Skip to main content

Advertisement

Log in

Enzyme Engineering Strategies for the Bioenhancement of l-Asparaginase Used as a Biopharmaceutical

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Over the past few years, there has been a surge in the industrial production of recombinant enzymes from microorganisms due to their catalytic characteristics being highly efficient, selective, and biocompatible. l-asparaginase (l-ASNase) is an enzyme belonging to the class of amidohydrolases that catalyzes the hydrolysis of l-asparagine into l-aspartic acid and ammonia. It has been widely investigated as a biologic agent for its antineoplastic properties in treating acute lymphoblastic leukemia. The demand for l-ASNase is mainly met by the production of recombinant type II l-ASNase from Escherichia coli and Erwinia chrysanthemi. However, the presence of immunogenic proteins in l-ASNase sourced from prokaryotes has been known to result in adverse reactions in patients undergoing treatment. As a result, efforts are being made to explore strategies that can help mitigate the immunogenicity of the drug. This review gives an overview of recent biotechnological breakthroughs in enzyme engineering techniques and technologies used to improve anti-leukemic l-ASNase, taking into account the pharmacological importance of l-ASNase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al-Hazmi NE, Naguib DM. Plant asparaginase versus microbial asparaginase as anticancer agent. Environ Sci Pollut Res Int. 2022;29(18):27283–93. https://doi.org/10.1007/s11356-021-17925-1.

    Article  CAS  PubMed  Google Scholar 

  2. Ardalan N, Mirzaie S, Sepahi AA, Khavari-Nejad RA. Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies. Med Hypotheses. 2018;112:7–17. https://doi.org/10.1016/j.mehy.2018.01.004.

    Article  CAS  PubMed  Google Scholar 

  3. Arnold FH. Directed evolution: bringing new chemistry to life. Angew Chem Int Ed. 2018;57(16):4143–8.

    Article  CAS  Google Scholar 

  4. Asselin BL. The three asparaginases. In: Drug resistance in leukemia and lymphoma III. New York: Springer; 1999. p. 621–9.

    Chapter  Google Scholar 

  5. Avramis VI. Asparaginases: biochemical pharmacology and modes of drug resistance. Anticancer Res. 2012;32(7):2423–37.

    CAS  PubMed  Google Scholar 

  6. Avramis VI, Sencer S, Periclou AP, Sather H, Bostrom BC, Cohen LJ, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood. 2002;99(6):1986–94.

    Article  CAS  PubMed  Google Scholar 

  7. SPECTRILA (2020). https://www.bago.com.br/media/files/fcd0f10e5aee4911eb8bee6aabf6ce40ac/faa912de614a611ecaddc6aabf6ce40ac/bula-profissional-de-saude.pdf

  8. Bano M, Sivaramakrishnan VM. Preparation and properties of L-asparaginase from green chillies (Capsicum annum L.). J Biosci. 1980;2(4):291–7. https://doi.org/10.1007/BF02716861.

    Article  CAS  Google Scholar 

  9. Bansal S, Gnaneswari D, Mishra P, Kundu B. Structural stability and functional analysis of L-asparaginase from Pyrococcus furiosus. Biochem Mosc. 2010;75(3):375–81. https://doi.org/10.1134/S0006297910030144.

    Article  CAS  Google Scholar 

  10. Bansal S, Srivastava A, Mukherjee G, Pandey R, Verma AK, Mishra P, Kundu B. Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action. FASEB J. 2012;26(3):1161–71. https://doi.org/10.1096/fj.11-191254.

    Article  CAS  PubMed  Google Scholar 

  11. Beckett A, Gervais D. What makes a good new therapeutic l-asparaginase? World J Microbiol Biotechnol. 2019;35(10):152. https://doi.org/10.1007/s11274-019-2731-9.

    Article  CAS  PubMed  Google Scholar 

  12. Belén LH, Lissabet JB, de Oliveira Rangel-Yagui C, Effer B, Monteiro G, Pessoa A, Farías Avendaño JG. A structural in silico analysis of the immunogenicity of l-asparaginase from Escherichia coli and Erwinia carotovora. Biologicals. 2019;59:47–55. https://doi.org/10.1016/j.biologicals.2019.03.003.

    Article  CAS  PubMed  Google Scholar 

  13. Biçer A, Taslimi P, Yakalı G, Gülçin I, Serdar Gültekin M, Turgut Cin G. Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg Chem. 2019;82:393–404. https://doi.org/10.1016/j.bioorg.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  14. Boztaş M, Çetinkaya Y, Topal M, Gülçin İ, Menzek A, Şahin E, Tanc M, Supuran CT. Synthesis and carbonic anhydrase isoenzymes I, II, IX, and XII inhibitory effects of dimethoxybromophenol derivatives incorporating cyclopropane moieties. J Med Chem. 2015;58(2):640–50. https://doi.org/10.1021/jm501573b.

    Article  CAS  PubMed  Google Scholar 

  15. Broome JD. Evidence that the L-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects. Nature. 1961;191(4793):1114–5. https://doi.org/10.1038/1911114a0.

    Article  CAS  Google Scholar 

  16. Broome JD. Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects: I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. J Exp Med. 1963;118(1):99–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brumano LP, da Silva FVS, Costa-Silva TA, Apolinário AC, Santos JHPM, Kleingesinds EK, Monteiro G, Rangel-Yagui CDO, Benyahia B, Junior AP. Development of L-asparaginase biobetters: current research status and review of the desirable quality profiles [review]. Front Bioeng Biotechnol. 2019. https://doi.org/10.3389/fbioe.2018.00212.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Butreddy A, Kommineni N, Dudhipala N. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: insights from drug delivery to clinical perspectives. Nanomaterials (Basel). 2021. https://doi.org/10.3390/nano11061481.

    Article  PubMed  Google Scholar 

  19. Capuano E, Fogliano V. Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci Technol. 2011;44(4):793–810. https://doi.org/10.1016/j.lwt.2010.11.002.

    Article  CAS  Google Scholar 

  20. Castro D, Marques A, Almeida M, Paiva G, Bento H, Pedrolli D, Freire M, Tavares A, Santos-Ebinuma V. L-Asparaginase production review: bioprocess design and biochemical characteristics. Appl Microbiol Biotechnol. 2021. https://doi.org/10.1007/s00253-021-11359-y.

    Article  PubMed  Google Scholar 

  21. Chahardahcherik M, Ashrafi M, Ghasemi Y, Aminlari M. Effect of chemical modification with carboxymethyl dextran on kinetic and structural properties of L-asparaginase. Anal Biochem. 2020;591: 113537. https://doi.org/10.1016/j.ab.2019.113537.

