https://doi.org/10.1177/0091270009339192(Epub 2009 Jul 17).

  39. Xu ZH, Lee H, Vu T, Hu C, Yan H, Baker D, et al. Population pharmacokinetics of golimumab in patients with ankylosing spondylitis: impact of body weight and immunogenicity. Int. 2010;48(9):596–607.

    CAS  Google Scholar 

  40. Wade JR, Parker G, Kosutic G, Feagen BG, Sandborn WJ, Laveille C, et al. Population pharmacokinetic analysis of certolizumab pegol in patients with Crohn’s disease. J Clin Pharmacol. 2015;55(8):866–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Verotta D. Covariate modeling in population PK/PD models: an open problem. Adv Pharmacoepidemiol Drug Saf. 2012. https://doi.org/10.4172/2167-1052.S1-006.

    Article  Google Scholar 

  42. Duffull SB, Wright DF, Winter HR. Interpreting population pharmacokinetic-pharmacodynamic analyses: a clinical viewpoint. Br J Clin Pharmacol. 2011;71(6):807–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol. 2007;63(5):548–61.

    CAS  PubMed  Google Scholar 

  44. Gatault P, Brachet G, Ternant D, Degenne D, Recipon G, Barbet C, et al. Therapeutic drug monitoring of eculizumab: rationale for an individualized dosing schedule. MAbs. 2015;7(6):1205–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tout M, Casasnovas O, Meignan M, Lamy T, Morschhauser F, Salles G, et al. Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma Study Association report. Blood. 2017;129(19):2616–23.

    CAS  PubMed  Google Scholar 

  46. Tout M, Gagez AL, Lepretre S, Gouilleux-Gruart V, Azzopardi N, Delmer A, et al. Influence of FCGR3A-158V/F genotype and baseline CD20 antigen count on target-mediated elimination of rituximab in patients with chronic lymphocytic leukemia: a study of FILO Group. Clin Pharmacokinet. 2017;56(6):635–47.

    CAS  PubMed  Google Scholar 

  47. Caulet M, Lecomte T, Bouche O, Rollin J, Gouilleux-Gruart V, Azzopardi N, et al. Bevacizumab pharmacokinetics influence overall and progression-free survival in metastatic colorectal cancer patients. Clin Pharmacokinet. 2016;55(11):1381–94.

    CAS  PubMed  Google Scholar 

  48. Ternant D, Mulleman D, Degenne D, Willot S, Guillaumin JM, Watier H, et al. An enzyme-linked immunosorbent assay for therapeutic drug monitoring of infliximab. Ther Drug Monit. 2006;28(2):169–74.

    CAS  PubMed  Google Scholar 

  49. Zhang J, Sanghavi K, Shen J, Zhao X, Feng Y, Statkevich P, et al. Population pharmacokinetics of nivolumab in combination with ipilimumab in patients with advanced malignancies. CPT Pharmacometrics Syst Pharmacol. 2019;8(12):962–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Garg A, Quartino A, Li J, Jin J, Wada DR, Li H, et al. Population pharmacokinetic and covariate analysis of pertuzumab, a HER2-targeted monoclonal antibody, and evaluation of a fixed, non-weight-based dose in patients with a variety of solid tumors. Cancer Chemother Pharmacol. 2014;74(4):819–29.

    CAS  PubMed  Google Scholar 

  51. Kuester K, Kovar A, Lupfert C, Brockhaus B, Kloft C. Refinement of the population pharmacokinetic model for the monoclonal antibody matuzumab: external model evaluation and simulations. Clin Pharmacokinet. 2009;48(7):477–87.

    CAS  PubMed  Google Scholar 

  52. Dreesen E, Faelens R, Van Assche G, Ferrante M, Vermeire S, Gils A, et al. Optimising infliximab induction dosing for patients with ulcerative colitis. Br J Clin Pharmacol. 2019;85(4):782–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6.

    CAS  PubMed  Google Scholar 

  54. Martinez JM, Brunet A, Hurbin F, DiCioccio AT, Rauch C, Fabre D. Population pharmacokinetic analysis of alirocumab in healthy volunteers or hypercholesterolemic subjects using a Michaelis-Menten approximation of a target-mediated drug disposition model: support for a biologics license application submission: Part I. Clin Pharmacokinet. 2019;58(1):101–13.

    CAS  PubMed  Google Scholar 

  55. Kakkar T, Sung C, Gibiansky L, Vu T, Narayanan A, Lin SL, et al. Population PK and IgE pharmacodynamic analysis of a fully human monoclonal antibody against IL4 receptor. Pharm Res. 2011;28(10):2530–42.

    CAS  PubMed  Google Scholar 

  56. Struemper H, Thapar M, Roth D. Population pharmacokinetic and pharmacodynamic analysis of belimumab administered subcutaneously in healthy volunteers and patients with systemic lupus erythematosus. Clin Pharmacokinet. 2018;57(6):717–28.

    CAS  PubMed  Google Scholar 

  57. Jodele S, Fukuda T, Mizuno K, Vinks AA, Laskin BL, Goebel J, et al. Variable eculizumab clearance requires pharmacodynamic monitoring to optimize therapy for thrombotic microangiopathy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(2):307–15.

