Skip to main content

Advertisement

Log in

Mechanism-based receptor-binding model to describe the pharmacokinetic and pharmacodynamic of an anti-α5β1 integrin monoclonal antibody (volociximab) in cancer patients

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Volociximab is a chimeric IgG4 that is being developed as a novel first-in-class anti-angiogenic, α5β1 integrin inhibitor for the treatment of solid tumors. A mechanism-based pharmacokinetic (PK)/pharmacodynamic (PD) model was developed to investigate the dynamic interaction between volociximab concentrations and free monocyte α5β1 integrin levels in cancer patients.

Methods

Twenty-one cancer patients from six dose cohorts (0.5, 1.0, 2.5, 5.0, 10, and 15 mg/kg) were included in the analysis. The fully integrated receptor-binding PK/PD model was developed and fit simultaneously to the PK/PD data. A Monte-Carlo parametric expectation-maximization method implement in S-ADAPT program was used to obtain estimates of population parameters and inter- and intra-subject variability.

Results

The PK/PD time profiles were well described by the model and the parameters were estimated with good precision. The model was used to simulate PK/PD time profiles for multiple dose regimens at various dose levels, and the results suggested that the monocyte α5β1 integrin binding was saturated (≤5% free) at week 16 in the majority of patients treated with volociximab doses ≥10 mg/kg IV every 2 weeks.

Conclusions

The developed model is useful for anticipating the drug exposures and extent of volociximab binding to peripheral monocyte α5β1 integrin in untested regimens and for optimizing the design of future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauer RJ, Guzy S (2004) Monte Carlo parametric expectation maximization (MC-PEM) method for analyzing population pharmacokinetic/pharmacodynamic (PK/PD) data. In: D’Argenio DZ (ed) Advanced methods of pharmacokinetic and pharmacodynamic system analysis. Kluwer, Boston, pp 135–163

    Chapter  Google Scholar 

  2. Beal SL (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28:481–504

    Article  CAS  PubMed  Google Scholar 

  3. Breier G, Risau W (1996) The role of vascular endothelial growth factor in blood vessel formation. Trends Cell Biol 6:454–456

    Article  CAS  PubMed  Google Scholar 

  4. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  CAS  PubMed  Google Scholar 

  5. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  CAS  PubMed  Google Scholar 

  6. Cranmer LD, Bedikian AY, Ribas A, O’Day S, Forero-Torres A, Yazji S, Kirkwood M (2006) Phase II study of volociximab (M200), an alpha-5 beta-1 anti-integrin antibody in metastatic melanoma. J Clin Oncol 24:8011

    Google Scholar 

  7. D’ Argenio D, Schumitzky A (1997) ADAPT II user’s guide: pharmacokinetic/pharmacodynamic system analysis software. Biomedical Simulations Resources, Los Angeles

    Google Scholar 

  8. Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095

    Article  CAS  PubMed  Google Scholar 

  9. Evans T, Ramanathan RK, Yazji S, Glynne-Jones R, Anthoney A, Berlin J, Valle JW (2007) Final results from cohort 1 of a phase II study of volociximab, an anti-alpha5 beta1 integrin antibody, in combination with gemcitabine (GEM) in patients (pts) with metastatic pancreatic cancer (MPC). J Clin Oncol 25:4549

    Google Scholar 

  10. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  11. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  12. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    CAS  PubMed  Google Scholar 

  13. Francis SE, Goh KL, Hodivala-Dilke K, Bader BL, Stark M, Davidson D, Hynes RO (2002) Central roles of alpha5 beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22:927–933

    Article  CAS  PubMed  Google Scholar 

  14. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721

    Article  PubMed  Google Scholar 

  15. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    CAS  PubMed  Google Scholar 

  16. Hwang R, Varner J (2004) The role of integrins in tumor angiogenesis. Hematol Oncol Clin North Am 18:991–1006, vii

    Article  PubMed  Google Scholar 

  17. Kim S, Bakre M, Yin H, Varner JA (2002) Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest 110:933–941

    CAS  PubMed  Google Scholar 

  18. Kim S, Harris M, Varner JA (2000) Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem 275:33920–33928

    Article  CAS  PubMed  Google Scholar 

  19. Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ (2005) Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22:1088–1100

    Article  CAS  PubMed  Google Scholar 

  21. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L (2006) Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23:95–103

    Article  CAS  PubMed  Google Scholar 

  22. Ramakrishnan V, Bhaskar V, Law DA, Wong MH, DuBridge RB, Breinberg D, O’Hara C, Powers DB, Liu G, Grove J, Hevezi P, Cass KM, Watson S, Evangelista F, Powers RA, Finck B, Wills M, Caras I, Fang Y, McDonald D, Johnson D, Murray R, Jeffry U (2006) Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. J Exp Ther Oncol 5:273–286

    CAS  PubMed  Google Scholar 

  23. Ricart AD, Tolcher AW, Liu G, Holen K, Schwartz G, Albertini M, Weiss G, Yazji S, Ng C, Wilding G (2008) Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res 14:7924–7929

    Article  CAS  PubMed  Google Scholar 

  24. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  25. Waldmann TA, Strober W (1969) Metabolism of immunoglobulins. Prog Allergy 13:1–110

    CAS  PubMed  Google Scholar 

  26. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO (2003) Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 22:1–29

    Article  CAS  PubMed  Google Scholar 

  27. Yazji S, Bukowski R, Kondagunta V, Figlin R (2007) Final results from phase II study of volociximab, an alpha-5 beta-1 anti-integrin antibody, in refractory or relapsed metastatic clear cell renal cell carcinoma (mCCRCC). J Clin Oncol 25:5094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee M. Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, C.M., Bai, S., Takimoto, C.H. et al. Mechanism-based receptor-binding model to describe the pharmacokinetic and pharmacodynamic of an anti-α5β1 integrin monoclonal antibody (volociximab) in cancer patients. Cancer Chemother Pharmacol 65, 207–217 (2010). https://doi.org/10.1007/s00280-009-1023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1023-8

Keywords

Navigation