Skip to main content

Advertisement

Log in

Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Winau F, Westphal O, Winau R. Paul Ehrlich--in search of the magic bullet. Microbes Infect. 2004;6:786–9.

    Article  CAS  PubMed  Google Scholar 

  2. Strebhardtand K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nature reviews. Cancer. 2008;8:473–80.

    Google Scholar 

  3. Schwartz RS. Paul Ehrlich's magic bullets. New England J Med. 2004;350:1079–80.

    Article  CAS  Google Scholar 

  4. Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharmaceutica Sinica B. 2020;10:1589–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-Drug Conjugates: A Comprehensive Review. Mole Cancer Res : MCR. 2020;18:3–19.

    Article  CAS  Google Scholar 

  6. Syed YY. Sacituzumab Govitecan: First Approval. Drugs. 2020;80:1019–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takegawa N, Nonagase Y, Yonesaka K, Sakai K, Maenishi O, Ogitani Y, Tamura T, Nishio K, Nakagawa K, Tsurutani J. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int. J. Cancer. 2017;141:1682–9.

    Article  CAS  PubMed  Google Scholar 

  8. Pharmcube. https://www.pharmcube.com/product/index. Accessed 1 Mar 2023.

  9. Damelin M, Zhong W, Myers J, Sapra P. Evolving Strategies for Target Selection for Antibody-Drug Conjugates. Pharm. Res. 2015;32:3494–507.

    Article  CAS  PubMed  Google Scholar 

  10. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Trans Target Therapy. 2022;7:93.

    Article  CAS  Google Scholar 

  11. Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs. 2016;8:659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blättler WA, Goldmacher VS. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66:3214–21.

    Article  CAS  PubMed  Google Scholar 

  13. Pegram MA-O, Hamilton EP, Tan AA-O, Storniolo AM, Balic K, Rosenbaum AA-OX, Liang M, He P, Marshall S, Scheuber A, Das M, Patel MA-O. First-in-Human, Phase 1 Dose-Escalation Study of Biparatopic Anti-HER2 Antibody-Drug Conjugate MEDI4276 in Patients with HER2-positive Advanced Breast or Gastric Cancer. Mole Cancer Therapeut. 2021;20:1442–53.

    Article  CAS  Google Scholar 

  14. Shang C, Yang L, Zhang J, Han Y, Li Z, Han Z, Li J, Meng Y, An G, Yang H, An W, Chen L, Charpentier J. YH012, a novel bispecific anti-HER2 and TROP2 antibody-drug conjugate, exhibits potent antitumor efficacy. Cancer Res. 2022;82:4256.

    Article  Google Scholar 

  15. Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs. 2021;13:1951427.

    Article  PubMed  Google Scholar 

  16. McDonagh CF, Kim KM, Turcott E, Brown LL, Westendorf L, Feist T, Sussman D, Stone I, Anderson M, Miyamoto J, Lyon R, Alley SC, Gerber HP, Carter PJ. Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mole Cancer Thera. 2008;7:2913–23.

    Article  CAS  Google Scholar 

  17. Hayat SMG, Sahebkar A. Antibody-drug conjugates: smart weapons against cancer. Archives Med Sci : AMS. 2020;16:1257–62.

    Article  CAS  Google Scholar 

  18. Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angewandte Chemie. 2018;57:2314–33.

    Article  CAS  PubMed  Google Scholar 

  19. Holligerand P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nature Biotech. 2005;23:1126–36.

    Article  Google Scholar 

  20. Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S. Nanobodies and their potential applications. Nanomedicine (Lond.). 2013;8:1013–26.

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen En PM, Henegouwen. Targeting tumors with nanobodies for cancer imaging and therapy. Journal of controlled release : official journal of the Controlled Release. Society. 2013;172:607–17.

    CAS  Google Scholar 

  22. De Cecco M, Galbraith DN, McDermott LL. What makes a good antibody-drug conjugate? Expert Opin. Biol. Ther. 2021;21:841–7.

    Article  PubMed  Google Scholar 

  23. Suand D, Zhang D. Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency. Front. Pharmacol. 2021;12:687926.

    Article  Google Scholar 

  24. Kostova V, Désos PA-O, Starck JB, Kotschy AA-O. Chem Behind ADCs. Pharma. 2021;14:442.

    CAS  Google Scholar 

  25. Walles M, Connor A, Hainzl D. ADME and Safety Aspects of Non-cleavable Linkers in Drug Discovery and Development. Curr. Top. Med. Chem. 2017;17:3463–75.

    Article  CAS  PubMed  Google Scholar 

  26. Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev. 2019;48:4361–74.

    Article  CAS  PubMed  Google Scholar 

  27. Caculitan NG, dela Cruz Chuh J, Ma Y, Zhang D, Kozak KR, Liu Y, Pillow TH, Sadowsky J, Cheung TK, Phung Q, Haley B, Lee BC, Akita RW, Sliwkowski MX, Polson AG. Cathepsin B Is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody-Drug Conjugates. Cancer Res. 2017;77:7027–37.

    Article  CAS  PubMed  Google Scholar 

  28. Akaiwa M, Dugal-Tessier J, Mendelsohn BA. Antibody-Drug Conjugate Payloads; Study of Auristatin Derivatives. Chem Pharma Bull. 2020;68:201–11.

    Article  CAS  Google Scholar 

  29. Yaghoubi S, Karimi MH, Lotfinia M, Gharibi TA-O, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri NA-O, Abdollahpour-Alitappeh MA-O. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cellular Physio. 2020;235:31–64.

    Article  CAS  Google Scholar 

  30. Cheng X, Li J, Tanaka K, Majumder U, Milinichik AZ, Verdi AC, Maddage CJ, Rybinski KA, Fernando S, Fernando D, Kuc M, Furuuchi K, Fang F, Uenaka T, Grasso L, Albone EF. MORAb-202, an Antibody-Drug Conjugate Utilizing Humanized Anti-human FRα Farletuzumab and the Microtubule-targeting Agent Eribulin, has Potent Antitumor Activity. Mole Cancer Thera. 2018;17:2665–75.