    CAS  PubMed  Google Scholar 

  58. Vu T, Ma P, Chen JS, de Hoon J, Van Hecken A, Yan L, et al. Pharmacokinetic-pharmacodynamic relationship of erenumab (AMG 334) and capsaicin-induced dermal blood flow in healthy and migraine subjects. Pharm Res. 2017;34(9):1784–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hibma J, Knight B. Population pharmacokinetic modeling of gemtuzumab ozogamicin in adult patients with acute myeloid leukemia. Clin Pharmacokinet. 2019;58(3):335–47.

    CAS  PubMed  Google Scholar 

  60. Hu C, Xu Z, Zhang Y, Rahman MU, Davis HM, Zhou H. Population approach for exposure-response modeling of golimumab in patients with rheumatoid arthritis. J Clin Pharmacol. 2011;51(5):639–48.

    CAS  PubMed  Google Scholar 

  61. Fang L, Holford NH, Hinkle G, Cao X, Xiao JJ, Bloomston M, et al. Population pharmacokinetics of humanized monoclonal antibody HuCC49deltaCH2 and murine antibody CC49 in colorectal cancer patients. J Clin Pharmacol. 2007;47(2):227–37.

    CAS  PubMed  Google Scholar 

  62. Zhang X, Peyret T, Gosselin NH, Marier JF, Imel EA, Carpenter TO. Population pharmacokinetic and pharmacodynamic analyses from a 4-month intradose escalation and its subsequent 12-month dose titration studies for a human monoclonal anti-FGF23 antibody (KRN23) in adults with X-linked hypophosphatemia. J Clin Pharmacol. 2016;56(4):429–38.

    CAS  PubMed  Google Scholar 

  63. Robbie GJ, Zhao L, Mondick J, Losonsky G, Roskos LK. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother. 2012;56(9):4927–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Baverel PG, Jain M, Stelmach I, She D, Agoram B, Sandbach S, et al. Pharmacokinetics of tralokinumab in adolescents with asthma: implications for future dosing. Br J Clin Pharmacol. 2015;80(6):1337–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bonate PL. Pharmacokinetic-pharmacodynamic modeling and simulation. 2nd ed. New York, Dordrecht, Heidelberg, London: Springer; 2011.

    Google Scholar 

  66. Long GV, Tykodi SS, Schneider JG, Garbe C, Gravis G, Rashford M, et al. Assessment of nivolumab exposure and clinical safety of 480 mg every 4 weeks flat-dosing schedule in patients with cancer. Ann Oncol. 2018;29(11):2208–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Meibohm B, Laer S, Panetta JC, Barrett JS. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J. 2005;7(2):E475–87.

    PubMed  PubMed Central  Google Scholar 

  68. Shen T, James DE, Krueger KA. Population pharmacokinetics (PK) and pharmacodynamics (PD) analysis of LY3015014, a monoclonal antibody to protein convertase subtilisin/kexin type 9 (PCSK9) in healthy subjects and hypercholesterolemia patients. Pharm Res. 2017;34(1):185–92.

    CAS  PubMed  Google Scholar 

  69. Bernadou G, Campone M, Merlin JL, Gouilleux-Gruart V, Bachelot T, Lokiec F, et al. Influence of tumour burden on trastuzumab pharmacokinetics in HER2 positive non-metastatic breast cancer. Br J Clin Pharmacol. 2016;81(5):941–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chakraborty A, Tannenbaum S, Rordorf C, Lowe PJ, Floch D, Gram H, et al. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1beta monoclonal antibody. Clin Pharmacokinet. 2012;51(6):e1–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun YN, Lu JF, Joshi A, Compton P, Kwon P, Bruno RA. Population pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) following long-term subcutaneous weekly dosing in psoriasis subjects. J Clin Pharmacol. 2005;45(4):468–76.

    CAS  PubMed  Google Scholar 

  72. Zhu M, Doshi S, Gisleskog PO, Oliner KS, Perez Ruixo JJ, Loh E, et al. Population pharmacokinetics of rilotumumab, a fully human monoclonal antibody against hepatocyte growth factor, in cancer patients. J Pharm Sci. 2014;103(1):328–36.

    CAS  PubMed  Google Scholar 

  73. Chakraborty A, Van LM, Skerjanec A, Floch D, Klein UR, Krammer G, et al. Pharmacokinetic and pharmacodynamic properties of canakinumab in patients with gouty arthritis. J Clin Pharmacol. 2013;53(12):1240–51.

    CAS  PubMed  Google Scholar 

  74. Sun H, Van LM, Floch D, Jiang X, Klein UR, Abrams K, et al. Pharmacokinetics and pharmacodynamics of canakinumab in patients with systemic juvenile idiopathic arthritis. J Clin Pharmacol. 2016;56(12):1516–27.

    CAS  PubMed  Google Scholar 

  75. Endres CJ, Salinger DH, Kock K, Gastonguay MR, Martin DA, Klekotka P, et al. Population pharmacokinetics of brodalumab in healthy adults and adults with psoriasis from single and multiple dose studies. J Clin Pharmacol. 2014;54(11):1230–8.