    Article  CAS  PubMed  Google Scholar 

  22. Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, et al. The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood. 2014;123(23):3596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen R. Enzyme engineering: rational redesign versus directed evolution. Trends Biotechnol. 2001;19(1):13–4. https://doi.org/10.1016/S0167-7799(00)01522-5.

    Article  CAS  PubMed  Google Scholar 

  24. Clementi A. La désamidation enzymatique de l’asparagine chez les différentes espéces animales et la signification physio logique de sa presence dans l’organisme. Arch Int Physiol. 1922;19(4):369–98.

    CAS  Google Scholar 

  25. Cooney DA, Capizzi RL, Handschumacher RE. Evaluation of L-asparagine metabolism in animals and man. Can Res. 1970;30(4):929–35.

    CAS  Google Scholar 

  26. Costa-Silva TA, Costa IM, Biasoto HP, Lima GM, Silva C, Pessoa A, Monteiro G. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Rev. 2020;43: 100651. https://doi.org/10.1016/j.blre.2020.100651.

    Article  CAS  PubMed  Google Scholar 

  27. Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J. Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol. 2014;34(4):281–99.

    Article  CAS  PubMed  Google Scholar 

  28. Costa IM, Schultz L, de Araujo Bianchi Pedra B, Leite MSM, Farsky SHP, de Oliveira MA, Pessoa A, Monteiro G. Recombinant L-asparaginase 1 from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Sci Rep. 2016;6(1):36239. https://doi.org/10.1038/srep36239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. da Cunha MC, Silva LC, Sato HH, de Castro RJS. Using response surface methodology to improve the L-asparaginase production by Aspergillus niger under solid-state fermentation. Biocatal Agric Biotechnol. 2018;16:31–6. https://doi.org/10.1016/j.bcab.2018.07.018.

    Article  Google Scholar 

  30. Dantas RC, Caetano LF, Torres ALS, Alves MS, Silva ETMF, Teixeira LPR, Teixeira DC, de Azevedo Moreira R, Fonseca MHG, Gaudêncio Neto S, Martins LT, Furtado GP, Tavares KCS. Expression of a recombinant bacterial l-asparaginase in human cells. BMC Res Notes. 2019;12(1):794. https://doi.org/10.1186/s13104-019-4836-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Darvishi F, Jahanafrooz Z, Mokhtarzadeh A. Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Appl Microbiol Biotechnol. 2022. https://doi.org/10.1007/s00253-022-12086-8.

    Article  PubMed  Google Scholar 

  32. de Almeida Parizotto L, Krebs Kleingesinds E, Pedrotti M, da Rosa L, Effer B, Meira Lima G, Herkenhoff ME, Li Z, Rinas U, Monteiro G, Pessoa A, Tonso A. Increased glycosylated l-asparaginase production through selection of Pichia pastoris platform and oxygen-methanol control in fed-batches. Biochem Eng J. 2021;173: 108083. https://doi.org/10.1016/j.bej.2021.108083.

    Article  CAS  Google Scholar 

  33. De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: a review. Biotechnol Adv. 2023;64: 108121. https://doi.org/10.1016/j.biotechadv.2023.108121.

    Article  CAS  PubMed  Google Scholar 

  34. De Pourcq K, De Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol. 2010;87(5):1617–31. https://doi.org/10.1007/s00253-010-2721-1.

    Article  CAS  PubMed  Google Scholar 

  35. Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27(3):297–306.

    Article  CAS  PubMed  Google Scholar 

  36. Derst C, Henseling J, Röhm KH. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci. 2000;9(10):2009–17. https://doi.org/10.1110/ps.9.10.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhankhar R, Gupta V, Kumar S, Kapoor RK, Gulati P. Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment. Appl Microbiol Biotechnol. 2020;104(7):2857–69. https://doi.org/10.1007/s00253-020-10432-2.

    Article  CAS  PubMed  Google Scholar 

  38. Dias FFG, Bogusz Junior S, Hantao LW, Augusto F, Sato HH. Acrylamide mitigation in French fries using native l-asparaginase from Aspergillus oryzae CCT 3940. LWT Food Sci Technol. 2017;76:222–9. https://doi.org/10.1016/j.lwt.2016.04.017.

    Article  CAS  Google Scholar 

  39. Doriya K, Jose N, Gowda M, Kumar DS. Chapter six—solid-state fermentation vs submerged fermentation for the production of l-asparaginase. In: Kim S-K, Toldrá F, editors. Advances in food and nutrition research, vol. 78. New York: Academic Press; 2016. p. 115–35. https://doi.org/10.1016/bs.afnr.2016.05.003.

    Chapter  Google Scholar 

  40. Dunlop PC, Meyer GM, Ban D, Roon RJ. Characterization of two forms of asparaginase in Saccharomyces cerevisiae. J Biol Chem. 1978;253(4):1297–304. https://doi.org/10.1016/S0021-9258(17)38144-9.

    Article  CAS  PubMed  Google Scholar 

  41. Durden DL, Distasio JA. Characterization of the effects of asparaginase from Escherichia coli and a glutaminase-free asparaginase from vibrio succinogenes on specific cell-mediated cytotoxicity. Int J Cancer. 1981;27(1):59–65. https://doi.org/10.1002/ijc.2910270110.

    Article  CAS  PubMed  Google Scholar 

  42. Ebrahiminezhad A, Rasoul-Amini S, Ghoshoon MB, Ghasemi Y. Chlorella vulgaris, a novel microalgal source for l-asparaginase production. Biocatal Agric Biotechnol. 2014;3(2):214–7. https://doi.org/10.1016/j.bcab.2013.10.005.

    Article  Google Scholar 

  43. Effer B, Kleingesinds EK, Lima GM, Costa IM, Sánchez-Moguel I, Pessoa A, Santiago VF, Palmisano G, Farías JG, Monteiro G. Glycosylation of Erwinase results in active protein less recognized by antibodies. Biochem Eng J. 2020;163: 107750. https://doi.org/10.1016/j.bej.2020.107750.

    Article  CAS  Google Scholar 

  44. Effer B, Lima GM, Cabarca S, Pessoa A, Farías JG, Monteiro G. L-Asparaginase from E. chrysanthemi expressed in glycoswitch®: effect of His-Tag fusion on the extracellular expression. Preparative Biochem Biotechnol. 2019;49(7):679–85. https://doi.org/10.1080/10826068.2019.1599396.

