Skip to main content

Advertisement

Log in

Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Pembrolizumab is a monoclonal antibody that targets the programmed death-1 receptor to induce immune-mediated clearance (CL) of tumor cells. Originally approved by the US Food and Drug Administration in 2014 for treating patients with unresectable or metastatic melanoma, pembrolizumab is now also used to treat patients with non-small-cell lung cancer, classical Hodgkin lymphoma, head and neck cancer, and urothelial cancer. This paper describes the recently identified feature of pembrolizumab pharmacokinetics, the time-dependent or time-varying CL. Overall results indicate that CL decreases over the treatment period of a typical patient in a pattern well described by a sigmoidal function of time with three parameters: the maximum proportion change in CL from baseline (approximately Imax or exactly eImax − 1), the time to reach Imax/2 (TI50), and a Hill coefficient. Best overall response per response evaluation criteria in solid tumor category was found to be associated with the magnitude of Imax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28:4531–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  3. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    Article  CAS  PubMed  Google Scholar 

  4. Brown JA, Dorfman DM, Ma F-R, Sullivan EL, Munoz O, Wood CR et al (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170:1257–1266

    Article  CAS  PubMed  Google Scholar 

  5. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC et al (2007) PD-1 expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 13:1757–1761

    Article  CAS  PubMed  Google Scholar 

  7. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157

    Article  CAS  PubMed  Google Scholar 

  8. Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y et al (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15:971–979

    Article  CAS  PubMed  Google Scholar 

  9. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mu C-Y, Huang J-A, Chen Y, Chen C, Zhang X-G (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28:682–688

    Article  CAS  PubMed  Google Scholar 

  11. Fourcade J, Kudela P, Sun Z, Shen H, Land SR, Lenzner D et al (2009) PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J Immunol 182:5240–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: and update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56:739–745

    Article  PubMed  Google Scholar 

  13. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsushima F, Tanaka K, Otsuki N, Youngnak P, Iwai H, Omura K et al (2006) Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol 42:268–274

    Article  CAS  PubMed  Google Scholar 

  15. Sznol M, Powderly JD, Smith DC, Brahmer JR, Drake CG, McDermott DF et al (2010) Safety and antitumor activity of biweekly MDX-1106 (anti-PD-1, BMS-936558/ONO-4538) in patients with advanced refractory malignancies [Abstract]. J Clin Oncol 28(15s):2506

    Article  Google Scholar 

  16. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A, KEYNOTE-006 Investigators (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  17. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, KEYNOTE-001 Investigators (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  18. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G, Garrido M Jr, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  CAS  PubMed  Google Scholar 

  19. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, Hodi FS, Schachter J, Pavlick AC, Lewis KD, Cranmer LD, Blank CU, O’Day SJ, Ascierto PA, Salama AK, Margolin KA, Loquai C, Eigentler TK, Gangadhar TC, Carlino MS, Agarwala SS, Moschos SJ, Sosman JA, Goldinger SM, Shapira-Frommer R, Gonzalez R, Kirkwood JM, Wolchok JD, Eggermont A, Li XN, Zhou W, Zernhelt AM, Lis J, Ebbinghaus S, Kang SP, Daud A (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16(8):908–918

    Article  CAS  PubMed  Google Scholar 

  20. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, Cheng JD, Chow LQ (2016) Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17(7):956–965

    Article  CAS  PubMed  Google Scholar 

  21. Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, Snyder ES, Ricart AD, Balakumaran A, Rose S, Moskowitz CH (2016) Programmed death-1 blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol 34(31):3733–3739

    Article  Google Scholar 

  22. Burki TK (2016) Pembrolizumab for classical Hodgkin’s lymphoma. Lancet Oncol 17(8):e324

    Article  PubMed  Google Scholar 

  23. Shoo BA, Kashani-Sabet M (2009) Melanoma arising in African-, Asian-, Latino- and Native-American populations. Semin Cutan Med Surg 28:96–102

    Article  CAS  PubMed  Google Scholar 

  24. Addeo R, Caraglia M, Iuliano G (2016) Pembrolizumab has antitumor activity in advanced head and neck cancer. Cancer Discov 6(7):693

    Google Scholar 

  25. de Greef R, Elassaiss-Schaap J, Chatterjee M et al (2017) Pembrolizumab: role of modeling and simulation in bringing a novel immunotherapy to patients with melanoma. CPT Pharmacomet Syst Pharmacol 6(1):5–7

    Article  Google Scholar 

  26. Ahamadi M, Freshwater T, Prohn M et al (2017) Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized anti-PD-1 monoclonal antibody in advanced solid tumors. CPT Pharmacomet Syst Pharmacol 6(1):49–57

    Article  CAS  Google Scholar 

  27. Drug label for pembrolizumab BLA125514, Supplement 8. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125514s008s012lbl.pdf. Accessed October 2016

  28. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13:143–152

    Article  PubMed  PubMed Central  Google Scholar 

  29. Keizer RJ, Karlsson MO, Hooker A (2013) Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol 2(e50):1–9

    Google Scholar 

  30. Chatterjee M, Turner DC, Felip E et al (2016) Systematic evaluation of pembrolizumab dosing in patients with advanced non-small-cell lung cancer. Ann Oncol 27(7):1291–1298

    Article  CAS  PubMed  Google Scholar 

  31. Fearon KC, Hansell DT, Preston T et al (1998) Influence of whole body protein turnover rate on resting energy expenditure in patients with cancer. Cancer Res 48:2590–2595

    Google Scholar 

  32. Roxburgh CS, McMillan DC (2014) Cancer and systemic inflammation: treat the tumour and treat the host. Br J Cancer 110:1409–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez Ruixo JJ, Doshi S, Sohn W, Chow A (2015) Quantitative pharmacology of denosumab in patients with bone metastases from solid tumors. J Clin Pharmacol 55(Suppl 3):S85–S92

    Article  PubMed  Google Scholar 

  34. Panoilia E, Schindler E, Samantas E, Aravantinos G, Kalofonos HP, Christodoulou C, Patrinos GP, Friberg LE, Sivolapenko G (2015) A pharmacokinetic binding model for bevacizumab and VEGF165 in colorectal cancer patients. Cancer Chemother Pharmacol 75:791–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thai HT, Veyrat-Follet C, Mentré F, Comets E (2013) Population pharmacokinetic analysis of free and bound aflibercept in patients with advanced solid tumors. Cancer Chemother Pharmacol 72:167–180

    Article  CAS  PubMed  Google Scholar 

  36. Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y (2017) Model-based population pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacomet Syst Pharmacol 6(1):58–66

    Article  CAS  Google Scholar 

  37. Squibb BM (2011) Clinical pharmacology and biopharmaceutic review [of ipilimumab]. FDA Center for Drug Evaluation and Research (CDER), p 1–122

  38. Yang J, Zhao H, Garnett C et al (2013) The combination of exposure–response and case–control analyses in regulatory decision making. J Clin Pharmacol 53:160–166

    Article  PubMed  Google Scholar 

  39. Liu J, Wang Y, Zhao L (2015) Assessment of exposure–response and case–control analyses in oncology using simulation based approach. In: 2015 American conference of pharmacometrics

  40. Wang Y (2016) Special considerations for modeling exposure–response for biologics, 8 March 2016, San Diego, CA, USA. American Society for Clinical Pharmacology and Therapeutics (ASCPT)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaning Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yu, J., Liu, C. et al. Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response. J Pharmacokinet Pharmacodyn 44, 403–414 (2017). https://doi.org/10.1007/s10928-017-9528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-017-9528-y

Keywords

Navigation