Skip to main content
Log in

Engineering of glycosylation in yeast and other fungi: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

With the increasing demand for recombinant proteins and glycoproteins, research on hosts for producing these proteins is focusing increasingly on more cost-effective expression systems. Yeasts and other fungi are promising alternatives because they provide easy and cheap systems that can perform eukaryotic post-translational modifications. Unfortunately, yeasts and other fungi modify their glycoproteins with heterogeneous high-mannose glycan structures, which is often detrimental to a therapeutic protein’s pharmacokinetic behavior and can reduce the efficiency of downstream processing. This problem can be solved by engineering the glycosylation pathways to produce homogeneous and, if so desired, human-like glycan structures. In this review, we provide an overview of the most significant recently reported approaches for engineering the glycosylation pathways in yeasts and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S, Itadani A, Hirashima M, Shimoda C, Jigami Y, Nakayama K (2009) Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 19:428–436

    Article  CAS  Google Scholar 

  • Aebi M, Gassenhuber J, Domdey H, te Heesen S (1996) Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology 6:439–444

    Article  CAS  Google Scholar 

  • Amano K, Chiba Y, Kasahara Y, Kato Y, Kaneko MK, Kuno A, Ito H, Kobayashi K, Hirabayashi J, Jigami Y, Narimatsu H (2008) Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci USA 105:3232–3237

    Article  CAS  Google Scholar 

  • Barnay-Verdier S, Boisrame A, Beckerich JM (2004) Identification and characterization of two alpha-1, 6-mannosyltransferases, Anl1p and Och1p, in the yeast Yarrowia lipolytica. Microbiology 150:2185–2195

    Article  CAS  Google Scholar 

  • Berriman M, Ghedin E, Hertz-Fowler C, Blandin G et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    Article  CAS  Google Scholar 

  • Blixt O, Brown J, Schur MJ, Wakarchuk W, Paulson JC (2001) Efficient preparation of natural and synthetic galactosides with a recombinant beta-1, 4-galactosyltransferase-/UDP-4′-gal epimerase fusion protein. J Org Chem 66:2442–2448

    Article  CAS  Google Scholar 

  • Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766

    Article  CAS  Google Scholar 

  • Borsig L, Ivanov SX, Herrmann GF, Kragl U, Wandrey C, Berger EG (1995) Scaled-up expression of human alpha 2, 6(N)sialyltransferase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 210:14–20

    Article  CAS  Google Scholar 

  • Callewaert N, Laroy W, Cadirgi H, Geysens S, Saelens X, Min Jou W, Contreras R (2001) Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1, 2-alpha-D-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett 503:173–178

    Article  CAS  Google Scholar 

  • Cheng J, Huang S, Yu H, Li Y, Lau K, Chen X (2010) Trans-sialidase activity of Photobacterium damsela alpha2, 6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 20:260–268

    Article  CAS  Google Scholar 

  • Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, Jigami Y, Ichishima E (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304

    Article  CAS  Google Scholar 

  • Chigira Y, Oka T, Okajima T, Jigami Y (2008) Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology 18:303–314

    Article  CAS  Google Scholar 

  • Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 100:5022–5027

    Article  CAS  Google Scholar 

  • Choi BK, Actor JK, Rios S, d'Anjou M, Stadheim TA, Warburton S, Giaccone E, Cukan M, Li H, Kull A, Sharkey N, Gollnick P, Kocieba M, Artym J, Zimecki M, Kruzel ML, Wildt S (2008) Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J 25:581–593

    Article  CAS  Google Scholar 

  • Cueva R, Munoz MD, Andaluz E, Basco RD, Larriba G (1996) Preferential transfer to truncated oligosaccharides to the first sequon of yeast exoglucanase in Saccharomyces cerevisiae alg3 cells. Biochim Biophys Acta 1289:336–342

    Google Scholar 

  • Davidson RC, Nett JH, Renfer E, Li H, Stadheim TA, Miller BJ, Miele RG, Hamilton SR, Choi BK, Mitchell TI, Wildt S (2004) Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology 14:399–407

    Article  CAS  Google Scholar 

  • De Bruyn A, Maras M, Schraml J, Herdewijn P, Contreras R (1997) NMR evidence for a novel asparagine-linked oligosaccharide on cellobiohydrolase I from Trichoderma reesei RUTC 30. FEBS Lett 405:111–113