    CAS  PubMed  Google Scholar 

  76. Ternant D, Paintaud G, Trachtman H, Gipson DS, Joy MS. A possible influence of age on absorption and elimination of adalimumab in focal segmental glomerulosclerosis (FSGS). Eur J Clin Pharmacol. 2016;72(2):253–5.

    PubMed  Google Scholar 

  77. Honma W, Gautier A, Paule I, Yamaguchi M, Lowe PJ. Ethnic sensitivity assessment of pharmacokinetics and pharmacodynamics of omalizumab with dosing table expansion. Drug Metab Pharmacokinet. 2016;31(3):173–84.

    CAS  PubMed  Google Scholar 

  78. Zhu R, Zheng Y, Dirks NL, Vadhavkar S, Jin JY, Peng K, et al. Model-based clinical pharmacology profiling and exposure-response relationships of the efficacy and biomarker of lebrikizumab in patients with moderate-to-severe asthma. Pulm Pharmacol Ther. 2017;46:88–98.

    CAS  PubMed  Google Scholar 

  79. Hu C, Adedokun O, Ito K, Raje S, Lu M. Confirmatory population pharmacokinetic analysis for bapineuzumab phase 3 studies in patients with mild to moderate Alzheimer’s disease. J Clin Pharmacol. 2015;55(2):221–9.

    CAS  PubMed  Google Scholar 

  80. Wang X, Ludwig EA, Passarell J, Bello A, Roy A, Hruska MW. Population pharmacokinetics and exposure-safety analyses of nivolumab in patients with relapsed or refractory classical Hodgkin lymphoma. J Clin Pharmacol. 2019;59(3):364–73.

    CAS  PubMed  Google Scholar 

  81. Yao Z, Hu C, Zhu Y, Xu Z, Randazzo B, Wasfi Y, et al. Population pharmacokinetic modeling of guselkumab, a human IgG1lambda monoclonal antibody targeting IL-23, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2018;58(5):613–27.

    CAS  PubMed  Google Scholar 

  82. Rozman S, Grabnar I, Novakovic S, Mrhar A, Jezersek NB. Population pharmacokinetics of rituximab in patients with diffuse large B-cell lymphoma and association with clinical outcome. Br J Clin Pharmacol. 2017;83(8):1782–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wilkins JJ, Brockhaus B, Dai H, Vugmeyster Y, White JT, Brar S, et al. Time-varying clearance and impact of disease state on the pharmacokinetics of avelumab in Merkel cell carcinoma and urothelial carcinoma. CPT Pharmacometrics Syst Pharmacol. 2019;8(6):415–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tian Z, Sutton BJ, Zhang X. Distribution of rat neonatal Fc receptor in the principal organs of neonatal and pubertal rats. J Recept Signal Transduct Res. 2014;34(2):137–42.

    CAS  PubMed  Google Scholar 

  85. Top AP, van Dijk M, van Velzen JE, Ince C, Tibboel D. Functional capillary density decreases after the first week of life in term neonates. Neonatology. 2011;99(1):73–7.

    CAS  PubMed  Google Scholar 

  86. Schaefer B, Bartosova M, Macher-Goeppinger S, Ujszaszi A, Wallwiener M, Nyarangi-Dix J, et al. Quantitative histomorphometry of the healthy peritoneum. Sci Rep. 2016;19(6):21344.

    Google Scholar 

  87. Malik P, Edginton A. Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies. Expert Opin Drug Metab Toxicol. 2018;14(6):585–99.

    CAS  PubMed  Google Scholar 

  88. Gibiansky L, Sutjandra L, Doshi S, Zheng J, Sohn W, Peterson MC, et al. Population pharmacokinetic analysis of denosumab in patients with bone metastases from solid tumours. Clin Pharmacokinet. 2012;51(4):247–60.

    CAS  PubMed  Google Scholar 

  89. Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, et al. Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet. 2011;50(12):793–807.

    CAS  PubMed  Google Scholar 

  90. Ma P, Yang BB, Wang YM, Peterson M, Narayanan A, Sutjandra L, et al. Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol. 2009;49(10):1142–56.

    CAS  PubMed  Google Scholar 

  91. Mostafa NM, Nader AM, Noertersheuser P, Okun M, Awni WM. Impact of immunogenicity on pharmacokinetics, efficacy and safety of adalimumab in adult patients with moderate to severe chronic plaque psoriasis. J Eur Acad Dermatol Venereol. 2017;31(3):490–7.

    CAS  PubMed  Google Scholar 

  92. Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-based population pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacometrics Syst Pharmacol. 2017;6(1):58–66.

    CAS  PubMed  Google Scholar 

  93. Gibiansky L, Passey C, Roy A, Bello A, Gupta M. Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma. J Pharmacokinet Pharmacodyn. 2016;43(3):243–57.

    CAS  PubMed  Google Scholar 

  94. Dirks NL, Nolting A, Kovar A, Meibohm B. Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol. 2008;48(3):267–78.

    CAS  PubMed  Google Scholar 

  95. Saito T, Iida S, Terao K, Kumagai Y. Dosage optimization of nemolizumab using population pharmacokinetic and pharmacokinetic-pharmacodynamic modeling and simulation. J Clin Pharmacol. 2017;57(12):1564–72.