    Article  CAS  Google Scholar 

  31. Vendittoand VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mole Pharma. 2010;7:307–49.

    Article  Google Scholar 

  32. Giugliano F, Corti C, Tarantino P, Michelini F, Curigliano G. Bystander effect of antibody-drug conjugates: fact or fiction? Curr. Oncol. Rep. 2022;24:809–17.

    Article  CAS  PubMed  Google Scholar 

  33. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, Hirai T, Atsumi R, Nakada T, Hayakawa I, Abe Y, Agatsuma T. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clinl Cancer Res : Official J Ame Assoc Cancer Research. 2016;22:5097–108.

    Article  CAS  Google Scholar 

  34. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107:1039–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duvall JR, Bukhalid RA, Cetinbas NM, Catcott KC, Slocum K, Avocetien K, Bentley KW, Bradley S, Clardy S, Collins SD, Ditty E, Eitas T, Jones BD, Kelleher EW, Lee W, Monnell T, Mosher R, Protopopova M, Qin L, et al. Abstract 1738: XMT-2056, a well-tolerated, Immunosynthen-based STING-agonist antibody-drug conjugate which induces anti-tumor immune activity. Cancer Res. 2021;81:1738–8.

    Article  Google Scholar 

  36. Yoder NC, Bai C, Tavares D, Widdison WC, Whiteman KR, Wilhelm A, Wilhelm SD, McShea MA, Maloney EK, Ab O, Wang L, Jin S, Erickson HK, Keating TA, Lambert JM. A case study comparing Heterogeneous Lysine- and site-specific Cysteine-conjugated maytansinoid Antibody-Drug Conjugates (ADCs) illustrates the benefits of Lysine Conjugation. Mol. Pharm. 2019;16:3926–37.

    Article  CAS  PubMed  Google Scholar 

  37. Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, Mardaneh J, Farhadihosseinabadi B, Larki P, Faghfourian B, Sepehr KS, Abbaszadeh-Goudarzi K, Abbaszadeh-Goudarzi G, Johari B, Zali MR, Bagheri N. Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J. Cell. Physiol. 2019;234:5628–42.

    Article  CAS  PubMed  Google Scholar 

  38. Schumacher D, Hackenberger CP, Leonhardt H, Helma J. Current Status: Site-Specific Antibody Drug Conjugates. J. Clin. Immunol. 2016;36(Suppl 1):100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008;26:925–32.

    Article  CAS  PubMed  Google Scholar 

  40. Badescu G, Bryant P, Bird M, Henseleit K, Swierkosz J, Parekh V, Tommasi R, Pawlisz E, Jurlewicz K, Farys M, Camper N, Sheng X, Fisher M, Grygorash R, Kyle A, Abhilash A, Frigerio M, Edwards J, Godwin A. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug. Chem. 2014;25:1124–36.

    Article  CAS  PubMed  Google Scholar 

  41. Matos MJ, Oliveira BL, Martinez-Saez N, Guerreiro A, Cal P, Bertoldo J, Maneiro M, Perkins E, Howard J, Deery MJ, Chalker JM, Corzana F, Jimenez-Oses G, Bernardes GJL. Chemo- and Regioselective Lysine Modification on Native Proteins. J. Am. Chem. Soc. 2018;140:4004–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Geel R, Wijdeven MA, Heesbeen R, Verkade JM, Wasiel AA, van Berkel SS, van Delft FL. Chemoenzymatic Conjugation of Toxic Payloads to the Globally Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious Antibody-Drug Conjugates. Bioconjug. Chem. 2015;26:2233–42.

    Article  PubMed  Google Scholar 

  43. Shi W, Li W, Zhang J, Li T, Song Y, Zeng Y, Dong Q, Lin Z, Gong L, Fan S, Tang F, Huang W. One-step synthesis of site-specific antibody-drug conjugates by reprograming IgG glycoengineering with LacNAc-based substrates. Acta Pharmaceutica Sinica B. 2022;12:2417–28.

    Article  CAS  PubMed  Google Scholar 

  44. Rinnerthaler G, Gampenrieder SP, Greil RA-O. HER2 Directed Antibody-Drug-Conjugates beyond T-DM1 in Breast Cancer. Int. J. Mol. Sci. 2019;20:1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Humphreys RC, Kirtely J, Hewit A, Biroc S, Knudsen N, Skidmore L, Wahl A. Site specific conjugation of ARX-788, an antibody drug conjugate (ADC) targeting HER2, generates a potent and stable targeted therapeutic for multiple cancers. Cancer Res. 2015;75:639.

    Article  Google Scholar 

  46. Xu Y, Jiang G, Tran C, Li X, Heibeck TH, Masikat MR, Cai Q, Steiner AR, Sato AK, Hallam TJ, Yin G. RP-HPLC DAR Characterization of Site-Specific Antibody Drug Conjugates Produced in a Cell-Free Expression System. Org. Process Res. Dev. 2016;20:1034–43.

    Article  CAS  Google Scholar 

  47. Maclaren AP, Levin N, Lowman H. Abstract 835: TRPH-222, a novel anti-CD22 antibody drug conjugate (ADC), has significant anti-tumor activity in NHL xenografts and reduces B cells in monkeys. Cancer Res. 2018;78:835–5.

    Article  Google Scholar 

  48. Albers AE, Garofalo AW, Drake PM, Kudirka R, de Hart GW, Barfield RM, Baker J, Banas S, Rabuka D. Exploring the effects of linker composition on site-specifically modified antibody-drug conjugates. Eur. J. Med. Chem. 2014;88:3–9.

    Article  CAS  PubMed  Google Scholar 

  49. L. Ducry. Antibody-drug conjugates, Springer2013.

  50. G. ICH.Q8. Guidance ICH.Q8. Pharmaceutical Development. 2009. https://www.ich.org/.

  51. Junutula JR, Flagella KM, Graham RA, Parsons KL, Ha E, Raab H, Bhakta S, Nguyen T, Dugger DL, Li G, Mai E, Lewis Phillips GD, Hiraragi H, Fuji RN, Tibbitts J, Vandlen R, Spencer SD, Scheller RH, Polakis P, Sliwkowski MX. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clinical cancer research : an official journal of the American Association for. Cancer Res. 2010;16:4769–78.