    Article  Google Scholar 

  • Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426:309–322

    CAS  Google Scholar 

  • Garcia R, Cremata JA, Quintero O, Montesino R, Benkestock K, Stahlberg J (2001) Characterization of protein glycoforms with N-linked neutral and phosphorylated oligosaccharides: studies on the glycosylation of endoglucanase 1 (Cel7B) from Trichoderma reesei. Biotechnol Appl Biochem 33:141–152

    Article  CAS  Google Scholar 

  • Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237

    CAS  Google Scholar 

  • Gentzsch M, Tanner W (1996) The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J 15:5752–5759

    CAS  Google Scholar 

  • Goto M (2007) Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 71:1415–1427

    Article  CAS  Google Scholar 

  • Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotech 18:387–392

    Article  CAS  Google Scholar 

  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246

    Article  CAS  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  CAS  Google Scholar 

  • Harrison MJ, Wathugala IM, Tenkanen M, Packer NH, Nevalainen KM (2002) Glycosylation of acetylxylan esterase from Trichoderma reesei. Glycobiology 12:291–298

    Article  CAS  Google Scholar 

  • Huffaker TC, Robbins PW (1983) Yeast mutants deficient in protein glycosylation. Proc Natl Acad Sci USA 80:7466–7470

    Article  CAS  Google Scholar 

  • Ichishima E, Taya N, Ikeguchi M, Chiba Y, Nakamura M, Kawabata C, Inoue T, Takahashi K, Minetoki T, Ozeki K, Kumagai C, Gomi K, Yoshida T, Nakajima T (1999) Molecular and enzymic properties of recombinant 1, 2-alpha-mannosidase from Aspergillus saitoi overexpressed in Aspergillus oryzae cells. Biochem J 339(Pt 3):589–597

    Article  CAS  Google Scholar 

  • Izquierdo L, Schulz BL, Rodrigues JA, Guther ML, Procter JB, Barton GJ, Aebi M, Ferguson MA (2009) Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases. EMBO J 28:2650–2661

    Article  CAS  Google Scholar 

  • Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70

    Article  CAS  Google Scholar 

  • Kainuma M, Ishida N, Yoko-o T, Yoshioka S, Takeuchi M, Kawakita M, Jigami Y (1999) Coexpression of alpha1, 2 galactosyltransferase and UDP-galactose transporter efficiently galactosylates N- and O-glycans in Saccharomyces cerevisiae. Glycobiology 9:133–141

    Article  CAS  Google Scholar 

  • Kainz E, Gallmetzer A, Hatzl C, Nett JH, Li H, Schinko T, Pachlinger R, Berger H, Reyes-Dominguez Y, Bernreiter A, Gerngross T, Wildt S, Strauss J (2008) N-glycan modification in Aspergillus species. Appl Environ Microbiol 74:1076–1086

    Article  CAS  Google Scholar 

  • Kalsner I, Hintz W, Reid LS, Schachter H (1995) Insertion into Aspergillus nidulans of functional UDP-GlcNAc: alpha 3-D-mannoside beta-1, 2-N-acetylglucosaminyl-transferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans. Glycoconj J 12:360–370

    Article  CAS  Google Scholar 

  • Kasajima Y, Yamaguchi M, Hirai N, Ohmachi T, Yoshida T (2006) In vivo expression of UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1, 2-N-acetylglucosaminyltransferase I (GnT-1) in Aspergillus oryzae and effects on the sugar chain of alpha-amylase. Biosci Biotechnol Biochem 70:2662–2668

    Article  CAS  Google Scholar 

  • Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62R

    Article  CAS  Google Scholar 

  • Kelleher DJ, Karaoglu D, Mandon EC, Gilmore R (2003) Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol Cell 12:101–111

    Article  CAS  Google Scholar 

  • Kim MW, Kim EJ, Kim JY, Park JS, Oh DB, Shimma Y, Chiba Y, Jigami Y, Rhee SK, Kang HA (2006) Functional characterization of the Hansenula polymorpha HOC1, OCH1, and OCR1 genes as members of the yeast OCH1 mannosyltransferase family involved in protein glycosylation. J Biol Chem 281:6261–6272

    Article  CAS  Google Scholar 

  • Kleene R, Krezdorn CH, Watzele G, Meyhack B, Herrmann GF, Wandrey C, Berger EG (1994) Expression of soluble active human beta 1, 4 galactosyltransferase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 201:160–167

    Article  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  CAS  Google Scholar 

  • Krezdorn CH, Kleene RB, Watzele M, Ivanov SX, Hokke CH, Kamerling JP, Berger EG (1994) Human beta 1, 4 galactosyltransferase and alpha 2, 6 sialyltransferase expressed in Saccharomyces cerevisiae are retained as active enzymes in the endoplasmic reticulum. Eur J Biochem 220:809–817