    CAS  PubMed  Google Scholar 

  96. Xin Y, Jin D, Eppler S, Damico-Beyer LA, Joshi A, Davis JD, et al. Population pharmacokinetic analysis from phase I and phase II studies of the humanized monovalent antibody, onartuzumab (MetMAb), in patients with advanced solid tumors. J Clin Pharmacol. 2013;53(11):1103–11.

    CAS  PubMed  Google Scholar 

  97. Yoshiba S, Jansen M, Matsushima N, Chen S, Mendell J. Population pharmacokinetic analysis of patritumab, a HER3 inhibitor, in subjects with advanced non-small cell lung cancer (NSCLC) or solid tumors. Cancer Chemother Pharmacol. 2016;77(5):987–96.

    CAS  PubMed  Google Scholar 

  98. Ahamadi M, Freshwater T, Prohn M, Li CH, de Alwis DP, de Greef R, et al. Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized anti-PD-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst Pharmacol. 2017;6(1):49–57.

    CAS  PubMed  Google Scholar 

  99. O’Brien L, Westwood P, Gao L, Heathman M. Population pharmacokinetic meta-analysis of ramucirumab in cancer patients. Br J Clin Pharmacol. 2017;83(12):2741–51.

    PubMed  PubMed Central  Google Scholar 

  100. Rosario M, Dirks NL, Gastonguay MR, Fasanmade AA, Wyant T, Parikh A, et al. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment Pharmacol Ther. 2015;42(2):188–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, et al. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2009;49(2):162–75.

    CAS  PubMed  Google Scholar 

  102. Wang E, Kang D, Bae KS, Marshall MA, Pavlov D, Parivar K. Population pharmacokinetic and pharmacodynamic analysis of tremelimumab in patients with metastatic melanoma. J Clin Pharmacol. 2014;54(10):1108–16.

    CAS  PubMed  Google Scholar 

  103. Hamuro L, Statkevich P, Bello A, Roy A, Bajaj G. Nivolumab clearance is stationary in resected melanoma patients on adjuvant therapy: implications of disease status on time-varying clearance. Clin Pharmacol Ther. 2019;106(5):1018–27.

    CAS  PubMed  Google Scholar 

  104. Osawa M, Hasegawa M, Bello A, Roy A, Hruska MW. Population pharmacokinetics analysis of nivolumab in Asian and non-Asian patients with gastric and gastro-esophageal junction cancers. Cancer Chemother Pharmacol. 2019;83(4):705–15.

    CAS  PubMed  Google Scholar 

  105. Shemesh CS, Chanu P, Jamsen K, Wada R, Rossato G, Donaldson F, et al. Population pharmacokinetics, exposure-safety, and immunogenicity of atezolizumab in pediatric and young adult patients with cancer. J Immunother Cancer. 2019;7(1):314.

    PubMed  PubMed Central  Google Scholar 

  106. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res. 2006;23(1):95–103.

    CAS  PubMed  Google Scholar 

  107. Zheng Y, Scheerens H, Davis JC Jr, Deng R, Fischer SK, Woods C, et al. Translational pharmacokinetics and pharmacodynamics of an FcRn-variant anti-CD4 monoclonal antibody from preclinical model to phase I study. Clin Pharmacol Ther. 2011;89(2):283–90.

    CAS  PubMed  Google Scholar 

  108. Gibiansky L, Gibiansky E. Target-mediated drug disposition model: approximations, identifiability of model parameters and applications to the population pharmacokinetic-pharmacodynamic modeling of biologics. Expert Opin Drug Metab Toxicol. 2009;5(7):803–12. https://doi.org/10.1517/17425250902992901.

    Article  CAS  PubMed  Google Scholar 

  109. Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR. Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm. 1999;27(4):397–420.

    CAS  PubMed  Google Scholar 

  110. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ. Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res. 2005;22(7):1088–100.

    CAS  PubMed  Google Scholar 

  111. Struemper H, Sale M, Patel BR, Ostergaard M, Osterborg A, Wierda WG, et al. Population pharmacokinetics of ofatumumab in patients with chronic lymphocytic leukemia, follicular lymphoma, and rheumatoid arthritis. J Clin Pharmacol. 2014;54(7):818–27.

    CAS  PubMed  Google Scholar 

  112. Bensalem A, Mulleman D, Paintaud G, Azzopardi N, Gouilleux-Gruart V, Cornec D, et al. Non-linear rituximab pharmacokinetics and complex relationship between rituximab concentrations and anti-neutrophil cytoplasmic antibodies (ANCA) in ANCA-associated vasculitis: the RAVE Trial revisited. Clin Pharmacokinet. 2019. https://doi.org/10.1007/s40262-019-00826-5(Epub ahead of print).

  113. Petitcollin A, Bensalem A, Verdier MC, Tron C, Lemaitre F, Paintaud G, et al. Modelling of the time-varying pharmacokinetics of therapeutic monoclonal antibodies: a literature review. Clin Pharmacokinet. 2020;59(1):37–49.

    PubMed  Google Scholar 

  114. Ternant D, Berkane Z, Picon L, Gouilleux-Gruart V, Colombel JF, Allez M, et al. Assessment of the influence of inflammation and FCGR3A genotype on infliximab pharmacokinetics and time to relapse in patients with Crohn’s disease. Clin Pharmacokinet. 2015;54(5):551–62.