    CAS  Google Scholar 

  52. Curlingand J. Gottschalk U. Process chromatography: Five decades of innovation. (2007).

  53. Korneyeva M, Hotta J, Lebing W, Rosenthal RS, Franks L, Petteway SR Jr. Enveloped virus inactivation by caprylate: a robust alternative to solvent-detergent treatment in plasma derived intermediates. Biologicals : Journal of the International Association of Biological Standardization. 2002;30:153–62.

    Article  CAS  PubMed  Google Scholar 

  54. Haque M, Forte N, Baker JR. Site-selective lysine conjugation methods and applications towards antibody-drug conjugates. Chem. Commun. (Camb.). 2021;57:10689–702.

    Article  CAS  PubMed  Google Scholar 

  55. Hutchinson MH, Hendricks RS, Lin XX, Olson DA. Process development and manufacturing of antibody-drug conjugates. Biopharmaceutical Processing: Elsevier; 2018. p. 813–36.

    Google Scholar 

  56. WHO. Technical Report Series 957: WHO Expert Committee on Specifications for Pharmaceutical Preparations (annex 5). Switzerland: World Health Organization Geneva; 2010.

    Google Scholar 

  57. Baseline I. Pharmaceutical Engineering Guide, Vol. 7–Risk-Based Manufacture of Pharmaceutical Products, International Society for Pharmaceutical Engineering (ISPE) 2010.

  58. Wang Y. Design of Conjugation Workshop. Guangdong Chem Ind. 2021;48:193–5.

    Google Scholar 

  59. Lv Q. Classification and Design of Clean Workshop. World Building Mat. 2018;39:107–10.

    Google Scholar 

  60. Gates TJ, Lyu YF, Fang X, Liao X. Clearance of solvents and small molecule impurities in antibody drug conjugates via ultrafiltration and diafiltration operation. Biotechnol. Prog. 2020;36:e2923.

    Article  CAS  PubMed  Google Scholar 

  61. Duerrand C, Friess W. Antibody-drug conjugates- stability and formulation. Eur J Pharma Biopharmaceutics : Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2019;139:168–76.

    Article  Google Scholar 

  62. U.S. Pharmacopeia. United States Pharmacopeia. <665> Plastic materials, components and systems used in the manufacturing of pharmaceutical and biopharmaceutical drug products [EB/OL] 2022. https://doi.org/10.31003/USPNF_M11135_02_01.

  63. U.S. Pharmacopeia. United States Pharmacopeia. <1665> Characterization of plastic materials, components and systems used in the manufacture of pharmaceutical and biopharmaceutical drug products [EB/OL] (2022). https://doi.org/10.31003/USPNF_M11136_02_01.

  64. B.O. Group. BioPhorum Operations Group. Best practices guide for evaluating leachables risk from polymeric single-use systems in biopharmaceutical manufacturing [EB/OL]. https://biophorum.com/wp-content/uploads/bp_downloads/Leachables-report-12-April-2017-v3-1.pdf, 2017.

  65. B.O. Group. Biophorum best practices guide for extractables testing of polymeric single-use components used in biopharmaceutical manufacturing [EB/OL]. https://www.biophorum.com/wp-content/uploads/Best-practices-guide-for-extractables-testing-April-2020.pdf, 2020.

  66. I. Q3C(R8). ICH Q3C(R8). Guideline for Residual Solvents. 2022. https://database.ich.org/sites/default/files/ICH_Q3C-R8_Guideline_Step4_2021_0422_1.pdf.

  67. I. Q3D(R2). Guideline for Elemental Impurities. 2022. https://database.ich.org/sites/default/files/Q3D-R2_Guideline_Step4_2022_0308.pdf.

  68. I. M7(R1). ICH M7(R1) Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk. 2019. https://database.ich.org/sites/default/files/M7_R1_Guideline.pdf.

  69. Markovic I. Evaluation of safety and quality impact of extractable and leachable substances in therapeutic biologic protein products: a risk-based perspective. Expert Opin. Drug Saf. 2007;6:487–91.

    Article  CAS  PubMed  Google Scholar 

  70. Jenke DR. Extractables and leachables considerations for prefilled syringes. Expert Opin. Drug Deliv. 2014;11:1591–600.

    Article  CAS  PubMed  Google Scholar 

  71. Markovic I. Regulatory Perspective on Safety Qualification of Extractables and Leachables, FDA PQRI PODP Workshop 2011.

  72. Macdougall IC. Pure red cell aplasia with anti-erythropoietin antibodies occurs more commonly with one formulation of epoetin alfa than another. Current medical research and opinion 2004 20:83–86.

  73. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian J-J, Martin-Dupont P, Michaud P, Papo T, Ugo V, Teyssandier I. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 2002;346:469–75.

    Article  CAS  PubMed  Google Scholar 

  74. Mueller R, Karle A, Vogt A, Kropshofer H, Ross A, Maeder K, Mahler H-C. Evaluation of the Immuno-Stimulatory Potential of Stopper Extractables and Leachables by Using Dendritic Cells as Readout. J. Pharm. Sci. 2009;98:3548–61.

    Article  CAS  PubMed  Google Scholar 

  75. Seidl A, Hainzl O, Richter M, Fischer R, Böhm S, Deutel B, Hartinger M, Windisch J, Casadevall N, London GM. Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity. Pharm. Res. 2012;29:1454–67.

    Article  CAS  PubMed  Google Scholar 

  76. I. Q10. ICH Q10. Pharmaceutical quality system. 2008. https://database.ich.org/sites/default/files/Q10%20Guideline.pdf.

  77. I. Q6B. ICH Q6B. Specifications: test procedures and acceptance criteria for biotechnological/biological products. 1999. https://database.ich.org/sites/default/files/Q6B%20Guideline.pdf.

  78. Bercu J, Berlam S, Berridge J, Cherney B, Cowley D, Laughton H, McLoughlin D, McMahon M, Moore C, Murti C. Establishing patient centric specifications for drug substance and drug product impurities. J Pharm Innov. 2019;14:76–89.

    Article  Google Scholar 

  79. Ruesch MN, Benetti L, Berkay E, Cirelli DJ, Frantz N, Gastens MH, Kelley WP, Kretsinger J, Lewis M, Novick S, Rellahan B, Pack L, Stroop CJM, Subashi A, Yin P, Zeng M, Stults J. Strategies for Setting Patient-Centric Commercial Specifications for Biotherapeutic Products. J. Pharm. Sci. 2021;110:771–84.