    Article  CAS  Google Scholar 

  • Kukuruzinska MA, Bergh ML, Jackson BJ (1987) Protein glycosylation in yeast. Annu Rev Biochem 56:915–944

    Article  CAS  Google Scholar 

  • Kuroda K, Kobayashi K, Kitagawa Y, Nakagawa T, Tsumura H, Komeda T, Shinmi D, Mori E, Motoki K, Fuju K, Sakai T, Nonaka K, Suzuki T, Ichikawa K, Chiba Y, Jigami Y (2008) Efficient antibody production upon suppression of O mannosylation in the yeast Ogataea minuta. Appl Environ Microbiol 74:446–453

    Article  CAS  Google Scholar 

  • Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215

    Article  CAS  Google Scholar 

  • Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218:1–27

    Article  CAS  Google Scholar 

  • Liu B, Gong X, Chang S, Yang Y, Song M, Duan D, Wang L, Ma Q, Wu J (2009) Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J Biotechnol 143:95–102

    Article  CAS  Google Scholar 

  • Maras M, Saelens X, Laroy W, Piens K, Claeyssens M, Fiers W, Contreras R (1997a) In vitro conversion of the carbohydrate moiety of fungal glycoproteins to mammalian-type oligosaccharides-evidence for N-acetylglucosaminyltransferase-I-accepting glycans from Trichoderma reesei. Eur J Biochem 249:701–707

    Article  CAS  Google Scholar 

  • Maras M, De Bruyn A, Schraml J, Herdewijn P, Claeyssens M, Fiers W, Contreras R (1997b) Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem 245:617–625

    Article  CAS  Google Scholar 

  • Maras M, De Bruyn A, Vervecken W, Uusitalo J, Penttila M, Busson R, Herdewijn P, Contreras R (1999) In vivo synthesis of complex N-glycans by expression of human N-acetylglucosaminyltransferase I in the filamentous fungus Trichoderma reesei. FEBS Lett 452:365–370

    Article  CAS  Google Scholar 

  • Maras M, Callewaert N, Piens K, Claeyssens M, Martinet W, Dewaele S, Contreras H, Dewerte I, Penttila M, Contreras R (2000) Molecular cloning and enzymatic characterization of a Trichoderma reesei 1, 2-alpha-D-mannosidase. J Biotechnol 77:255–263

    Article  CAS  Google Scholar 

  • Martinet W, Marras M, Saelens X, Min Jou W, Contreras R (1998) Modification of the protein glycosylation pathway in the methylotrophic yeast Pichia pastoris. Biotechnol Lett 20:1171–1177

    Google Scholar 

  • Mattila P, Joutsjoki V, Kaitera E, Majuri ML, Niittymaki J, Saris N, Maaheimo H, Renkonen O, Renkonen R, Makarow M (1996) Targeting of active rat alpha 2, 3-sialyltransferase to the yeast cell wall by the aid of the hsp 150 delta-carrier: toward synthesis of sLe(x)-decorated L-selectin ligands. Glycobiology 6:851–859

    Article  CAS  Google Scholar 

  • McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD (2002) Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66:122–154, table of contents

    Article  CAS  Google Scholar 

  • Mille C, Bobrowicz P, Trinel PA, Li H, Maes E, Guerardel Y, Fradin C, Martinez-Esparza M, Davidson RC, Janbon G, Poulain D, Wildt S (2008) Identification of a new family of genes involved in beta-1, 2-mannosylation of glycans in Pichia pastoris and Candida albicans. J Biol Chem 283:9724–9736

    Article  CAS  Google Scholar 

  • Nagasu T, Shimma Y, Nakanishi Y, Kuromitsu J, Iwama K, Nakayama K, Suzuki K, Jigami Y (1992) Isolation of new temperature-sensitive mutants of Saccharomyces cerevisiae deficient in mannose outer chain elongation. Yeast 8:535–547

    Article  CAS  Google Scholar 

  • Nakanishi-Shindo Y, Nakayama K, Tanaka A, Toda Y, Jigami Y (1993) Structure of the N-linked oligosaccharides that show the complete loss of alpha-1, 6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J Biol Chem 268:26338–26345

    CAS  Google Scholar 

  • Nakao Y, Kozutsumi Y, Funakoshi I, Kawasaki T, Yamashina I, Mutsaers JH, Van Halbeek H, Vliegenthart JF (1987) Structures of oligosaccharides on beta-galactosidase from Aspergillus oryzae. J Biochem 102:171–179