    CAS  PubMed  Google Scholar 

  115. Passot C, Mulleman D, Bejan-Angoulvant T, Aubourg A, Willot S, Lecomte T, et al. The underlying inflammatory chronic disease influences infliximab pharmacokinetics. MAbs. 2016;8(7):1407–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ferri N, Bellosta S, Baldessin L, Boccia D, Racagni G, Corsini A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol Res. 2016;111:592–9.

    CAS  PubMed  Google Scholar 

  117. Djebli N, Martinez JM, Lohan L, Khier S, Brunet A, Hurbin F, et al. Target-mediated drug disposition population pharmacokinetics model of alirocumab in healthy volunteers and patients: pooled analysis of randomized phase I/II/III studies. Clin Pharmacokinet. 2017;56(10):1155–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kuchimanchi M, Grover A, Emery MG, Somaratne R, Wasserman SM, Gibbs JP, et al. Population pharmacokinetics and exposure-response modeling and simulation for evolocumab in healthy volunteers and patients with hypercholesterolemia. J Pharmacokinet Pharmacodyn. 2018;45(3):505–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Scherer N, Dings C, Bohm M, Laufs U, Lehr T. Alternative treatment regimens with the PCSK9 inhibitors alirocumab and evolocumab: a pharmacokinetic and pharmacodynamic modeling approach. J Clin Pharmacol. 2017;57(7):846–54.

    CAS  PubMed  Google Scholar 

  120. Guo YL, Zhang W, Li JJ. PCSK9 and lipid lowering drugs. Clin Chim Acta. 2014;1(437):66–71.

    Google Scholar 

  121. Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis. 2008;11(7):22.

    Google Scholar 

  122. Pointreau Y, Azzopardi N, Ternant D, Calais G, Paintaud G. Cetuximab pharmacokinetics influences overall survival in patients with head and neck cancer. Ther Drug Monit. 2017;38(5):567–72.

    Google Scholar 

  123. Lu JF, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol. 2008;62(5):779–86. https://doi.org/10.1007/s00280-007-0664-8(Epub 2008 Jan 19).

    Article  CAS  PubMed  Google Scholar 

  124. Narwal R, Roskos LK, Robbie GJ. Population pharmacokinetics of sifalimumab, an investigational anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus. Clin Pharmacokinet. 2013;52(11):1017–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Baverel PG, Dubois VFS, Jin CY, Zheng Y, Song X, Jin X, et al. Population pharmacokinetics of durvalumab in cancer patients and association with longitudinal biomarkers of disease status. Clin Pharmacol Ther. 2018;103(4):631–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ogasawara K, Newhall K, Maxwell SE, Dell’Aringa J, Komashko V, Kilavuz N, et al. Population pharmacokinetics of an anti-PD-L1 antibody, durvalumab in patients with hematologic malignancies. Clin Pharmacokinet. 2020;59(2):217–27.

    CAS  PubMed  Google Scholar 

  127. Stroh M, Winter H, Marchand M, Claret L, Eppler S, Ruppel J, et al. Clinical pharmacokinetics and pharmacodynamics of atezolizumab in metastatic urothelial carcinoma. Clin Pharmacol Ther. 2017;102(2):305–12.

    CAS  PubMed  Google Scholar 

  128. Li H, Yu J, Liu C, Liu J, Subramaniam S, Zhao H, et al. Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response. J Pharmacokinet Pharmacodyn. 2017;44(5):403–14.

    CAS  PubMed  Google Scholar 

  129. Frey N, Grange S, Woodworth T. Population pharmacokinetic analysis of tocilizumab in patients with rheumatoid arthritis. J Clin Pharmacol. 2010;50(7):754–66.

    CAS  PubMed  Google Scholar 

  130. Sharma S, Mittapalli RK, Holen KD, Xiong H. Population pharmacokinetics of ABT-806, an investigational anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in advanced solid tumor types likely to either over-express wild-type EGFR or express variant III mutant EGFR. Clin Pharmacokinet. 2015;54(10):1071–81.

    CAS  PubMed  Google Scholar 

  131. Hua F, Ribbing J, Reinisch W, Cataldi F, Martin S. A pharmacokinetic comparison of anrukinzumab, an anti-IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients. Br J Clin Pharmacol. 2015;80(1):101–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Han K, Peyret T, Marchand M, Quartino A, Gosselin NH, Girish S, et al. Population pharmacokinetics of bevacizumab in cancer patients with external validation. Cancer Chemother Pharmacol. 2016;78(2):341–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Azzopardi N, Lecomte T, Ternant D, Boisdron-Celle M, Piller F, Morel A, et al. Cetuximab pharmacokinetics influences progression-free survival of metastatic colorectal cancer patients. Clin Cancer Res. 2011;17(19):6329–37.

    CAS  PubMed  Google Scholar 

  134. Zhu M, Gosselin NH, Kuchimanchi M, Johnson J, McCaffery I, Mouksassi MS, et al. Differential pharmacokinetics of ganitumab in patients with metastatic pancreatic cancer versus other advanced solid cancers. Clin Pharmacol Drug Dev. 2013;2(4):367–78.

