Skip to main content
Log in

Transformation of the L-Asparaginase II Gene to Potato Hairy Roots for Production of Recombinant Protein

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Nowadays, transgenic plants are considered as an expression system for therapeutic recombinant proteins. One of the approaches to recombinant protein production is the introduction of the relevant genes to plant cells and produce hairy roots from these cells using the plant tissue culture methods. L-asparaginase II is one of the important therapeutic enzymes used in the treatment of cancer, especially in the treatment of acute lymphoblastic leukemia (ALL) in children. In this study, L-asparaginase II (ansB) gene was isolated from Escherichia coli YG001 and overexpressed in Solanum tuberosum. The sequence of L-asparaginase II gene was optimized according to the codon usage table of S. tuberosum and cloned into the plant expression vector pBI121. Protein, DNA, and RNA of transgenic hairy roots were investigated. It was demonstrated that the ansB gene was correctly integrated into the genomic DNA of transgenic plants. The whole protein of transgenic roots was used for the assay of L-asparaginase II activity, the higher activity of L-asparaginase II was observed in transgenic hairy roots when compared with non-transgenic ones, and the recombinant protein was detected using western blot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avramis VI, Panosyan EH. 2005. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations. Clin. Pharmacokinet. 44: 367–393

    Article  CAS  PubMed  Google Scholar 

  • Bensaddek L, Villarreal ML, Fliniaux MA. 2008. Induction and growth of hairy roots for the production of medicinal compounds. Electron. J. Integr. Biosci. 3: 2–9

    Google Scholar 

  • Borek D, Jaskólski M. 2001. Sequence analysis of enzymes with asparaginase activity. Acta Biochim. Polonica-English Ed. 48: 893–902

    Article  CAS  Google Scholar 

  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Broome J. 1961. Evidence that the L-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects. Nature 191: 1114–1115

    Article  CAS  Google Scholar 

  • Cassileth PA, Harrington DP, Appelbaum FR, Lazarus HM, Rowe JM, Paietta E, Willman C, Hurd DD, Bennett JM, Blume KG. 1998. Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N. Engl. J. Med. 339: 1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY. 2003. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol. Breed. 11: 287–293

    Article  CAS  Google Scholar 

  • Collins GB, Shepherd RJ. 1996. Engineering plants for commercial products and applications. Ann. NY Acad. Sci. (USA)

  • Dhanam Jayam G, Kannan S. 2013. L-asparaginase-Types, Perspectives and Applications. Adv. Bio. Tech. 13: 01–05

    Google Scholar 

  • Doran PM. 2000. Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 11: 199–204

    Article  CAS  PubMed  Google Scholar 

  • Ebrahiminezhad A, Rasoul-Amini S, Ghasemi Y. 2011. l-Asparaginase production by moderate halophilic bacteria isolated from Maharloo Salt Lake. Ind. J. Microbiol. 51: 307–311

    Article  CAS  Google Scholar 

  • Farzaneh A, Adel Y, Ali N, Younes G. 2013. Determine Effective Concentrations of β-lactam Antibiotics Against three Strains of Agrobacterium Tumefaciens and Phytotoxicity on Tomato and Tobacco. Int. J. Agron. Plant Prod. 4: 2919–2925

    Google Scholar 

  • Fischer R, Emans N. 2000. Molecular farming of pharmaceutical proteins. Transgen. Res. 9: 279–299

    Article  CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM. 2004. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152–158

    Article  CAS  PubMed  Google Scholar 

  • Halford NG, Muttucumaru N, Curtis TY, Parry MA. 2007. Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants. Food Addit. Contam. 24: 26–36

    Article  CAS  PubMed  Google Scholar 

  • Hockney RC. 1994. Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12: 456–463

    Article  CAS  PubMed  Google Scholar 

  • Hu ZB, Du M. 2006. Hairy root and its application in plant genetic engineering. J. Integr. Plant Biol. 48: 121–127

    Article  CAS  Google Scholar 

  • Jha SK, Pasrija D, Sinha RK, Singh HR, Nigam VK, Vidyarthi AS. 2012. Microbial L-Asparaginase: a review on current scenario and future prospects. Int. J. Pharma Sci. Res. 3: 3076–90

    CAS  Google Scholar 

  • Kidd JG. 1953. Regression of transplanted lymphomas induced in vivo by means of normal Guinea pig serum II. Studies on the nature of the active serum constituent: Histological mechanism of the regression: Tests for effects of guinea pig serum on lymphoma cells in vitro: Discussion. J. Exp. Med. 98: 583–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriyama Y, Kubota M, Takimoto T, Kitoh T, Tanizawa A, Akiyama Y, Mikawa H. 1989. Biochemical characterization of U937 cells resistant to L-asparaginase: the role of asparagine synthetase. Leukemia 3: 294–297

    CAS  PubMed  Google Scholar 

  • Kozak M. 1989. The scanning model for translation: an update. J. Cell Biol. 108: 229–241

    Article  CAS  PubMed  Google Scholar 

  • Krishnapura PR, Belur PD, Subramanya S. 2015. A critical review on properties and applications of microbial l-asparaginases. Crit. Rev. Microbiol. 1–18