    CAS  Google Scholar 

  • Nakayama K, Nagasu T, Shimma Y, Kuromitsu J, Jigami Y (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11:2511–2519

    CAS  Google Scholar 

  • Nakayama K, Nakanishi-Shindo Y, Tanaka A, Haga-Toda Y, Jigami Y (1997) Substrate specificity of alpha-1, 6-mannosyltransferase that initiates N-linked mannose outer chain elongation in Saccharomyces cerevisiae. FEBS Lett 412:547–550

    Article  CAS  Google Scholar 

  • Nasab FP, Schulz BL, Gamarro F, Parodi AJ, Aebi M (2008) All in one: Leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol Biol Cell 19:3758–3768

    Article  CAS  Google Scholar 

  • Nayar S, Brahma A, Barat B, Bhattacharyya D (2004) UDP-galactose 4-epimerase from Kluyveromyces fragilis: analysis of its hysteretic behavior during catalysis. Biochemistry 43:10212–10223

    Article  CAS  Google Scholar 

  • Nilsson I, Kelleher DJ, Miao Y, Shao Y, Kreibich G, Gilmore R, von Heijne G, Johnson AE (2003) Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. J Cell Biol 161:715–725

    Article  CAS  Google Scholar 

  • Oh DB, Park JS, Kim MW, Cheon SA, Kim EJ, Moon HY, Kwon O, Rhee SK, Kang HA (2008) Glycoengineering of the methylotrophic yeast Hansenula polymorpha for the production of glycoproteins with trimannosyl core N-glycan by blocking core oligosaccharide assembly. Biotechnol J 3:659–668

    Article  CAS  Google Scholar 

  • Ohashi T, Takegawa K (2010) N- and O-linked oligosaccharides completely lack galactose residues in the gms1och1 mutant of Schizosaccharomyces pombe. Appl Microbiol Biotechnol 86:263–272

    Article  CAS  Google Scholar 

  • Ohashi T, Ikeda Y, Tanaka N, Nakakita S, Natsuka S, Giga-Hama Y, Takegawa K (2009) The och1 mutant of Schizosaccharomyces pombe produces galactosylated core structures of N-linked oligosaccharides. Biosci Biotechnol Biochem 73:407–414

    Article  CAS  Google Scholar 

  • Orchard MG, Neuss JC, Galley CM, Carr A, Porter DW, Smith P, Scopes DI, Haydon D, Vousden K, Stubberfield CR, Young K, Page M (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14:3975–3978

    Article  CAS  Google Scholar 

  • Parodi AJ (1993) N-glycosylation in trypanosomatid protozoa. Glycobiology 3:193–199

    Article  CAS  Google Scholar 

  • Rothman RJ, Perussia B, Herlyn D, Warren L (1989) Antibody-dependent cytotoxicity mediated by natural killer cells is enhanced by castanospermine-induced alterations of IgG glycosylation. Mol Immunol 26:1113–1123

    Article  CAS  Google Scholar 

  • Roy SK, Yoko-o T, Ikenaga H, Jigami Y (1998) Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay. J Biol Chem 273:2583–2590

    Article  CAS  Google Scholar 

  • Ryckaert S, Martens V, De Vusser K, Contreras R (2005) Development of a S. cerevisiae whole cell biocatalyst for in vitro sialylation of oligosaccharides. J Biotechnol 119:379–388

    Article  CAS  Google Scholar 

  • Salo H, Sievi E, Suntio T, Mecklin M, Mattila P, Renkonen R, Makarow M (2005) Co-expression of two mammalian glycosyltransferases in the yeast cell wall allows synthesis of sLex. FEMS Yeast Res 5:341–350

    Article  CAS  Google Scholar 

  • Schwientek T, Ernst JF (1994) Efficient intra- and extracellular production of human beta-1, 4-galactosyltransferase in Saccharomyces cerevisiae is mediated by yeast secretion leaders. Gene 145:299–303

    Article  CAS  Google Scholar 

  • Schwientek T, Lorenz C, Ernst JF (1995) Golgi localization in yeast is mediated by the membrane anchor region of rat liver sialyltransferase. J Biol Chem 270:5483–5489

    Article  CAS  Google Scholar 

  • Schwientek T, Narimatsu H, Ernst JF (1996) Golgi localization and in vivo activity of a mammalian glycosyltransferase (human beta1, 4-galactosyltransferase) in yeast. J Biol Chem 271:3398–3405