    Article  CAS  PubMed  Google Scholar 

  80. Alt N, Zhang TY, Motchnik P, Taticek R, Quarmby V, Schlothauer T, Beck H, Emrich T, Harris RJ. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals : J Int Assoc Biolog Standardization. 2016;44:291–305.

    Article  CAS  Google Scholar 

  81. Finklerand C, Krummen L. Introduction to the application of QbD principles for the development of monoclonal antibodies. Biologicals : journal of the International Association of Biological Standardization. 2016;44:282–90.

    Article  Google Scholar 

  82. Wakankar A, Chen Y, Gokarn Y, Jacobson FS. Analytical methods for physicochemical characterization of antibody drug conjugates. mAbs. 2011;3:161–72.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chen T, Chen Y, Stella C, Medley CD, Gruenhagen JA, Zhang K. Antibody-drug conjugate characterization by chromatographic and electrophoretic techniques. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016;1032:39–50.

    Article  CAS  PubMed  Google Scholar 

  84. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianferani S. Characterization of therapeutic antibodies and related products. Anal. Chem. 2013;85:715–36.

    Article  CAS  PubMed  Google Scholar 

  85. Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal. Chem. 2016;88:480–507.

    Article  CAS  PubMed  Google Scholar 

  86. Singh SK, Luisi DL, Pak RH. Antibody-Drug Conjugates: Design, Formulation and Physicochemical Stability. Pharm. Res. 2015;32:3541–71.

    Article  CAS  PubMed  Google Scholar 

  87. Ross PL, Wolfe JL. Physical and Chemical Stability of Antibody Drug Conjugates: Current Status. J. Pharm. Sci. 2016;105:391–7.

    Article  CAS  PubMed  Google Scholar 

  88. Kepert JF, Cromwell M, Engler N, Finkler C, Gellermann G, Gennaro L, Harris R, Iverson R, Kelley B, Krummen L. Establishing a control system using QbD principles. Biologicals : J Int Assoc Biolog Standardization. 2016;44:319–31.

    Article  Google Scholar 

  89. Hakemeyer C, McKnight N, St John R, Meier S, Trexler-Schmidt M, Kelley B, Zettl F, Puskeiler R, Kleinjans A, Lim F, Wurth C. Process characterization and Design Space definition. Biologicals : Journal of the International Association of Biological Standardization. 2016;44:306–18.

    Article  PubMed  Google Scholar 

  90. Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer. Lancet (London, England). 2019;394:793–804.

    Article  CAS  PubMed  Google Scholar 

  91. Matsudaand Y, Mendelsohn BA. Recent Advances in Drug-Antibody Ratio Determination of Antibody-Drug Conjugates. Chem. Pharm. Bull. 2021;69:976–83.

    Article  Google Scholar 

  92. Hu X, Bortell E, Kotch FW, Xu A, Arve B, Freese S. Development of commercial-ready processes for antibody drug conjugates. Org. Process Res. Dev. 2017;21:601–10.

    Article  CAS  Google Scholar 

  93. Wagh A, Song H, Zeng M, Tao L, Das TA-O. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs. 2018;10:222–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Beck A, D'Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev. Proteomics. 2019;16:337–62.

    Article  CAS  PubMed  Google Scholar 

  95. Jones J, Pack LA-O, Hunter JH, Valliere-Douglass JF. Native size-exclusion chromatography-mass spectrometry: suitability for antibody-drug conjugate drug-to-antibody ratio quantitation across a range of chemotypes and drug-loading levels. MAbs. 2020;12:1682895.

    Article  PubMed  Google Scholar 

  96. Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6:22496–512.

    Article  PubMed  PubMed Central  Google Scholar 

  97. D'Atri V, Pell R, Clarke A, Guillarme D, Fekete S. Is hydrophobic interaction chromatography the most suitable technique to characterize site-specific antibody-drug conjugates? J. Chromatogr. A. 2019;1586:149–53.

    Article  CAS  PubMed  Google Scholar 

  98. Deslignière EA-O, Ehkirch A, Duivelshof BL, Toftevall H, Sjögren JA-O, Guillarme D, D'Atri VA-O, Beck AA-O, Hernandez-Alba O, Cianférani S. State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis. Pharmaceuticals. 2021;14:498. https://doi.org/10.3390/ph14060498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, Parsons-Reponte KL, Tien J, Yu SF, Mai E, Li D, Tibbitts J, Baudys J, Saad OM, Scales SJ, McDonald PJ, Hass PE, Eigenbrot C, Nguyen T, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 2012;30:184–9.

    Article  CAS  PubMed  Google Scholar 

  100. Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, Handley FG, Ihle NC, Senter PD, Alley SC. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug. Chem. 2005;16:1282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6:34–45.

    Article  PubMed  Google Scholar 

  102. Goldmacher VS, Amphlett G, Wang L, Lazar AC. Statistics of the distribution of the abundance of molecules with various drug loads in maytansinoid antibody-drug conjugates. Mol. Pharm. 2015;12:1738–44.

    Article  CAS  PubMed  Google Scholar 

  103. Kim MT, Chen Y, Marhoul J, Jacobson F. Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug. Chem. 2014;25:1223–32.

    Article  CAS  PubMed  Google Scholar 

  104. Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev. Proteomics. 2016;13:157–83.

    Article  CAS  PubMed  Google Scholar 

  105. Beckley NS, Lazzareschi KP, Chih HW, Sharma VK, Flores HL. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug. Chem. 2013;24:1674–83.

    Article  CAS  PubMed  Google Scholar 

  106. Wakankar AA, Feeney MB, Rivera J, Chen Y, Kim M, Sharma VK, Wang YJ. Physicochemical stability of the antibody-drug conjugate Trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug. Chem. 2010;21:1588–95.

    Article  CAS  PubMed  Google Scholar 

  107. Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao YH, Quan C, Joshi A, Harris RJ, Motchnik P. Charge variants in IgG1: Isolation, characterization, in vitro binding properties and pharmacokinetics in rats. Mabs. 2010;2:613–24.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Cumnock K, Tully T, Cornell C, Hutchinson M, Gorrell J, Skidmore K, Chen Y, Jacobson F. Trisulfide modification impacts the reduction step in antibody-drug conjugation process. Bioconjug. Chem. 2013;24:1154–60.