    CAS  PubMed  Google Scholar 

  135. Suleiman AA, Khatri A, Minocha M, Othman AA. Population pharmacokinetics of the interleukin-23 inhibitor risankizumab in subjects with psoriasis and Crohn’s disease: analyses of phase I and II trials. Clin Pharmacokinet. 2019;58(3):375–87.

    CAS  PubMed  Google Scholar 

  136. Hurkmans DP, Basak EA, van Dijk T, Mercieca D, Schreurs MWJ, Wijkhuijs AJM, et al. A prospective cohort study on the pharmacokinetics of nivolumab in metastatic non-small cell lung cancer, melanoma, and renal cell cancer patients. J Immunother Cancer. 2019;7(1):192.

    PubMed  PubMed Central  Google Scholar 

  137. Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr J. 2010;22(9):69.

    Google Scholar 

  138. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cosson VF, Ng VW, Lehle M, Lum BL. Population pharmacokinetics and exposure-response analyses of trastuzumab in patients with advanced gastric or gastroesophageal junction cancer. Cancer Chemother Pharmacol. 2014;73(4):737–47.

    CAS  PubMed  Google Scholar 

  140. Davidson SM, Jonas O, Keibler MA, Hou HW, Luengo A, Mayers JR, et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat Med. 2017;23(2):235–41.

    CAS  PubMed  Google Scholar 

  141. Struemper H, Chen C, Cai W. Population pharmacokinetics of belimumab following intravenous administration in patients with systemic lupus erythematosus. J Clin Pharmacol. 2013;53(7):711–20.

    PubMed  Google Scholar 

  142. Lioger B, Edupuganti SR, Mulleman D, Passot C, Desvignes C, Bejan-Angoulvant T, et al. Antigenic burden and serum IgG concentrations influence rituximab pharmacokinetics in rheumatoid arthritis patients. Br J Clin Pharmacol. 2017;83(8):1773–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bensalem A, Mulleman D, Thibault G, Azzopardi N, Goupille P, Paintaud G, et al. CD4 + count-dependent concentration-effect relationship of rituximab in rheumatoid arthritis. Br J Clin Pharmacol. 2019;85(12):2747–58.

    CAS  PubMed  Google Scholar 

  144. Ternant D, Arnoult C, Pugniere M, Dhommee C, Drocourt D, Perouzel E, et al. IgG1 allotypes influence the pharmacokinetics of therapeutic monoclonal antibodies through FcRn binding. J Immunol. 2016;196(2):607–13. https://doi.org/10.4049/jimmunol.1501780.

    Article  CAS  PubMed  Google Scholar 

  145. Sachs UJ, Socher I, Braeunlich CG, Kroll H, Bein G, Santoso S. A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter. Immunology. 2006;119(1):83–9. https://doi.org/10.1111/j.365-2567.006.02408.x(Epub 2006 Jun 23).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Passot C, Azzopardi N, Renault S, Baroukh N, Arnoult C, Ohresser M, et al. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. MAbs. 2013;5(4):614–9.

  147. Johnson JA. Influence of race or ethnicity on pharmacokinetics of drugs. J Pharm Sci. 1997;86(12):1328–33.

    CAS  PubMed  Google Scholar 

  148. Han K, Peyret T, Quartino A, Gosselin NH, Gururangan S, Casanova M, et al. Bevacizumab dosing strategy in iatric cancer patients based on population pharmacokinetic analysis with external validation. Br J Clin Pharmacol. 2016;81(1):148–60.

    CAS  PubMed  Google Scholar 

  149. Diao L, Hang Y, Othman AA, Nestorov I, Tran JQ. Population pharmacokinetics of daclizumab high-yield process in healthy volunteers and subjects with multiple sclerosis: analysis of phase I-III clinical trials. Clin Pharmacokinet. 2016;55(8):943–55.

    CAS  PubMed  Google Scholar 

  150. Muralidharan KK, Kuesters G, Plavina T, Subramanyam M, Mikol DD, Gopal S, et al. Population pharmacokinetics and target engagement of natalizumab in patients with multiple sclerosis. J Clin Pharmacol. 2017;57(8):1017–30.

    CAS  PubMed  Google Scholar 

  151. Muller C, Murawski N, Wiesen MH, Held G, Poeschel V, Zeynalova S, et al. The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood. 2012;119(14):3276–84.

    PubMed  Google Scholar 

  152. Xu C, Su Y, Paccaly A, Kanamaluru V. Population pharmacokinetics of sarilumab in patients with rheumatoid arthritis. Clin Pharmacokinet. 2019;58(11):1455–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang B, Yan L, Yao Z, Roskos LK. Population pharmacokinetics and pharmacodynamics of benralizumab in healthy volunteers and patients with asthma. CPT Pharmacometrics Syst Pharmacol. 2017;6(4):249–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Yee KL, Kleijn HJ, Kerbusch T, Matthews RP, Dorr MB, Garey KW, et al. Population pharmacokinetics and pharmacodynamics of bezlotoxumab in adults with primary and recurrent Clostridium difficile infection. Antimicrob Agents Chemother. 2019;63(2). https://doi.org/10.1128/aac.01971-18.

  155. Pescovitz MD, Knechtle S, Alexander SR, Colombani P, Nevins T, Nieforth K, et al. Safety and pharmacokinetics of daclizumab in pediatric renal transplant recipients. Pediatr Transplant. 2008;12(4):447–55.