    Article  CAS  Google Scholar 

  45. Egler RA, Ahuja SP, Matloub Y. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J Pharmacol Pharmacother. 2016;7(2):62–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. El-Hadi A, El-Refai H, Shafei M, Zaki R, Mostafa H. Statistical optimization of L-asparaginase production by using Fusarium solani [Original Article]. Egypt Pharm J. 2017;16(1):16–23. https://doi.org/10.4103/1687-4315.205825.

    Article  Google Scholar 

  47. FDA. Drug Substance Chemistry, Manufacturing, and Controls Information. US FDA; 2010. https://www.fda.gov/media/69923/download

  48. Feng Y, Liu S, Jiao Y, Gao H, Wang M, Du G, Chen J. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Appl Microbiol Biotechnol. 2017;101(4):1509–20. https://doi.org/10.1007/s00253-016-7816-x.

    Article  CAS  PubMed  Google Scholar 

  49. Fonseca MHG, Fiúza TDS, Morais SB, Souza T, Trevizani R. Circumventing the side effects of L-asparaginase. Biomed Pharmacother. 2021;139: 111616. https://doi.org/10.1016/j.biopha.2021.111616.

    Article  CAS  PubMed  Google Scholar 

  50. Friedrich L, O’Donnell A (2018) Modified L-asparaginase. J. P. I. Ltd.

  51. Fu K, March K, Alexaki A, Fabozzi G, Moysi E, Petrovas C. Immunogenicity of protein therapeutics: a lymph node perspective [review]. Front Immunol. 2020;11:10. https://doi.org/10.3389/fimmu.2020.00791.

    Article  CAS  Google Scholar 

  52. Fung MKL, Chan GC-F. Drug-induced amino acid deprivation as strategy for cancer therapy. J Hematol Oncol. 2017;10(1):144. https://doi.org/10.1186/s13045-017-0509-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gamiz-Arco G, Risso VA, Gaucher EA, Gavira JA, Naganathan AN, Ibarra-Molero B, Sanchez-Ruiz JM. Combining ancestral reconstruction with folding-landscape simulations to engineer heterologous protein expression. J Mol Biol. 2021;433(24): 167321. https://doi.org/10.1016/j.jmb.2021.167321.

    Article  CAS  PubMed  Google Scholar 

  54. Gebauer M, Skerra A. Prospects of PASylation® for the design of protein and peptide therapeutics with extended half-life and enhanced action. Bioorg Med Chem. 2018;26(10):2882–7. https://doi.org/10.1016/j.bmc.2017.09.016.

    Article  CAS  PubMed  Google Scholar 

  55. Gervais D, Foote N. Recombinant deamidated mutants of erwinia chrysanthemil-asparaginase have similar or increased activity compared to wild-type enzyme. Mol Biotechnol. 2014;56(10):865–77. https://doi.org/10.1007/s12033-014-9766-9.

    Article  CAS  PubMed  Google Scholar 

  56. Ghasemi Y, Ebrahiminezhad A, Rasoul-Amini S, Zarrini G, Ghoshoon MB, Raee MJ, Morowvat MH, Kafilzadeh F, Kazemi A. An optimized medium for screening of L-asparaginase production by Escherichia coli. Am J Biochem Biotechnol. 2008;4(4):422–4.

    Article  CAS  Google Scholar 

  57. Ghasemian A, Al-marzoqi A-H, Al-abodi HR, Alghanimi YK, Kadhum SA, Shokouhi Mostafavi SK, Fattahi A. Bacterial l-asparaginases for cancer therapy: current knowledge and future perspectives. J Cell Physiol. 2019;234(11):19271–9. https://doi.org/10.1002/jcp.28563.

    Article  CAS  PubMed  Google Scholar 

  58. Guo L, Wang J, Qian S, Yan X, Chen R, Meng G. Construction and structural modeling of a single-chain Fv–asparaginase fusion protein resistant to proteolysis. Biotechnol Bioeng. 2000;70(4):456–63. https://doi.org/10.1002/1097-0290(20001120)70:4%3c456::AID-BIT11%3e3.0.CO;2-E.

    Article  CAS  PubMed  Google Scholar 

  59. He H, Ye J, Wang Y, Liu Q, Chung HS, Kwon YM, Shin MC, Lee K, Yang VC. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J Control Release. 2014;176:123–32. https://doi.org/10.1016/j.jconrel.2013.12.019.

    Article  CAS  PubMed  Google Scholar 

  60. Husain I, Sharma A, Kumar S, Malik F. Purification and characterization of glutaminase free asparaginase from Enterobacter cloacae: in-vitro evaluation of cytotoxic potential against human myeloid leukemia HL-60 cells. PLoS ONE. 2016;11(2): e0148877.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Iyer R, Rao S, Pai S, Advani S, Magrath I. L-asparaginase related hyperglycemia. Indian J Cancer. 1993;30(2):72–6.

    CAS  PubMed  Google Scholar 

  62. Izadpanah Qeshmi F, Homaei A, Fernandes P, Javadpour S. Marine microbial L-asparaginase: biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res. 2018;208:99–112. https://doi.org/10.1016/j.micres.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  63. Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc. 2009;4(1):58–70.

    Article  CAS  PubMed  Google Scholar 

  64. Rylaze (2022). https://pp.jazzpharma.com/pi/rylaze.en.USPI.pdf

  65. Jespersen MC, Mahajan S, Peters B, Nielsen M, Marcatili P. Antibody specific B-cell epitope predictions: leveraging information from antibody-antigen protein complexes. Front Immunol. 2019;10:298. https://doi.org/10.3389/fimmu.2019.00298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jia H, Couto-Rodriguez R, Johnson S, Medina S, Novillo B, Huynh P, et al. Highly efficient and simple SSPER and rrPCR approaches for the accurate site-directed mutagenesis of large and small plasmids. New Biotechnol. 2022;72:22–8. https://doi.org/10.1016/j.nbt.2022.08.004.

    Article  CAS  Google Scholar 

  67. Jianhua C, Yujun W, Ruibo J, Min W, Wutong W. Probing the antigenicity of E. coli l-asparaginase by mutational analysis. Mol Biotechnol. 2006;33(1):57–65. https://doi.org/10.1385/MB:33:1:57.

    Article  PubMed  Google Scholar 

  68. Kafkewitz D, Bendich A. Enzyme-induced asparagine and glutamine depletion and immune system function. Am J Clin Nutr. 1983;37(6):1025–30.