  • Kumar DS, Sobha K. 2012. L-Asparaginase from Microbes: a Comprehensive Review. Adv. Biores. 3: 137–157

    Google Scholar 

  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  CAS  PubMed  Google Scholar 

  • Lu HS, Hsu YR, Lu LI, Ruff D, Lyons D, Lin FK. 1996. Isolation and characterization of human tissue kallikrein produced in Escherichia coli: Biochemical comparison to the enzymatically inactive prokallikrein and methionyl kallikrein. Protein expression and purification. Protein Expr. Purif. 8: 215–226

    Article  CAS  PubMed  Google Scholar 

  • Ma JKC, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M. 2005. Molecular farming for new drugs and vaccines. EMBO Rep. 6: 593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Ding Y, Sun QY, Xu ZF, Jiang L. 2008. Plant bioreactors for pharmaceuticals. Biotechnol. Genet. Engin. Rev. 25: 363–380

    Article  CAS  Google Scholar 

  • Michalska K, Jaskolski M. 2006. Structural aspects of L-asparaginases, their friends and relations. Acta Biochim. Polonica-English Ed. 53: 627–640

    Article  CAS  Google Scholar 

  • Moola ZB, Scawen M, Atkinson T, Nicholls D. 1994. Erwinia chrysanthemi L-asparaginase: epitope mapping and production of antigenically modified enzymes. Biochem J. 302: 921–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odell JT, Nagy F, Chua NH. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812

    Article  CAS  PubMed  Google Scholar 

  • Oettgen H, Old L, Boyse E, Campbell H, Philips F, Clarkson B, Tallal L, Leeper R, Schwartz M, Kim JH. 1967. Inhibition of leukemias in man by L-asparaginase. Cancer Res. 27: 2619

    CAS  PubMed  Google Scholar 

  • Oza VP, Parmar PP, Patel DH, Subramanian R. 2011. Cloning, expression and characterization of l-asparaginase from Withania somnifera L. for large scale production. 3 Biotech. 1: 21–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Oza VP, Trivedi SD, Parmar PP, Subramanian R. 2009. Withania somnifera (Ashwagandha): a novel source of L-asparaginase. J. Integr. Plant Biol. 51: 201–206

    Article  CAS  PubMed  Google Scholar 

  • Richards NG, Kilberg MS. 2006. Asparagine synthetase chemotherapy. Ann. Review Biochem. 75: 629–654

    Article  CAS  Google Scholar 

  • Rommens CM, Yan H, Swords K, Richael C, Ye J. 2008. Lowacrylamide French fries and potato chips. Plant Biotechnol. J. 6(8): 843–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. 1989. Molecular cloning: a laboratory manual (No. Ed. 2). Cold spring harbor laboratory press.

  • Schouten A, Roosien J, van Engelen FA, de Jong GI, Borst-Vrenssen AT, Zilverentant JF, Bosch D, Stiekema WJ, Gommers FJ, Schots A. 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30: 781–793

    Article  CAS  PubMed  Google Scholar 

  • Sedmak JJ, Grossberg SE. 1977. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 79: 544–552

    Article  CAS  PubMed  Google Scholar 

  • Siddalingeshwara K, Lingappa K. 2010. Screening and optimization of L-asparaginase-A tumour inhibitor from Aspergillus terreus through solid state fermentation. J. Adv. Sci. Res. 1: 55–60

    Google Scholar 

  • Stewart Jr CN, Via LE. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748–750

    CAS  PubMed  Google Scholar 

  • Stöger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P. 2000. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42: 583–590

    Article  PubMed  Google Scholar 

  • Thirumurugan G. 2011. Effect of inducers and physical parameters on the production Of L-Asparaginase using Aspergillus Terreus. J. Bioproc. Biotech. 1: 2–8

    Google Scholar 

  • Tiwari S, Verma PC, Singh PK, Tuli R. 2009. Plants as bioreactors for the production of vaccine antigens. Biotechnol. Adv. 27: 449–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H, Fagard M. 2001. Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet. 17: 29–35

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar R. 2004. Acrylamide in bakery products-Results from model experiments. Deutsche Lebensmittel-Rundschau. 100: 92

    CAS  Google Scholar 

  • Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ. 2012. Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol. Adv. 30: 1171–1184

    Article  CAS  PubMed  Google Scholar 

  • Yarizade A, Aram F, Niazi A, Ghasemi Y. 2012. Evaluation of effect of β-Lactam antibiotics on suppression of different strains of Agrobacterium tumefaciens and on wheat mature embryo culture. Iran. J. Pharm. Sci. 8: 267–276

    Google Scholar 

  • Youssef MM, Al-Omair M. 2008. Cloning, purification, characterization and immobilization of L-asparaginase II from E. coli W3110. Asian J. Biochem. 3: 337–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Niazi.

Additional information

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Niazi, A., Aram, F. et al. Transformation of the L-Asparaginase II Gene to Potato Hairy Roots for Production of Recombinant Protein. J. Crop Sci. Biotechnol. 23, 81–88 (2020). https://doi.org/10.1007/s12892-018-0030-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-018-0030-0

Key words

Navigation