    CAS  PubMed  Google Scholar 

  156. Jauslin P, Kulkarni P, Li H, Vatakuti S, Hussain A, Wenning L, Kerbusch T. Population pharmacokinetic modeling of tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, in healthy volunteers and subjects with psoriasis. Clin Pharmacokinet. 2019;58(8):1059–68.

    CAS  PubMed  Google Scholar 

  157. Chen ML. Ethnic or racial differences revisited: impact of dosage regimen and dosage form on pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2006;45(10):957–64.

    CAS  PubMed  Google Scholar 

  158. Xu Y, Hu C, Zhuang Y, Hsu B, Xu Z, Zhou H. Confirmatory population pharmacokinetic analysis for sirukumab, a human monoclonal antibody targeting interleukin-6, in patients with moderately to severely active rheumatoid arthritis. J Clin Pharmacol. 2018;58(7):939–51.

    CAS  PubMed  Google Scholar 

  159. Zhang Y, Yao Z, Kaila N, Kuebler P, Visich J, Maia M, et al. Pharmacokinetics of ranibizumab after intravitreal administration in patients with retinal vein occlusion or diabetic macular edema. Ophthalmology. 2014;121(11):2237–46.

    PubMed  Google Scholar 

  160. Feng Y, Masson E, Dai D, Parker SM, Berman D, Roy A. Model-based clinical pharmacology profiling of ipilimumab in patients with advanced melanoma. Br J Clin Pharmacol. 2014;78(1):106–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Dreesen E, Kantasiripitak W, Detrez I, Stefanovic S, Vermeire S, Ferrante M, et al. A population pharmacokinetic and exposure-response model of golimumab for targeting endoscopic remission in patients with ulcerative colitis. Inflamm Bowel Dis. 2019. https://doi.org/10.1093/ibd/izz144(Epub ahead of print).

  162. Krieckaert CL, Bartelds GM, Lems WF, Wolbink GJ. The effect of immunomodulators on the immunogenicity of TNF-blocking therapeutic monoclonal antibodies: a review. Arthritis Res Ther. 2010;12(5):217.

    PubMed  PubMed Central  Google Scholar 

  163. van Schouwenburg PA, Krieckaert CL, Rispens T, Aarden L, Wolbink GJ, Wouters D. Long-term measurement of anti-adalimumab using pH-shift-anti-idiotype antigen binding test shows predictive value and transient antibody formation. Ann Rheum Dis. 2013;72(10):1680–6.

    PubMed  Google Scholar 

  164. Ungar B, Chowers Y, Yavzori M, Picard O, Fudim E, Har-Noy O, et al. The temporal evolution of antidrug antibodies in patients with inflammatory bowel disease treated with infliximab. Gut. 2014;63(8):1258–64.

    CAS  PubMed  Google Scholar 

  165. Garces S, Demengeot J, Benito-Garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis. 2013;72(12):1947–55.

    CAS  PubMed  Google Scholar 

  166. Thurlings RM, Teng O, Vos K, Gerlag DM, Aarden L, Stapel SO, et al. Clinical response, pharmacokinetics, development of human anti-chimaeric antibodies, and synovial tissue response to rituximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis. 2010;69(2):409–12.

    CAS  PubMed  Google Scholar 

  167. Feng Y, Roy A, Masson E, Chen TT, Humphrey R, Weber JS. Exposure-response relationships of the efficacy and safety of ipilimumab in patients with advanced melanoma. Clin Cancer Res. 2013;19(14):3977–86.

    CAS  PubMed  Google Scholar 

  168. Khatri A, Eckert D, Oberoi R, Suleiman A, Pang Y, Cheng L, et al. Pharmacokinetics of risankizumab in Asian healthy subjects and patients with moderate to severe plaque psoriasis, generalized pustular psoriasis, and erythrodermic psoriasis. J Clin Pharmacol. 2019;59(12):1656–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol. 2007;28(11):482–90.

    PubMed  Google Scholar 

  170. Nikanjam M, Yang J, Capparelli EV. Population pharmacokinetics of siltuximab: impact of disease state. Cancer Chemother Pharmacol. 2019;84(5):993–1001.

    CAS  PubMed  Google Scholar 

  171. Suleiman AA, Minocha M, Khatri A, Pang Y, Othman AA. Population pharmacokinetics of risankizumab in healthy volunteers and subjects with moderate to severe plaque psoriasis: integrated analyses of phase I-III clinical trials. Clin Pharmacokinet. 2019;58(10):1309–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Jonsson EN, Xie R, Marshall SF, Arends RH. Population pharmacokinetics of tanezumab in phase 3 clinical trials for osteoarthritis pain. Br J Clin Pharmacol. 2016;81(4):688–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Li L, Zhen EY, Decker RL, Willis BA, Waters D, Liu P, et al. Pharmacokinetics and pharmacodynamics of LY2599666, a PEG-linked antigen binding fragment that targets soluble monomer amyloid-beta. J Alzheimers Dis. 2019;68(1):137–44.