    Article  CAS  PubMed  Google Scholar 

  69. Kant Bhatia S, Vivek N, Kumar V, Chandel N, Thakur M, Kumar D, Yang Y-H, Pugazendhi A, Kumar G. Molecular biology interventions for activity improvement and production of industrial enzymes. Bioresour Technol. 2021;324: 124596. https://doi.org/10.1016/j.biortech.2020.124596.

    Article  CAS  PubMed  Google Scholar 

  70. Kearney SL, Dahlberg SE, Levy DE, Voss SD, Sallan SE, Silverman LB. Clinical course and outcome in children with acute lymphoblastic leukemia and asparaginase-associated pancreatitis. Pediatr Blood Cancer. 2009;53(2):162–7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kidd JG. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum: I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med. 1953;98(6):565–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kishore V, Nishita KP, Manonmani HK. Cloning, expression and characterization of L-asparaginase from Pseudomonas fluorescens for large scale production in E coli BL21. 3 Biotech. 2015;5(6):975–81. https://doi.org/10.1007/s13205-015-0300-y.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kleingesinds EK, de Almeida Parizotto L, Effer B, Monteiro G, Long PF, Arroyo-Berdugo Y, Behrends V, Esposito MT, Calle Y, Pessoa-Jr A. Downstream process and evaluation of the concomitant impact of a recombinant glycosylated L-asparaginase on leukemic cancer cells and the bone marrow tumor microenvironment. Process Biochem. 2023;131:41–51. https://doi.org/10.1016/j.procbio.2023.06.006.

    Article  CAS  Google Scholar 

  74. Koszucka A, Nowak A, Nowak I, Motyl I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit Rev Food Sci Nutr. 2020;60(10):1677–92.

    Article  CAS  PubMed  Google Scholar 

  75. Kotzia GA, Labrou NE. Engineering thermal stability of l-asparaginase by in vitro directed evolution. FEBS J. 2009;276(6):1750–61. https://doi.org/10.1111/j.1742-4658.2009.06910.x.

    Article  CAS  PubMed  Google Scholar 

  76. Kotzia GA, Labrou NE. Engineering substrate specificity of E. carotovora l-asparaginase for the development of biosensor. J Mol Catal B Enzymatic. 2011;72(3):95–101. https://doi.org/10.1016/j.molcatb.2011.05.003.

    Article  CAS  Google Scholar 

  77. Kuchner O, Arnold FH. Directed evolution of enzyme catalysts. Trends Biotechnol. 1997;15(12):523–30. https://doi.org/10.1016/s0167-7799(97)01138-4.

    Article  CAS  PubMed  Google Scholar 

  78. Kumar S, Darnal S, Patial V, Kumar V, Kumar V, Kumar S, Singh D. Molecular cloning, characterization, and in-silico analysis of l-asparaginase from Himalayan Pseudomonas sp. PCH44. 3 Biotech. 2022;12(8):162. https://doi.org/10.1007/s13205-022-03224-0.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kumar S, Dasu VV, Pakshirajan K. Purification and characterization of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Biores Technol. 2011;102(2):2077–82.

    Article  CAS  Google Scholar 

  80. Kurtzberg J, Asselin B, Bernstein M, Buchanan GR, Pollock BH, Camitta BM. Polyethylene glycol-conjugated L-asparaginase versus native L-asparaginase in combination with standard agents for children with acute lymphoblastic leukemia in second bone marrow relapse: a Children’s Oncology Group Study (POG 8866). J Pediatr Hematol Oncol. 2011;33(8):610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lanvers-Kaminsky C. Asparaginase pharmacology: challenges still to be faced. Cancer Chemother Pharmacol. 2017;79(3):439–50. https://doi.org/10.1007/s00280-016-3236-y.

    Article  CAS  PubMed  Google Scholar 

  82. Lee A, Eldem I, Altintas B, Nguyen H, Willis D, Langley R, Shinawi M. Treatment and outcomes of symptomatic hyperammonemia following asparaginase therapy in children with acute lymphoblastic leukemia. Mol Genet Metab. 2023;139(3): 107627. https://doi.org/10.1016/j.ymgme.2023.107627.

    Article  CAS  PubMed  Google Scholar 

  83. Lee KC, Lee S. Drug delivery: brushing off antigenicity. Nat Biomed Eng. 2017;1(1):0019. https://doi.org/10.1038/s41551-016-0019.

    Article  CAS  Google Scholar 

  84. Lessner HE, Valenstein S, Kaplan R, DeSimone P, Yunis A. Phase II study of L-asparaginase in the treatment of pancreatic carcinoma. Cancer Treat Rep. 1980;64(12):1359–61.

    CAS  PubMed  Google Scholar 

  85. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5(1):1. https://doi.org/10.1038/s41392-019-0089-y.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lima GM, Effer B, Biasoto HP, Feijoli V, Pessoa A, Palmisano G, Monteiro G. Glycosylation of L-asparaginase from E. coli through yeast expression and site-directed mutagenesis. Biochem Eng J. 2020;156: 107516. https://doi.org/10.1016/j.bej.2020.107516.

    Article  CAS  Google Scholar 

  87. Lima Parente Fernandes M, Alcântara Veríssimo LA, Cristina de Souza A, Schwan RF, Ribeiro Dias D. Low-cost agro-industrial sources as a substrate for the production of l-asparaginase using filamentous fungi. Biocatal Agric Biotechnol. 2021;34: 102037. https://doi.org/10.1016/j.bcab.2021.102037.

    Article  Google Scholar 

  88. Liu X, Xie X, Du H, Sanganyado E, Wang W, Aslam M, Chen J, Chen W, Liang H. Bioinformatic analysis and genetic engineering approaches for recombinant biopharmaceutical glycoproteins production in microalgae. Algal Res. 2021;55: 102276. https://doi.org/10.1016/j.algal.2021.102276.