    Article  CAS  Google Scholar 

  • Scott A, Timson DJ (2007) Characterization of the Saccharomyces cerevisiae galactose mutarotase/UDP-galactose 4-epimerase protein, Gal10p. FEMS Yeast Res 7:366–371

    Article  CAS  Google Scholar 

  • Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  CAS  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    Article  CAS  Google Scholar 

  • Sievi E, Helin J, Heikinheimo R, Makarow M (1998) Glycan engineering of proteins with whole living yeast cells expressing rat liver alpha2, 3-sialytransferase in the porous cell wall. FEBS Lett 441:177–180

    Article  CAS  Google Scholar 

  • Song Y, Choi MH, Park JN, Kim MW, Kim EJ, Kang HA, Kim JY (2007) Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl Environ Microbiol 73:4446–4454

    Article  CAS  Google Scholar 

  • Strahl-Bolsinger S, Gentzsch M, Tanner W (1999) Protein O-mannosylation. Biochim Biophys Acta 1426:297–307

    CAS  Google Scholar 

  • Uccelletti D, Farina F, Rufini S, Magnelli P, Abeijon C, Palleschi C (2006) The Kluyveromyces lactis alpha1, 6-mannosyltransferase KlOch1p is required for cell-wall organization and proper functioning of the secretory pathway. FEMS Yeast Res 6:449–457

    Article  CAS  Google Scholar 

  • Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  CAS  Google Scholar 

  • Verostek MF, Atkinson PH, Trimble RB (1991) Structure of Saccharomyces cerevisiae alg3, sec18 mutant oligosaccharides. J Biol Chem 266:5547–5551

    CAS  Google Scholar 

  • Verostek MF, Atkinson PH, Trimble RB (1993a) Glycoprotein biosynthesis in the alg3 Saccharomyces cerevisiae mutantI. Role of glucose in the initial glycosylation of invertase in the endoplasmic reticulum. J Biol Chem 268:12095–12103

    CAS  Google Scholar 

  • Verostek MF, Atkinson PH, Trimble RB (1993b) Glycoprotein biosynthesis in the alg3 Saccharomyces cerevisiae mutant. II. Structure of novel Man6-10GlcNAc2 processing intermediates on secreted invertase. J Biol Chem 268:12104–12115

    CAS  Google Scholar 

  • Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K, Contreras R (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646

    Article  CAS  Google Scholar 

  • Yan Q, Lennarz WJ (2002) Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J Biol Chem 277:47692–47700

    Article  CAS  Google Scholar 

  • Yip CL, Welch SK, Klebl F, Gilbert T, Seidel P, Grant FJ, O'Hara PJ, MacKay VL (1994) Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci USA 91:2723–2727

    Article  CAS  Google Scholar 

  • Yoshida S, Suzuki M, Yamano S, Takeuchi M, Ikenaga H, Kioka N, Sakai H, Komano T (1999) Expression and characterization of rat UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1, 2-N-acetylglucosaminyltransferase I in Saccharomyces cerevisiae. Glycobiology 9:53–58

    Article  CAS  Google Scholar 

  • Yoshida T, Kato Y, Asada Y, Nakajima T (2000) Filamentous fungus Aspergillus oryzae has two types of alpha-1, 2-mannosidases, one of which is a microsomal enzyme that removes a single mannose residue from Man9GlcNAc2. Glycoconj J 17:745–748

    Article  CAS  Google Scholar 

  • Yu H, Huang S, Chokhawala H, Sun M, Zheng H, Chen X (2006) Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2, 6-linked sialosides: a P. damsela alpha-2, 6-sialyltransferase with extremely flexible donor-substrate specificity. Angew Chem Int Ed Engl 45:3938–3944

    Article  CAS  Google Scholar 

  • Zanni E, Farina F, Ricci A, Mancini P, Frank C, Palleschi C, Uccelletti D (2009) The Golgi alpha-1, 6 mannosyltransferase KlOch1p of Kluyveromyces lactis is required for Ca2+/calmodulin-based signaling and for proper mitochondrial functionality. BMC Cell Biol 10:86

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Amin Bredan for the help in preparing the manuscript. This research was supported by a Marie Curie Excellence Grant (MEXT-014292) and the Fund for Scientific Research-Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Callewaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Pourcq, K., De Schutter, K. & Callewaert, N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87, 1617–1631 (2010). https://doi.org/10.1007/s00253-010-2721-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2721-1

Keywords

Navigation