    Article  CAS  PubMed  Google Scholar 

  109. Geigert J. Priceless Potency (Therapeutic Activity). The Challenge of CMC Regulatory Compliance for Biopharmaceuticals, Springer 2019, pp. 287-310.

  110. Wilson R. A personal perspective of the development and validation of a phase-specific antibody-drug conjugate cytotoxicity potency assay. Bioanalysis. 2013;5:1083–97.

    Article  CAS  PubMed  Google Scholar 

  111. Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J. Pharm. Sci. 2015;104:1866–84.

    Article  CAS  PubMed  Google Scholar 

  112. Gorovitsand B, Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody–drug conjugates driven by mannose receptor uptake. Cancer Immunol. Immunother. 2013;62:217–23.

    Article  Google Scholar 

  113. Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ, Van Vleet TR. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol. Ther. 2019;200:110–25.

    Article  CAS  PubMed  Google Scholar 

  114. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 2021;18:327–44.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gong HH, Ihle N, Jones MT, Kelly K, Kott L, Raglione T, Whitlock S, Zhang Q, Zheng J. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates. AAPS PharmSciTech. 2018;19:971–7.

    Article  CAS  PubMed  Google Scholar 

  116. Matsuda Y. Current approaches for the purification of antibody–drug conjugates. J. Sep. Sci. 2022;45:27–37.

    Article  CAS  PubMed  Google Scholar 

  117. Vanderlaan M, Zhu-Shimoni J, Lin S, Gunawan F, Waerner T, Van Cott KE. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol. Prog. 2018;34:828–37.

    Article  CAS  PubMed  Google Scholar 

  118. Yang H. Establishing acceptable limits of residual DNA. PDA J. Pharm. Sci. Technol. 2013;67:155–63.

    Article  CAS  PubMed  Google Scholar 

  119. W.H. Organization. Meeting Report—WHO Study Group on Cell Substrates for Production of Biologicals. Geneva: WHO Headquarters; 2007. p. 11–2.

    Google Scholar 

  120. Liu HF, Ma J, Winter C, Bayer R. Recovery and purification process development for monoclonal antibody production. mAbs. 2010;2:480–99.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Strickley RG, Lambert WJ. A review of Formulations of Commercially Available Antibodies. J. Pharm. Sci. 2021;110:2590–2608.e2556.

    Article  CAS  PubMed  Google Scholar 

  122. Chang BS, M. Reilly, and H. Chang. Lyophilized biologics. Lyophilized Biologics and Vaccines, Springer2015, pp. 93-119.

  123. Ding W. Risk-based scientific approach for determination of extractables/leachables from biomanufacturing of antibody-drug conjugates (ADCs). Methods Mol. Biol. 2013;1045:303–11.

    Article  PubMed  Google Scholar 

  124. Wakankar AA, Wang YJ, Canova-Davis E, Ma S, Schmalzing D, Grieco J, Milby T, Reynolds T, Mazzarella K, Hoff E, Gomez S, Martin-Moe S. On developing a process for conducting extractable-leachable assessment of components used for storage of biopharmaceuticals. J. Pharm. Sci. 2010;99:2209–18.

    Article  CAS  PubMed  Google Scholar 

  125. Qi L, Liu J, Ronk M, Gallegos A, Fujimori K, Luo Y, Li K, Lee H, Nashed-Samuel Y. A Holistic Approach of Extractables and Leachables Assessment of Rubber Stoppered Glass Vial Systems for Biotechnology Products. J. Pharm. Sci. 2021;110:3580–93.

    Article  CAS  PubMed  Google Scholar 

  126. Parris P, Whelan G, Burild A, Whritenour J, Bruen U, Bercu J, Callis C, Graham J, Johann E, Griffin T, Kohan M, Martin EA, Masuda-Herrera M, Stanard B, Tien E, Cruz M, Nagao L. Framework for sensitization assessment of extractables and leachables in pharmaceuticals. Crit. Rev. Toxicol. 2022;52:125–38.

    Article  PubMed  Google Scholar 

  127. Disitamab Vedotin package insert. RemeGen Co., Ltd. 2021. https://db.yaozh.com/instruct?comprehensivesearchcontent=%E7%BB%B4%E8%BF%AA%E8%A5%BF%E5%A6%A5%E5%8D%95%E6%8A%97&.

  128. Shitara K, Doi T, Dvorkin M, Mansoor W, Arkenau HT, Prokharau A, Alsina M, Ghidini M, Faustino C, Gorbunova V, Zhavrid E, Nishikawa K, Hosokawa A, Yalçın Ş, Fujitani K, Beretta GD, Cutsem EV, Winkler RE, Makris L, et al. Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19:1437–48.

    Article  CAS  PubMed  Google Scholar 

  129. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, Yeh KH, Yoshikawa T, Oh SC, Bai LY, Tamura T, Lee KW, Hamamoto Y, Kim JG, Chin K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71.

    Article  CAS  PubMed  Google Scholar 

  130. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, Sun W, Jalal SI, Shah MA, Metges JP, Garrido M, Golan T, Mandala M, Wainberg ZA, Catenacci DV, Ohtsu A, Shitara K, Geva R, Bleeker J, et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018;4:e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Niglio SA, Jia R, Ji J, Ruder S, Patel VG, Martini A, Sfakianos JP, Marqueen KE, Waingankar N, Mehrazin R, Wiklund P, Oh WK, Mazumdar M, Ferket BS, Galsky MD. Programmed Death-1 or Programmed Death Ligand-1 Blockade in Patients with Platinum-resistant Metastatic Urothelial Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2019;76:782–9.

    Article  CAS  PubMed  Google Scholar 

  132. Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E, Fleming M, Rezazadeh A, Mellado B, Varlamov S, Joshi M, Duran I, Tagawa ST, Zakharia Y, Zhong B, Stuyckens K, Santiago-Walker A, De Porre P, O'Hagan A, et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019;381:338–48.

    Article  CAS  PubMed  Google Scholar 

  133. Oing C, Rink M, Oechsle K, Seidel C, von Amsberg G, Bokemeyer C. Second Line Chemotherapy for Advanced and Metastatic Urothelial Carcinoma: Vinflunine and Beyond-A Comprehensive Review of the Current Literature. J. Urol. 2016;195:254–63.