    Article  Google Scholar 

  89. Liu Y, Smith CA, Panetta JC, Yang W, Thompson LE, Counts JP, Molinelli AR, Pei D, Kornegay NM, Crews KR, Swanson H, Cheng C, Karol SE, Evans WE, Inaba H, Pui CH, Jeha S, Relling MV. Antibodies predict pegaspargase allergic reactions and failure of rechallenge. J Clin Oncol. 2019;37(23):2051–61. https://doi.org/10.1200/jco.18.02439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ln R, Doble M, Rekha VPB, Pulicherla KK (2011) In silico engineering of L-asparaginase to have reduced glutaminase side activity for effective treatment of acute lymphoblastic leukemia. J Pediatric Hematol Oncol 33(8). https://journals.lww.com/jpho-online/Fulltext/2011/12000/In_silico_Engineering_of_L_Asparaginase_to_Have.9.aspx

  91. Loch JI, Jaskolski M. Structural and biophysical aspects of l-asparaginases: a growing family with amazing diversity. IUCrJ. 2021;8(Pt 4):514–31. https://doi.org/10.1107/s2052252521006011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lorentz KM, Kontos S, Diaceri G, Henry H, Hubbell JA. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Sci Adv. 2015;1(6): e1500112.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Loureiro CB, Borges KS, Andrade AF, Tone LG, Said S (2012) Purification and biochemical characterization of native and pegylated form of L-asparaginase from Aspergillus terreus and evaluation of its antiproliferative activity

  94. Lu X, Chen J, Jiao L, Zhong L, Lu Z, Zhang C, Lu F. Improvement of the activity of l-asparaginase I improvement of the catalytic activity of l-asparaginase I from Bacillus megaterium H-1 by in vitro directed evolution. J Biosci Bioeng. 2019;128(6):683–9. https://doi.org/10.1016/j.jbiosc.2019.06.001.

    Article  CAS  PubMed  Google Scholar 

  95. Lubich C, Allacher P, de la Rosa M, Bauer A, Prenninger T, Horling FM, Siekmann J, Oldenburg J, Scheiflinger F, Reipert BM. The Mystery of Antibodies Against Polyethylene Glycol (PEG)—what do we Know? Pharm Res. 2016;33(9):2239–49. https://doi.org/10.1007/s11095-016-1961-x.

    Article  CAS  PubMed  Google Scholar 

  96. Maggi M, Chiarelli LR, Valentini G, Scotti C. Engineering of Helicobacter pylori L-asparaginase: characterization of two functionally distinct groups of mutants. PLoS ONE. 2015;10(2): e0117025. https://doi.org/10.1371/journal.pone.0117025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mashburn LT, Wriston JC Jr. Tumor inhibitory effect of L-asparaginase from Escherichia coli. Arch Biochem Biophys. 1964;105:450–2.

    Article  CAS  PubMed  Google Scholar 

  98. McCredie KB, Ho DHW, Freireich EJ. L-asparaginase for the treatment of cancer. CA Cancer J Clin. 1973;23(4):220–7.

    Article  CAS  PubMed  Google Scholar 

  99. Mehta RK, Verma S, Pati R, Sengupta M, Khatua B, Jena RK, Sethy S, Kar SK, Mandal C, Roehm KH, Sonawane A. Mutations in Subunit interface and B-cell epitopes improve antileukemic activities of Escherichia coli Asparaginase-II: evaluation of immunogenicity in mice*. J Biol Chem. 2014;289(6):3555–70. https://doi.org/10.1074/jbc.M113.486530.

    Article  CAS  PubMed  Google Scholar 

  100. Meneguetti GP, Santos JHPM, Obreque KMT, Barbosa CMV, Monteiro G, Farsky SHP, Marim de Oliveira A, Angeli CB, Palmisano G, Ventura SPM, Pessoa-Junior A, de Oliveira Rangel-Yagui C. Novel site-specific PEGylated L-asparaginase. PLoS ONE. 2019;14(2): e0211951. https://doi.org/10.1371/journal.pone.0211951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miller HK, Salser JS, Balis ME. Amino acid levels following L-asparagine amidohydrolase (EC. 3.5. 1.1) therapy. Cancer Res. 1969;29(1):183–7.

    CAS  PubMed  Google Scholar 

  102. Mohammadi A, Niazi A, Aram F, Hassani F, Ghasemi Y. Transformation of the L-asparaginase II gene to potato hairy roots for production of recombinant protein. J Crop Sci Biotechnol. 2020;23(1):81–8. https://doi.org/10.1007/s12892-018-0030-0.

    Article  Google Scholar 

  103. Mondal D, Kolev V, Warshel A. Combinatorial approach for exploring conformational space and activation barriers in computer-aided enzyme design. ACS Catal. 2020;10(11):6002–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mottram DS, Wedzicha BL, Dodson AT. Acrylamide is formed in the Maillard reaction. Nature. 2002;419(6906):448–9.

    Article  CAS  PubMed  Google Scholar 

  105. Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv. 2010;7(4):403–27. https://doi.org/10.1517/17425241003610633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nguyen HA, Su Y, Lavie A. Design and characterization of erwinia chrysanthemi L-asparaginase variants with diminished L-glutaminase activity. J Biol Chem. 2016;291(34):17664–76. https://doi.org/10.1074/jbc.M116.728485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nguyen HA, Su Y, Zhang JY, Antanasijevic A, Caffrey M, Schalk AM, Liu L, Rondelli D, Oh A, Mahmud DL, Bosland MC, Kajdacsy-Balla A, Peirs S, Lammens T, Mondelaers V, De Moerloose B, Goossens S, Schlicht MJ, Kabirov KK, Lyubimov AV, Merrill BJ, Saunthararajah Y, Van Vlierberghe P, Lavie A. A novel l-asparaginase with low l-glutaminase coactivity is highly efficacious against both T- and B-cell acute lymphoblastic leukemias in vivo. Can Res. 2018;78(6):1549–60. https://doi.org/10.1158/0008-5472.CAN-17-2106.

    Article  CAS  Google Scholar 

  108. Nunes JCF, Cristóvão RO, Freire MG, Santos-Ebinuma VC, Faria JL, Silva CG, Tavares APM (2020) Recent strategies and applications for l-asparaginase confinement. Molecules. 25(24):5827. https://www.mdpi.com/1420-3049/25/24/5827

  109. Offman MN, Krol M, Patel N, Krishnan S, Liu J, Saha V, Bates PA. Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood. 2011;117(5):1614–21. https://doi.org/10.1182/blood-2010-07-298422.

    Article  CAS  PubMed  Google Scholar 

  110. Panosyan EH, Seibel NL, Martin-Aragon S, Gaynon PS, Avramis IA, Sather H, Franklin J, Nachman J, Ettinger LJ, La M. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children’s Cancer Group Study CCG-1961. J Pediatr Hematol Oncol. 2004;26(4):217–26.

    Article  PubMed  Google Scholar 

  111. Pant A, Cao S, Yang Z. Asparagine is a critical limiting metabolite for vaccinia virus protein synthesis during glutamine deprivation. J Virol. 2019. https://doi.org/10.1128/jvi.01834-18.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Park EJ, Lim SM, Lee KC, Na DH. Exendins and exendin analogs for diabetic therapy: a patent review (2012–2015). Expert Opin Ther Pat. 2016;26(7):833–42. https://doi.org/10.1080/13543776.2016.1192130.

