Skip to main content

Advertisement

Log in

The Modified Heparin-Binding l-Asparaginase of Wolinella succinogenes

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The modified asparaginase Was79 was derived from the recombinant wild-type l-asparaginase of Wolinella succinogenes. The Was79 contains the amino acid substitutions V23Q and K24T responsible for the resistance to trypsinolysis and the N-terminal heparin-binding peptide KRKKKGKGLGKKR responsible for the binding to heparin and tumor K562 cells in vitro. When tested on a mouse model of Fischer lymphadenosis L5178Y, therapeutic efficacy of Was79 was significantly higher than that of reference enzymes at all single therapeutic doses used (125–8000 IU/kg). At Was79 single doses of 500–8000 IU/kg, the complete remission rate of 100 % was observed. The Was79 variant can be expressed intracellularly in E. coli as a less immunogenic formyl-methionine-free form at high per cell production levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Durden, D. L., & Distasio, J. A. (1980). Comparison of the immunosuppressive effects of asparaginases from Escherichia coli and Vibrio succinogenes. Cancer Research, 40, 1125–1129.

    CAS  Google Scholar 

  2. Durden, D. L., & Distasio, J. A. (1981). Characterization of the effects of asparaginases from Escherichia coli and a glutaminase free asparaginase from Vibrio succinogenes on specific cell-mediated cytotoxicity. International Journal of Cancer, 27, 59–65.

    Article  CAS  Google Scholar 

  3. van den Berg, H. (2011). Asparaginase revisited. Leukemia and Lymphoma, 52, 168–178.

    Article  Google Scholar 

  4. Covini, D., Tardito, S., Bussolati, O., Laurent, R., Chiarelli, L. R., Pasquetto, M. V., et al. (2012). Expanding targets for a metabolic therapy of cancer: l-Asparaginase. Recent Patents on Anti-Cancer Drug Discovery, 7, 4–13.

    Article  CAS  Google Scholar 

  5. Shrivastava, A., Khan, A. A., Khurshid, M., Kalam, M. A., Jain, S. K., & Singhal, P. K. (2015). Recent developments in l-asparaginase discovery and its potential as anticancer agent. Critical Reviews in Oncology/Hematology, 100, 1–10.

    Article  Google Scholar 

  6. Distasio, J. A., Niederman, R. A., Kafkewitz, D., & Goodman, D. (1976). Purification and characterization of l-asparaginase with anti-lymphoma activity from Vibrio succinogenes. Journal of Biological Chemistry, 251, 6929–6933.

    CAS  Google Scholar 

  7. Distasio, J. A., Salazar, A. M., Nadji, M., & Durden, D. L. (1982). Glutaminase-free asparaginase from Vibrio succinogenes: an antilymphoma enzyme lacking hepatotoxicity. International Journal of Cancer, 30, 343–347.

    Article  CAS  Google Scholar 

  8. Lubkowski, J., Palm, G. J., Gilliland, G. L., Derst, C., Röhm, K.-H., & Wlodawer, A. (1996). Crystal structure and amino acid sequence of Wolinella succinogenes l-asparaginase. European Journal of Biochemistry, 241, 201–207.

    Article  CAS  Google Scholar 

  9. Distasio, J. A., Niederman, R. A., & Kafkewitz, D. (1977). Antilymphoma activity of a glutaminase-free L-asparaginase of microbial origin. Proceedings of the Society for Experimental Biology and Medicine, 155, 528–531.

    Article  CAS  Google Scholar 

  10. Reinert, R. B., Oberle, L. M., Wek, S. A., Bunpo, P., Wang, X. P., Mileva, I., et al. (2006). Role of glutamine depletion in directing tissue-specific nutrient stress responses to l-asparaginase. Journal of Biological Chemistry, 281, 31222–31233.

    Article  CAS  Google Scholar 

  11. Derst, C., Henseling, J., & Röhm, K.-H. (2000). Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Science, 9, 2009–2017.

    Article  CAS  Google Scholar 

  12. Kotzia, G. A., Lappa, K., & Labrou, N. E. (2007). Tailoring structure-function properties of l-asparaginase: engineering resistance to trypsin cleavage. Biochemical Journal, 404, 337–343.

    Article  CAS  Google Scholar 

  13. Xu, D., & Esko, J. D. (2014). Demystifying heparan sulfate: Protein interactions. Annual Review of Biochemistry, 83, 129–157.

    Article  CAS  Google Scholar 

  14. Thompson, S. A., Higashiyama, S., Wood, K., Pollitt, N. S., Damm, D., McEnroe, G., et al. (1994). Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. Journal of Biological Chemistry, 269, 2541–2549.