    Article  CAS  PubMed  Google Scholar 

  134. Petrylak DP, de Wit R, Chi KN, Drakaki A, Sternberg CN, Nishiyama H, Castellano D, Hussain SA, Fléchon A, Bamias A, Yu EY, van der Heijden MS, Matsubara N, Alekseev B, Necchi A, Géczi L, Ou YC, Coskun HS, Su WP, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): overall survival and updated results of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2020;21:105–20.

    Article  CAS  PubMed  Google Scholar 

  135. Dhakal D, Dhakal Y, Sohng JK. Book Review: Antibody-Drug Conjugates: Fundamentals, Drug Development, and Clinical Outcomes to Target Cancer. LID - 771.

  136. Buecheler JW, Winzer M, Tonillo J, Weber C, Gieseler HA-O. Impact of Payload Hydrophobicity on the Stability of Antibody-Drug Conjugates. Mol. Pharm. 2018;15:2656–64.

    Article  CAS  PubMed  Google Scholar 

  137. Guo J, Kumar S, Chipley M, Marcq O, Gupta D, Jin Z, Tomar DS, Swabowski C, Smith J, Starkey JA, Singh SK. Characterization and Higher-Order Structure Assessment of an Interchain Cysteine-Based ADC: Impact of Drug Loading and Distribution on the Mechanism of Aggregation. Bioconjug. Chem. 2016;27:604–15.

    Article  CAS  PubMed  Google Scholar 

  138. Chiu D, Pan L, Fay L, Eakin C, Valliere-Douglass J. Structural characterization of a monomethylauristatin-E based ADC that contains 8 drugs conjugated at interchain cysteine residues. J Pharm Biomed Anal. 2021;205:114309.

  139. Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug. Chem. 2014;25:656–64.

    Article  CAS  PubMed  Google Scholar 

  140. Hyung SA-O, Li D, Koppada N, Kaur S, Saad OM. Method development of a novel PK assay for antibody-conjugated drug measurement of ADCs using peptide-linker drug analyte. Anal. Bioanal. Chem. 2019;411:2587–96.

    Article  CAS  PubMed  Google Scholar 

  141. Huang YA-O, Mou S, Wang Y, Mu R, Liang M, Rosenbaum AA-OX. Characterization of Antibody-Drug Conjugate Pharmacokinetics and in Vivo Biotransformation Using Quantitative Intact LC-HRMS and Surrogate Analyte LC-MRM. Anal. Chem. 2021;93:6135–44.

    Article  CAS  PubMed  Google Scholar 

  142. Qinand QA-O, Gong L. Current Analytical Strategies for Antibody-Drug Conjugates in Biomatrices. Molecules. 2022;27:6299. https://doi.org/10.3390/molecules27196299.

    Article  CAS  Google Scholar 

  143. Nagornov KO, Gasilova N, Kozhinov AN, Virta PA-O, Holm P, Menin L, Nesatyy VJ, Tsybin YA-O. Drug-to-Antibody Ratio Estimation via Proteoform Peak Integration in the Analysis of Antibody-Oligonucleotide Conjugates with Orbitrap Fourier Transform Mass Spectrometry. Anal. Chem. 2021;93:12930–7.

    Article  CAS  PubMed  Google Scholar 

  144. Su D, Ng C, Khosraviani M, Yu SF, Cosino E, Kaur S, Xu K. Custom-Designed Affinity Capture LC-MS F(ab')2 Assay for Biotransformation Assessment of Site-Specific Antibody Drug Conjugates. Anal. Chem. 2016;88:11340–6.

    Article  CAS  PubMed  Google Scholar 

  145. Nagai Y, Oitate M, Shiozawa H, Ando O. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica; fate Foreign Comp Bio Syst. 2019;49:1086–96.

    Article  CAS  Google Scholar 

  146. Kamathand AV, Iyer S. Challenges and advances in the assessment of the disposition of antibody-drug conjugates. Biopharm. Drug Dispos. 2016;37:66–74.

    Article  Google Scholar 

  147. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res : an Official J Ame Assoc Cancer Res. 2004;10:7063–70.

    Article  CAS  Google Scholar 

  148. Leipold D, Jumbe N, Dugger D, Crocker L, Leach W, Sliwkowski M, Meyer D, Senter P, Tibbitts J. Trastuzumab-MC-vc-PAB-MMAF: The effects of the Drug: Antibody Ratio (DAR) on efficacy, toxicity and pharmacokinetics. Cancer research. 67:1551 (2007).

  149. Sun XA-O, Ponte JF, Yoder NC, Laleau R, Coccia J, Lanieri L, Qiu Q, Wu R, Hong E, Bogalhas M, Wang L, Dong L, Setiady Y, Maloney EK, Ab O, Zhang X, Pinkas J, Keating TA, Chari R, et al. Effects of Drug-Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody-Maytansinoid Conjugates. Bioconjug. Chem. 2017;28:1371–81.

    Article  CAS  PubMed  Google Scholar 

  150. Mahmood I. Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies. 10:20 (2021). https://doi.org/10.3390/antib10020020.

  151. Kaempffe A, Dickgiesser S, Rasche N, Paoletti A, Bertotti E, De Salve I, Sirtori FR, Kellner R, Könning D, Hecht S, Anderl J, Kolmar H, Schröter C. Effect of Conjugation Site and Technique on the Stability and Pharmacokinetics of Antibody-Drug Conjugates. J. Pharm. Sci. 2021;110:3776–85.

    Article  CAS  PubMed  Google Scholar 

  152. Strop P, Liu S-H, Dorywalska M, Delaria K, Dushin RG, Tran T-T, Ho W-H, Farias S, Casas MG, Abdiche Y, Zhou D, Chandrasekaran R, Samain C, Loo C, Rossi A, Rickert M, Krimm S, Wong T, Chin SM, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol. 2013;20:161–7.

    Article  CAS  PubMed  Google Scholar 

  153. Vaisman-Mentesh A, Gutierrez-Gonzalez M, DeKosky BJ, Wine Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front. Immunol. 2020;11:1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself. 2010;1:314–22.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Jiang J, Li SA-O, Tang N, Wang L, Xin W, Li S. Preclinical safety profile of RC88-ADC:a novel mesothelin-targeted antibody conjugated with Monomethyl auristatin E. Drug Chem. Toxicol. 2023;46:24–34.