    Article  CAS  PubMed  Google Scholar 

  113. Patel PG, Panseriya HZ, Vala AK, Dave BP, Gosai HB. Exploring current scenario and developments in the field of microbial L-asparaginase production and applications: a review. Process Biochem. 2022;121:529–41. https://doi.org/10.1016/j.procbio.2022.07.029.

    Article  CAS  Google Scholar 

  114. Pavlova NN, Hui S, Ghergurovich JM, Fan J, Intlekofer AM, White RM, Rabinowitz JD, Thompson CB, Zhang J. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab. 2018;27(2):428-438.e425. https://doi.org/10.1016/j.cmet.2017.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pedroso A, Herrera Belén L, Beltrán JF, Castillo RL, Pessoa A, Pedroso E, Farías JG (2023) In silico design of a chimeric humanized L-asparaginase. Int J Mol Sci. 24(8):7550. https://www.mdpi.com/1422-0067/24/8/7550

  116. Peng H, Shen N, Qian L, Sun X, Koduru P, Goodwin L, Issa J, Broome J. Hypermethylation of CpG islands in the mouse asparagine synthetase gene: relationship to asparaginase sensitivity in lymphoma cells. Partial methylation in normal cells. Br J Cancer. 2001;85(6):930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Peterson RG, Handschumacher RE, Mitchell MS. Immunological responses to L-asparaginase. J Clin Investig. 1971;50(5):1080–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC. A review of the microbial production of bioactive natural products and biologics. Front Microbiol. 2019;10:1404.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pieters R, Hunger SP, Boos J, Rizzari C, Silverman L, Baruchel A, Goekbuget N, Schrappe M, Pui CH. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011;117(2):238–49.

    Article  CAS  PubMed  Google Scholar 

  120. Pieters R, Stephen P (2012) Hunger,; Joachim Boos,; Carmelo Rizzari; Lewis Silverman; Andre Baruchel; Nicola Goekbuget; Martin Schrappe; and Ching-Hon Pui (2011). L-asparaginase treatment in acute lymphoblastic leukemia a focus on erwinia asparaginase. Cancer 238–49.

  121. Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Plaxton WC. Avoiding proteolysis during the extraction and purification of active plant enzymes. Plant Cell Physiol. 2019;60(4):715–24. https://doi.org/10.1093/pcp/pcz028.

    Article  CAS  PubMed  Google Scholar 

  123. Pochedly C. Neurotoxicity due to CNS therapy for leukemia. Med Pediatr Oncol. 1977;3(1):101–15.

    Article  CAS  PubMed  Google Scholar 

  124. Pokrovsky VS, Kazanov MD, Dyakov IN, Pokrovskaya MV, Aleksandrova SS. Comparative immunogenicity and structural analysis of epitopes of different bacterial L-asparaginases. BMC Cancer. 2016;16(1):89. https://doi.org/10.1186/s12885-016-2125-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008;9:514. https://doi.org/10.1186/1471-2105-9-514.

    Article  CAS  Google Scholar 

  126. Prager MD, Bachynsky N. Asparagine synthetase in normal and malignant tissues; correlation with tumor sensitivity to asparaginase. Arch Biochem Biophys. 1968;127:645–54.

    Article  CAS  PubMed  Google Scholar 

  127. Prihanto AA, Wakayama M. Combination of environmental stress and localization of l-asparaginase in Arthrospira platensis for production improvement. 3 Biotech. 2014;4(6):647–53. https://doi.org/10.1007/s13205-014-0215-z.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Rader RA. (Re)defining biopharmaceutical. Nat Biotechnol. 2008;26(7):743–51. https://doi.org/10.1038/nbt0708-743.

    Article  CAS  PubMed  Google Scholar 

  129. Raina D, Kumar V, Saran S. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. Chemosphere. 2022;294: 133712. https://doi.org/10.1016/j.chemosphere.2022.133712.

    Article  CAS  PubMed  Google Scholar 

  130. Ramirez-Paz J, Saxena M, Delinois LJ, Joaquín-Ovalle FM, Lin S, Chen Z, Rojas-Nieves VA, Griebenow K. Site-specific PEGylation crosslinking of L-asparaginase subunits to improve its therapeutic efficiency. bioRxiv. 2018. https://doi.org/10.1101/317040.

    Article  Google Scholar 

  131. Ramya LN, Pulicherla KK. Studies on deimmunization of antileukaemic L-asparaginase to have reduced clinical immunogenicity—an in silico approach. Pathol Oncol Res. 2015;21(4):909–20. https://doi.org/10.1007/s12253-015-9912-0.

    Article  CAS  PubMed  Google Scholar 

  132. Ren Y, Roy S, Ding Y, Iqbal J, Broome J. Methylation of the asparagine synthetase promoter in human leukemic cell lines is associated with a specific methyl binding protein. Oncogene. 2004;23(22):3953–61.

    Article  CAS  PubMed  Google Scholar 

  133. ReportLinker (2022) Asparaginase Market Forecast to 2028 - COVID-19 Impact and Global Analysis By Type, Application, End-Use Industry, and Geography. https://www.reportlinker.com/p06321015/Asparaginase-Market-Forecast-to-COVID-19-Impact-and-Global-Analysis-By-Type-Application-End-Use-Industry-and-Geography.html. Accessed 3 Apr 2023.

  134. Rigouin C, Nguyen HA, Schalk AM, Lavie A. Discovery of human-like L-asparaginases with potential clinical use by directed evolution. Sci Rep. 2017;7(1):10224. https://doi.org/10.1038/s41598-017-10758-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Saha S, Raghava GP. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40–8. https://doi.org/10.1002/prot.21078.

    Article  CAS  PubMed  Google Scholar 

  136. Samudio I, Konopleva M. Asparaginase unveils glutamine-addicted AML. Blood. 2013;122(20):3398–400.

    Article  CAS  PubMed  Google Scholar 

  137. Sánchez-Moguel I, Costa-Silva TA, Pillaca-Pullo OS, Flores-Santos JC, Freire RKB, Carretero G, da Luz Bueno J, Camacho-Córdova DI, Santos JHPM, Sette LD, Pessoa-Jr A. Antarctic yeasts as a source of L-asparaginase: characterization of a glutaminase-activity free L-asparaginase from psychrotolerant yeast Leucosporidium scottii L115. Process Biochem. 2023;129:121–32. https://doi.org/10.1016/j.procbio.2023.03.003.