    CAS  Google Scholar 

  15. Neubauer, P., Hofmann, K., Holst, O., Mattiasson, B., & Kruschke, P. (1992). Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Applied Microbiology and Biotechnology, 36, 739–744.

    Article  CAS  Google Scholar 

  16. Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 41, 207–234.

    Article  CAS  Google Scholar 

  17. Wriston, J. C. (1970). Asparaginase. Methods in Enzymology, 17A, 732–742.

    Article  Google Scholar 

  18. Dawson, R. M. C., Elliott, D. C., Elliott, W. H., & Jones, K. M. (1986). Data for biochemical research (3rd ed.). Oxford: Clarendon Press.

    Google Scholar 

  19. The, T. H., & Feltkamp, T. E. W. (1970). Conjugation of fluorescein isothiocyanate to antibodies. I. Experiments on the conditions of conjugation. Immunology, 18, 865–873.

    CAS  Google Scholar 

  20. Chabner, B. A., & Longo, D. L. (Eds.). (2001). Cancer chemotherapy and biotherapy: Principles and practice (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  21. Wade, H. E., Elsworth, R., Herbert, D., Keppie, J., & Sargeant, K. (1968). A new l-asparaginase with antitumor activity. Lancet, 2, 776–777.

    Article  CAS  Google Scholar 

  22. Rabiet, M. J., Huet, E., & Boulay, F. (2007). The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie, 89, 1089–1106.

    Article  CAS  Google Scholar 

  23. Elleuche, S., & Pöggeler, S. (2010). Inteins, valuable genetic elements in molecular biology and biotechnology. Applied Microbiology and Biotechnology, 87, 479–489.

    Article  CAS  Google Scholar 

  24. Burchenal, J. H., Benvenisti, D., & Dollinger, M. (1970). Experimental studies with l-asparaginase in mouse leukemias. In E. Grundmann & H. F. Oettgen (Eds.), Experimental and clinical effects of l -asparaginase (Vol. 33, pp. 102–113)., Recent results in cancer research Berlin: Springer.

    Chapter  Google Scholar 

  25. Connors, T. A., & Jones, M. (1970). The effect of asparaginase on some animal-tumors. In E. Grundmann & H. F. Oettgen (Eds.), Experimental and clinical effects of l -asparaginase (Vol. 33, pp. 181–187)., Recent results in cancer research Berlin: Springer.

    Chapter  Google Scholar 

  26. Offman, M. N., Krol, M., Patel, N., Krishnan, S., Liu, J.-Z., Saha, V., & Bates, P. A. (2011). Rational engineering of l-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood, 117, 1614–1621.

    Article  CAS  Google Scholar 

  27. Chan, W. K., Lorenzi, P. L., Anishkin, A., Purwaha, P., Rogers, D. M., Sukharev, S., et al. (2014). The glutaminase activity of l-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood, 123, 3596–3606.

    Article  CAS  Google Scholar 

  28. Wriston, J. C, Jr, & Yellin, T. O. (1973). l-asparaginase: A review. Advances in Enzymology and Related Areas of Molecular Biology, 39, 185–248.

    CAS  Google Scholar 

  29. Schweizer, F. (2009). Cationic amphiphilic peptides with cancer-selective toxicity. European Journal of Pharmacology, 625, 190–194.

    Article  CAS  Google Scholar 

  30. Kwon, Y. M., Chung, H. S., Moon, C., Yockman, J., Park, Y. J., Gitlin, S. D., et al. (2009). l-Asparaginase-encasulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). Journal of Controlled Release, 139, 182–189.

    Article  CAS  Google Scholar 

  31. Domenech, C., Thomas, X., Chabaud, S., Baruchel, A., Gueyffier, F., Mazingue, F., et al. (2011). l-Asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005-01 randomized trial. British Journal of Haematology, 153, 58–65.

    Article  CAS  Google Scholar 

  32. Agrawal, V., Woo, J. H., Borthakur, G., Kantarjian, H., & Frankel, A. E. (2013). Red blood cell-encapsulated l-asparaginase: potential therapy of patients with asparagine synthetase deficient acute myeloid leukemia. Protein and Peptide Letters, 20, 392–402.

    CAS  Google Scholar 

  33. Lorentz, C. M., Kontos, S., Diaceri, G., Henry, H., & Hubbell, J. A. (2015). Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Science Advances, 1, e1500112.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of RF (State contract No. 14.N08.11.0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Kozlov.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sannikova, E.P., Bulushova, N.V., Cheperegin, S.E. et al. The Modified Heparin-Binding l-Asparaginase of Wolinella succinogenes . Mol Biotechnol 58, 528–539 (2016). https://doi.org/10.1007/s12033-016-9950-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9950-1

Keywords

Navigation