    Article  CAS  PubMed  Google Scholar 

  156. Jiang J, Li S, Shan X, Wang L, Ma J, Huang M, Dong L, Chen F. Preclinical safety profile of disitamab vedotin:a novel anti-HER2 antibody conjugated with MMAE. Toxicol. Lett. 2020;324:30–7.

    Article  CAS  PubMed  Google Scholar 

  157. Ben-Horin S, Heap GA, Ahmad T, Kim H, Kwon T, Chowers Y. The immunogenicity of biosimilar infliximab: can we extrapolate the data across indications? Expert Rev. Gastroenterol. Hepatol. 2015;9(Suppl 1):27–34.

    Article  PubMed  Google Scholar 

  158. Schlessinger A, Ofran Y, Yachdav G, Rost B. Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res. 2006;34:D777–80.

    Article  CAS  PubMed  Google Scholar 

  159. McKertishand CM, Kayser V. Advances and Limitations of Antibody Drug Conjugates for Cancer. Biomedicines. 2021;9:872.

    Article  Google Scholar 

  160. Sakai H, Tsurutani J, Iwasa T, Komoike Y, Sakai K, Nishio K, Nakagawa K. HER2 genomic amplification in circulating tumor DNA and estrogen receptor positivity predict primary resistance to trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer. Breast Cancer. 2018;25:605–13.

    Article  PubMed  Google Scholar 

  161. Khoury R, Saleh K, Khalife N, Saleh M, Chahine C, Ibrahim R, Lecesne A. Mechanisms of Resistance to Antibody-Drug Conjugates. Int. J. Mol. Sci. 2023;24:9674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ríos-Luci C, García-Alonso S, Díaz-Rodríguez E, Nadal-Serrano M, Arribas J, Ocaña A, Pandiella A. Resistance to the Antibody-Drug Conjugate T-DM1 Is Based in a Reduction in Lysosomal Proteolytic Activity. Cancer Res. 2017;77:4639–51.

    Article  PubMed  Google Scholar 

  163. Sung M, Tan X, Lu B, Golas J, Hosselet C, Wang F, Tylaska L, King L, Zhou D, Dushin R, Myers JS, Rosfjord E, Lucas J, Gerber HP, Loganzo F. Caveolae-Mediated Endocytosis as a Novel Mechanism of Resistance to Trastuzumab Emtansine (T-DM1). Mol Cancer Ther. 2018;17:243–53.

    Article  CAS  PubMed  Google Scholar 

  164. M Yu, A Ocana, IF Tannock Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit? Cancer Metastasis Rev. 32:211-227 (2013).

  165. Kovtun YV, Audette CA, Mayo MF, Jones GE, Doherty H, Maloney EK, Erickson HK, Sun X, Wilhelm S, Ab O, Lai KC, Widdison WC, Kellogg B, Johnson H, Pinkas J, Lutz RJ, Singh R, Goldmacher VS, Chari RVJ. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 2010;70:2528–37.

    Article  CAS  PubMed  Google Scholar 

  166. Walter RB, Gooley TA, van der Velden VHJ, Loken MR, van Dongen JJM, Flowers DA, Bernstein ID, Appelbaum FR. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007;109:4168–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D, Vadgama JV. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mole Cancer Res : MCR. 2012;10:1597–606.

    Article  CAS  Google Scholar 

  168. Walter RB, Raden BW, Cronk MR, Bernstein ID, Appelbaum FR, Banker DE. The peripheral benzodiazepine receptor ligand PK11195 overcomes different resistance mechanisms to sensitize AML cells to gemtuzumab ozogamicin. Blood. 2004;103:4276–84.

    Article  CAS  PubMed  Google Scholar 

  169. Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, Hinrichs MJ, Bezabeh BZ, Fleming RL, Dimasi N, Feng H, Toader D, Yuan AQ, Xu L, Lin J, Gao C, Wu H, Dixit R, Osbourn JK, Coats SR. A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Cancer Cell. 2016;29:117–29.

    Article  CAS  PubMed  Google Scholar 

  170. Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB, Setter JR, Nicholas ND, Okeley NM, Lyon RP, Benjamin DR, Law CL. Intracellular Released Payload Influences Potency and Bystander-Killing Effects of Antibody-Drug Conjugates in Preclinical Models. Cancer Res. 2016;76:2710–9.

    Article  CAS  PubMed  Google Scholar 

  171. Loganzo F, Sung M, Gerber HP. Mechanisms of Resistance to Antibody-Drug Conjugates. Mol. Cancer Ther. 2016;15:2825–34.

    Article  CAS  PubMed  Google Scholar 

  172. Moquist PN, Bovee TD, Waight AB, Mitchell JA, Miyamoto JB, Mason ML, Emmerton KK, Stevens N, Balasubramanian C, Simmons JK, Lyon RP, Senter PD, Doronina SO. Novel Auristatins with High Bystander and Cytotoxic Activities in Drug Efflux-positive Tumor Models. Mol. Cancer Ther. 2021;20:320–8.

    Article  CAS  PubMed  Google Scholar 

  173. Yamazaki CM, Yamaguchi A, Anami Y, Xiong W, Otani Y, Lee J, Ueno NT, Zhang N, An Z, Tsuchikama K. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat. Commun. 2021;12:3528.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  174. Polakis P. Antibody Drug Conjugates for Cancer Therapy. Pharmacol. Rev. 2016;68:3–19.

    Article  CAS  PubMed  Google Scholar 

  175. Bander NH. Antibody-drug conjugate target selection: critical factors. Methods Mol. Biol. 2013;1045:29–40.

    Article  PubMed  ADS  Google Scholar 

  176. Hendriks BS, Klinz SG, Reynolds JG, Espelin CW, Gaddy DF, Wickham TJ. Impact of tumor HER2/ERBB2 expression level on HER2-targeted liposomal doxorubicin-mediated drug delivery: multiple low-affinity interactions lead to a threshold effect. Mol. Cancer Ther. 2013;12:1816–28.