    Article  CAS  Google Scholar 

  138. Sannikova EP, Bulushova NV, Cheperegin SE, Gubaydullin II, Chestukhina GG, Ryabichenko VV, Zalunin IA, Kotlova EK, Konstantinova GE, Kubasova TS, Shtil AA, Pokrovsky VS, Yarotsky SV, Efremov BD, Kozlov DG. The modified heparin-binding l-asparaginase of Wolinella succinogenes. Mol Biotechnol. 2016;58(8):528–39. https://doi.org/10.1007/s12033-016-9950-1.

    Article  CAS  PubMed  Google Scholar 

  139. Schlapschy M, Binder U, Börger C, Theobald I, Wachinger K, Kisling S, Haller D, Skerra A. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel. 2013;26(8):489–501. https://doi.org/10.1093/protein/gzt023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shakambari G, Sumi BM, Ashokkumar B, Palanivelu P, Varalakshmi P. Industrial effluent as a substrate for glutaminase free l-asparaginase production from Pseudomonas plecoglossicida strain RS1; media optimization, enzyme purification and its characterization. RSC Adv. 2015;5(60):48729–38. https://doi.org/10.1039/C5RA05507E.

    Article  CAS  Google Scholar 

  141. Sheldon RA, Woodley JM. Role of biocatalysis in sustainable chemistry. Chem Rev. 2018;118(2):801–38. https://doi.org/10.1021/acs.chemrev.7b00203.

    Article  CAS  PubMed  Google Scholar 

  142. Shrivastava A, Khan AA, Khurshid M, Kalam MA, Jain SK, Singhal PK. Recent developments in l-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol Hematol. 2016;100:1–10.

    Article  PubMed  Google Scholar 

  143. Solá RJ, Griebenow K. Glycosylation of therapeutic proteins. BioDrugs. 2010;24(1):9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Song P, Ye L, Fan J, Li Y, Zeng X, Wang Z, Wang S, Zhang G, Yang P, Cao Z, Ju D. Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget. 2015;6(6):3861–73. https://doi.org/10.18632/oncotarget.2869.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Spier M, Peron-Schlosser B, Paludo L, Gallo García L, Zanette C (2020) Microalgae as enzymes biofactories. In (pp. 687-706). https://doi.org/10.1016/b978-0-12-818536-0.00025-7.

  146. Stemmer WP. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA. 1994;91(22):10747–51. https://doi.org/10.1073/pnas.91.22.10747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Story MD, Voehringer DW, Stephens LC, Meyn RE. L-asparaginase kills lymphoma cells by apoptosis. Cancer Chemother Pharmacol. 1993;32(2):129–33.

    Article  CAS  PubMed  Google Scholar 

  148. Su C, Gong J-S, Qin A, Li H, Li H, Qin J, Qian J-Y, Xu Z-H, Shi J-S. A combination of bioinformatics analysis and rational design strategies to enhance keratinase thermostability for efficient biodegradation of feathers. Sci Total Environ. 2022;818: 151824. https://doi.org/10.1016/j.scitotenv.2021.151824.

    Article  CAS  PubMed  Google Scholar 

  149. Sudhir AP, Agarwaal VV, Dave BR, Patel DH, Subramanian RB. Enhanced catalysis of l-asparaginase from Bacillus licheniformis by a rational redesign. Enzyme Microb Technol. 2016;86:1–6. https://doi.org/10.1016/j.enzmictec.2015.11.010.

    Article  CAS  PubMed  Google Scholar 

  150. Sudhir AP, Dave BR, Prajapati AS, Panchal K, Patel D, Subramanian RB. Characterization of a recombinant glutaminase-free l-Asparaginase (ansA3) enzyme with high catalytic activity from bacillus licheniformis. Appl Biochem Biotechnol. 2014;174(7):2504–15. https://doi.org/10.1007/s12010-014-1200-z.

    Article  CAS  PubMed  Google Scholar 

  151. Talluri VP, Lanka SS, Mutalieva B, Sharipova A, Suigenbayeva A, Tleuova A. Biochemical characterization, antiproliferative and cytotoxicity effect of purified L-asparaginase, an anti-leukemia enzyme isolated from new bacteria myroides gitamensis. Rasayan J Chem. 2022;15:786–91. https://doi.org/10.31788/RJC.2022.1526842.

    Article  CAS  Google Scholar 

  152. Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics. 2015;5(8):863–81. https://doi.org/10.7150/thno.11852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tandon S, Sharma A, Singh S, Sharma S, Sarma SJ. Therapeutic enzymes: discoveries, production and applications. J Drug Deliv Sci Technol. 2021;63: 102455. https://doi.org/10.1016/j.jddst.2021.102455.

    Article  CAS  Google Scholar 

  154. Torres-Obreque K, Meneguetti GP, Custódio D, Monteiro G, Pessoa-Junior A, de Oliveira Rangel-Yagui C. Production of a novel N-terminal PEGylated crisantaspase. Biotechnol Appl Biochem. 2019;66(3):281–9. https://doi.org/10.1002/bab.1723.

    Article  CAS  PubMed  Google Scholar 

  155. Tundisi LL, Coêlho DF, Zanchetta B, Moriel P, Pessoa A, Tambourgi EB, Silveira E, Mazzola PG. L-Asparaginase purification. Sep Purif Rev. 2017;46(1):35–43. https://doi.org/10.1080/15422119.2016.1184167.

    Article  CAS  Google Scholar 

  156. Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Gosai H, Rawal R, Dave BP. Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int J Biol Macromol. 2018;108:41–6.

    Article  CAS  PubMed  Google Scholar 

  157. Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B, Lavie A, Lammens T, Goossens S, Van Vlierberghe P. Novel insights on the use of L-asparaginase as an efficient and safe anti-cancer therapy. Cancers. 2022;14(4):902.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304. https://doi.org/10.1016/j.addr.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  159. Verma S, Mehta RK, Maiti P, Röhm K-H, Sonawane A. Improvement of stability and enzymatic activity by site-directed mutagenesis of E. coli asparaginase II. Biochimica et Biophysica Acta (BBA) Proteins and Proteomics. 2014;1844(7):1219–30. https://doi.org/10.1016/j.bbapap.2014.03.013.

    Article  CAS  PubMed  Google Scholar 

  160. Vidya J, Sajitha S, Ushasree MV, Sindhu R, Binod P, Madhavan A, Pandey A. Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: an overview. Biores Technol. 2017;245:1775–81. https://doi.org/10.1016/j.biortech.2017.05.057.