    CAS  PubMed  Google Scholar 

  174. Gupta M, Lorusso PM, Wang B, Yi JH, Burris HA 3rd, Beeram M, et al. Clinical implications of pathophysiological and demographic covariates on the population pharmacokinetics of trastuzumab emtansine, a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer. J Clin Pharmacol. 2012;52(5):691–703.

    CAS  PubMed  Google Scholar 

  175. Sanghavi K, Zhang J, Zhao X, Feng Y, Statkevich P, Sheng J, et al. Population pharmacokinetics of ipilimumab in combination with nivolumab in patients with advanced solid tumors. CPT Pharmacometrics Syst Pharmacol. 2020;9(1):29–39.

    CAS  PubMed  Google Scholar 

  176. Bihorel S, Fiedler-Kelly J, Ludwig E, Sloan-Lancaster J, Raddad E. Population pharmacokinetic modeling of LY2189102 after multiple intravenous and subcutaneous administrations. AAPS J. 2014;16(5):1009–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P. Population pharmacokinetics of trastuzumab in patients with HER2 + metastatic breast cancer. Cancer Chemother Pharmacol. 2005;56(4):361–9.

    CAS  PubMed  Google Scholar 

  178. Royer B, Yin W, Pegram M, Ibrahim N, Villanueva C, Mir D, et al. Population pharmacokinetics of the humanised monoclonal antibody, HuHMFG1 (AS1402), derived from a phase I study on breast cancer. Br J Cancer. 2010;102(5):827–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Berends SE, Strik AS, Van Selm JC, Lowenberg M, Ponsioen CY, D’Haens GR, et al. Explaining interpatient variability in adalimumab pharmacokinetics in patients with Crohn’s disease. Ther Drug Monit. 2018;40(2):202–11.

    CAS  PubMed  Google Scholar 

  180. Passot C, Pouw MF, Mulleman D, Bejan-Angoulvant T, Paintaud G, Dreesen E, et al. Therapeutic drug monitoring of biopharmaceuticals may benefit from pharmacokinetic and pharmacokinetic-pharmacodynamic modeling. Ther Drug Monit. 2017;39(4):322–6.

    CAS  PubMed  Google Scholar 

  181. Paintaud G, Passot C, Ternant D, Bertolotto A, Bejan-Angoulvant T, Pascual-Salcedo D, et al. Rationale for therapeutic drug monitoring of biopharmaceuticals in inflammatory diseases. Ther Drug Monit. 2017;39(4):339–43.

    CAS  PubMed  Google Scholar 

  182. Mould DR, Dubinsky MC. Dashboard systems: pharmacokinetic/pharmacodynamic mediated dose optimization for monoclonal antibodies. J Clin Pharmacol. 2015;55(Suppl. 3):S51–9.

    CAS  PubMed  Google Scholar 

  183. Ternant D, Passot C, Aubourg A, Goupille P, Desvignes C, Picon L, et al. Model-based therapeutic drug monitoring of infliximab using a single serum trough concentration. Clin Pharmacokinet. 2018;57(9):1173–84.

    CAS  PubMed  Google Scholar 

  184. Wojciechowski J, Upton RN, Mould DR, Wiese MD, Foster DJR. Infliximab maintenance dosing in inflammatory bowel disease: an example for in silico assessment of adaptive dosing strategies. AAPS J. 2017;19(4):1136–47.

    CAS  PubMed  Google Scholar 

  185. Basak EA, Koolen SLW, Hurkmans DP, Schreurs MWJ, Bins S, Oomen-de Hoop E, et al. Correlation between nivolumab exposure and treatment outcomes in non-small-cell lung cancer. Eur J Cancer. 2019;109:12–20.

    CAS  PubMed  Google Scholar 

  186. Ait-Oudhia S, Lowe PJ, Mager DE. Bridging clinical outcomes of canakinumab treatment in patients with rheumatoid arthritis with a population model of IL-1beta kinetics. CPT Pharmacometrics Syst Pharmacol. 2012;26(1):e5.

    Google Scholar 

  187. Masters JC, Barry E, Knight B. Population pharmacokinetics of gemtuzumab ozogamicin in pediatric patients with relapsed or refractory acute myeloid leukemia. Clin Pharmacokinet. 2019;58(2):271–82.

    PubMed  Google Scholar 

  188. Vande Casteele N, Oyamada J, Shimizu C, Best BM, Capparelli EV, Tremoulet AH, et al. Infliximab pharmacokinetics are influenced by intravenous immunoglobulin administration in patients with Kawasaki disease. Clin Pharmacokinet. 2018;57(12):1593–601.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Olivier Le Tilly and Anne Mychak for their kind technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ternant.

Ethics declarations

Funding

No sources of funding were received for the preparation of this article.

Conflict of interest

David Ternant has given lectures to Amgen, Novartis, and Boehringer Ingelheim, outside the submitted work. Amina Bensalem has no conflicts of interest that are directly relevant to the content of this article.

Author contributions

AB and DT wrote, revised, and approved the manuscript in its submitted form.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensalem, A., Ternant, D. Pharmacokinetic Variability of Therapeutic Antibodies in Humans: A Comprehensive Review of Population Pharmacokinetic Modeling Publications. Clin Pharmacokinet 59, 857–874 (2020). https://doi.org/10.1007/s40262-020-00874-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-020-00874-2

Navigation