    Article  CAS  PubMed  Google Scholar 

  177. Ackerman ME, Pawlowski D, Wittrup KD. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol. Cancer Ther. 2008;7:2233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJP, Weiner LM, Marks JD, Adams GP. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res. 2011;71:2250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Deonarain MA-OX, Yahioglu G, Stamati I, Pomowski A, Clarke J, Edwards BM, Diez-Posada S, Stewart AC. Small-Format Drug Conjugates: A Viable Alternative to ADCs for Solid Tumours? Antibodies. 2018;7:16. https://doi.org/10.3390/antib7020016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hamblett K, Barnscher S, Davies RH, Hammond PW, Hernandez A, Wickman GR, Fung VK, Ding T, Garnett G, Galey AS, Zwierzchowski P, Clavette BC, Winters GC, Rich JR, Rowse G, Babcook JS, Hausman D. Abstract P6-17-13: ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers. Cancer Res. 2019;79:P6–17.

    Article  Google Scholar 

  181. Tsumura R, Manabe S, Takashima H, Koga Y, Yasunaga M, Matsumura Y. Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor. J Control Release : official J Control Release Soc. 2018;284:49–56.

    Article  CAS  Google Scholar 

  182. Cassady JM, H.G. Chan Kk Fau - Floss, E. Floss Hg Fau - Leistner, and E. Leistner. Recent developments in the maytansinoid antitumor agents. Chem. Pharm. Bull. 2004;52:1–26.

    Article  CAS  Google Scholar 

  183. Maderna A, Leverett CA. Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates. Mol. Pharm. 2015;12:1798–812.

    Article  CAS  PubMed  Google Scholar 

  184. Mantaj J, Jackson PJ, Rahman KM, Thurston DA-O. From Anthramycin to Pyrrolobenzodiazepine (PBD)-Containing Antibody-Drug Conjugates (ADCs). Angewandte Chemie. 2017;56:462–88.

    Article  CAS  PubMed  Google Scholar 

  185. Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol. 2013;8:82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Andreev J, Thambi N, Perez Bay AE, Delfino F, Martin J, Kelly MP, Kirshner JR, Rafique A, Kunz A, Nittoli T, MacDonald D, Daly C, Olson W, Thurston G. Bispecific Antibodies and Antibody-Drug Conjugates (ADCs) Bridging HER2 and Prolactin Receptor Improve Efficacy of HER2 ADCs. Mol. Cancer Ther. 2017;16:681–93.

    Article  CAS  PubMed  Google Scholar 

  187. Pillow TH, Schutten M, Yu SF, Ohri R, Sadowsky J, Poon KA, Solis W, Zhong F, Del Rosario G, Go MAT, Lau J, Yee S, He J, Liu L, Ng C, Xu K, Leipold DD, Kamath AV, Zhang D, et al. Modulating Therapeutic Activity and Toxicity of Pyrrolobenzodiazepine Antibody-Drug Conjugates with Self-Immolative Disulfide Linkers. Mol. Cancer Ther. 2017;16:871–8.

    Article  CAS  PubMed  Google Scholar 

  188. Satomaa TA-O, Pynnönen H, Vilkman A, Kotiranta T, Pitkänen V, Heiskanen A, Herpers B, Price LS, Helin J, Saarinen J. Hydrophilic Auristatin Glycoside Payload Enables Improved Antibody-Drug Conjugate Efficacy and Biocompatibility. Antibodies. 2018;7:15. https://doi.org/10.3390/antib7020015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mendelsohn BA-O, Barnscher SD, Snyder JT, An Z, Dodd JM, Dugal-Tessier J. Investigation of Hydrophilic Auristatin Derivatives for Use in Antibody Drug Conjugates. Bioconjug. Chem. 2017;28:371–81.

    Article  CAS  PubMed  Google Scholar 

  190. Colombo R, Rich JR. The therapeutic window of antibody drug conjugates: A dogma in need of revision. Cancer Cell. 2022;40:1255–63.

    Article  CAS  PubMed  Google Scholar 

  191. Shinmi D, Taguchi E, Iwano J, Yamaguchi T, Masuda K, Enokizono J, Shiraishi Y. One-Step Conjugation Method for Site-Specific Antibody-Drug Conjugates through Reactive Cysteine-Engineered Antibodies. Bioconjug. Chem. 2016;27:1324–31.

    Article  CAS  PubMed  Google Scholar 

  192. Agarwaland P, Bertozzi CR. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem. 2015;26:176–92.

    Article  Google Scholar 

  193. Falckand G, Müller KM. Enzyme-Based Labeling Strategies for Antibody-Drug Conjugates and Antibody Mimetics. Antibodies. 2018;7(4) https://doi.org/10.3390/antib7010004.

  194. Adumeau P, Vivier D, Sharma SK, Wang J, Zhang T, Chen A, Agnew BJ, Zeglis BA-OX. Site-Specifically Labeled Antibody-Drug Conjugate for Simultaneous Therapy and ImmunoPET. Mol. Pharm. 2018;15:892–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rios-Doria J, Harper J, Rothstein R, Wetzel L, Chesebrough J, Marrero A, Chen C, Strout P, Mulgrew K, McGlinchey K, Fleming R, Bezabeh B, Meekin J, Stewart D, Kennedy M, Martin P, Buchanan A, Dimasi N, Michelotti E, Hollingsworth R. Antibody-Drug Conjugates Bearing Pyrrolobenzodiazepine or Tubulysin Payloads Are Immunomodulatory and Synergize with Multiple Immunotherapies. Cancer Res. 2017;77:2686–98.

    Article  CAS  PubMed  Google Scholar 

  196. Wittrup KD. Antitumor Antibodies Can Drive Therapeutic T Cell Responses. Trends Cancer. 2017;3:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kheraand E, Thurber GM. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody-Drug Conjugates. BioDrugs : Clin Immunotherapeutics, Biopharmaceu Gene Ther. 2018;32:465–80.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Project on the Formulation and Revision of National Medicine Standards (grant number 2022S04), Japan China Sasakawa Medical Fellowship and National Key Research and Development Program of China (grant number 2023YFC3404004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhao, X., Yu, C. et al. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 41, 419–440 (2024). https://doi.org/10.1007/s11095-023-03649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03649-z

Keywords

Navigation