    Article  CAS  Google Scholar 

  161. Vimal A, Kumar A. Biotechnological production and practical application of L-asparaginase enzyme. Biotechnol Genet Eng Rev. 2017;33(1):40–61. https://doi.org/10.1080/02648725.2017.1357294.

    Article  CAS  PubMed  Google Scholar 

  162. Walker KW, King JD. Site-directed mutagenesis. In: Bradshaw RA, Hart GW, Stahl PD, editors. Encyclopedia of cell biology. 2nd ed. Academic Press; 2023. p. 161–9. https://doi.org/10.1016/B978-0-12-821618-7.00062-6.

    Chapter  Google Scholar 

  163. Wang B, Relling MV, Storm MC, Woo MH, Ribeiro R, Pui CH, Hak LJ. Evaluation of immunologic crossreaction of antiasparaginase antibodies in acute lymphoblastic leukemia (ALL) and lymphoma patients. Leukemia. 2003;17(8):1583–8.

    Article  CAS  PubMed  Google Scholar 

  164. Wang S, Cheng K, Chen K, Xu C, Ma P, Dang G, Yang Y, Lei Q, Huang H, Yu Y, Fang Y, Tang Q, Jiang N, Miao H, Liu F, Zhao X, Li N. Nanoparticle-based medicines in clinical cancer therapy. Nano Today. 2022;45: 101512. https://doi.org/10.1016/j.nantod.2022.101512.

    Article  CAS  Google Scholar 

  165. Wang Y, Xu W, Wu H, Zhang W, Guang C, Mu W. Microbial production, molecular modification, and practical application of l-Asparaginase: a review. Int J Biol Macromol. 2021;186:975–83. https://doi.org/10.1016/j.ijbiomac.2021.07.107.

    Article  CAS  PubMed  Google Scholar 

  166. Warrell RP Jr, Arlin ZA, Gee TS, Chou T-C, Roberts J, Young CW. Clinical evaluation of succinylated acinetobacter glutaminase. Cancer Treat Rep. 1982;66(7):1479–85.

    CAS  PubMed  Google Scholar 

  167. Wijma HJ, Floor RJ, Janssen DB. Structure-and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol. 2013;23(4):588–94.

    Article  CAS  PubMed  Google Scholar 

  168. Woo M, Hak L, Storm M, Evans W, Sandlund J, Rivera G, Wang B, Pui C, Relling M. Anti-asparaginase antibodies following E. coli asparaginase therapy in pediatric acute lymphoblastic leukemia. Leukemia. 1998;12(10):1527–33.

    Article  CAS  PubMed  Google Scholar 

  169. Xie X, Yang J, Du H, Chen J, Sanganyado E, Gong Y, Du H, Chen W, Liu Z, Liu X. Golgi fucosyltransferase 1 reveals its important role in α-1,4-fucose modification of N-glycan in CRISPR/Cas9 diatom Phaeodactylum tricornutum. Microb Cell Fact. 2023;22(1):6. https://doi.org/10.1186/s12934-022-02000-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yao H, Wynendaele E, De Spiegeleer B. Thermal sensitivity as a quality control attribute for biotherapeutics: the L-asparaginase case. Drug Test Anal. 2020;12(1):67–77. https://doi.org/10.1002/dta.2691.

    Article  CAS  PubMed  Google Scholar 

  171. Yari M, Eslami M, Ghoshoon MB, Nezafat N, Ghasemi Y. Decreasing the immunogenicity of Erwinia chrysanthemi asparaginase via protein engineering: computational approach. Mol Biol Rep. 2019;46(5):4751–61. https://doi.org/10.1007/s11033-019-04921-5.

    Article  CAS  PubMed  Google Scholar 

  172. Yesilirmak F, Sayers Z. Heterelogous expression of plant genes. Int J Plant Genomics. 2009. https://doi.org/10.1155/2009/296482.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zalai D, Kopp J, Kozma B, Küchler M, Herwig C, Kager J. Microbial technologies for biotherapeutics production: key tools for advanced biopharmaceutical process development and control. Drug Discov Today Technol. 2020;38:9–24. https://doi.org/10.1016/j.ddtec.2021.04.001.

    Article  PubMed  Google Scholar 

  174. Zalewska-Szewczyk B, Andrzejewski W, Bodalski J. Development of anti-asparaginase antibodies in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;43(5):600–2.

    Article  PubMed  Google Scholar 

  175. Zhang Y, Ren Y, Zhang Y. New research developments on acrylamide: analytical chemistry, formation mechanism, and mitigation recipes. Chem Rev. 2009;109(9):4375–97.

    Article  CAS  PubMed  Google Scholar 

  176. Zhang Y, Sultonova RD, You S-H, Choi Y, Kim S-Y, Lee W-S, Seong J, Min J-J, Hong Y. The anticancer effect of PASylated calreticulin-targeting L-ASNase in solid tumor bearing mice with immunogenic cell death-inducing chemotherapy. Biochem Pharmacol. 2023;210: 115473. https://doi.org/10.1016/j.bcp.2023.115473.

    Article  CAS  PubMed  Google Scholar 

  177. Zuo S, Zhang T, Jiang B, Mu W. Recent research progress on microbial l-asparaginases. Appl Microbiol Biotechnol. 2015;99(3):1069–79. https://doi.org/10.1007/s00253-014-6271-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to ANID (Agencia Nacional de Investigación y Desarrollo) Master Scholarship, (grant number 22220584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Zamorano.

Ethics declarations

Funding

The authors thank the Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile, for financial support. This study was funded by FAPESP-UFRO project no. 2020/06982-3

Conflict of interest/Competing interests

Javiera Miranda, Nicolás Lefin, Jorge F. Beltran, Lisandra Herrera Belén, Argyro Tsipa, Jorge G. Farias, and Mauricio Zamorano declare they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

JM, NL, JFB, LBH, AT, JGF, and MZ hereby provide consent for the publication of this manuscript.

Availability of data and material

No datasets were generated or analyzed during the current study.

Author contributions

Drafting of the manuscript: JM. Conception and design: JM, MZ. Editing of the manuscript: MZ. All authors reviewed and approved the manuscript.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, J., Lefin, N., Beltran, J.F. et al. Enzyme Engineering Strategies for the Bioenhancement of l-Asparaginase Used as a Biopharmaceutical. BioDrugs 37, 793–811 (2023). https://doi.org/10.1007/s40259-023-00622-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-023-00622-5

Navigation