Skip to main content
Log in

Surface Integrity Characteristics and Multi-response Optimization in Wire-EDM of Al–Al3Fe Composites

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Wire-electrical discharge machining (wire-EDM) is gaining wider acceptance for producing components of Al-matrix composites (Al-MCs) that are hard to machine by traditional methodologies. The related research is primarily limited to ex-situ Al-MCs commonly reinforced with ceramic particles; however, Al-MCs reinforced with in-situ ordered intermetallics have evolved as superior composites nowadays. This research has focused on wire-EDM of in-situ Al/Al3Fe composites developed by the reactive stir-casting route. The influence of three machining variables (pulse-on-time, servo voltage, and peak-current) and one material parameter (vol% of reinforcement) have been studied following the L27 Taguchi design. The integrity of the machined surface has been characterized via measurements of surface roughness (SR) and the alteration of surface chemistry (ASC, ΣCu + Zn + O), in addition to the evaluation of kerf width (KW) as a machining performance indicator. It has been established that all four control factors are significant for KW, while ASC is influenced by all factors except vol% of reinforcement; however, only pulse-on-time is substantial for SR. Analytical models of individual responses are developed while the desirability approach helps to accomplish the multi-response optimization; several confirmation experiments establish the authenticity of these predictions with an error < 8%. Characterizations of machined surfaces and wire electrodes by FESEM and EDS techniques reveal that the surface integrity of in-situ Al/Al3Fe composites varies significantly with machining conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Mayyas, A.; Qattawi, A.; Omar, M.; Shan, D.: Design for sustainability in automotive industry: a comprehensive review. Renew. Sustain. Energy Rev. 16(4), 1845–1862 (2012). https://doi.org/10.1016/j.rser.2012.01.012

    Article  Google Scholar 

  2. Zawadzki, P.; Zywicki, K.: Smart product design and production control for effective mass customization in the industry 4.0 concept. Manag. Prod. Eng. Rev. 7, 105–112 (2016). https://doi.org/10.1515/mper-2016-0030

    Article  Google Scholar 

  3. Gibson, R.F.: A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92(12), 2793–2810 (2010). https://doi.org/10.1016/j.compstruct.2010.05.003

    Article  Google Scholar 

  4. Karthik Pandiyan, G.; Prabaharan, T.; Jafrey Daniel James, D.; Sivalingam, V.: Machinability analysis and optimization of electrical discharge machining in AA6061-T6/15wt.% SiC composite by the multi-criteria decision-making approach. J. Mater. Eng. Perform. 31, 3741–3752 (2022). https://doi.org/10.1007/s11665-021-06511-8

    Article  Google Scholar 

  5. Mortensen, A.; Llorca, J.: Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010). https://doi.org/10.1146/annurev-matsci-070909-104511

    Article  Google Scholar 

  6. Sardar, S.; Kumar Karmakar, S.; Das, D.: Ultrasonic assisted fabrication of magnesium matrix composites: a review. Mater. Today Proc. 4(2), 3280–3289 (2017). https://doi.org/10.1016/j.matpr.2017.02.214

    Article  Google Scholar 

  7. Kumar, A.; Grover, N.; Manna, A.; Kumar, R.; Chohan, J.S.; Singh, S.; Singh, S.; Pruncu, C.I.: Multi-objective optimization of WEDM of aluminum hybrid composites using AHP and genetic algorithm. Arab. J. Sci. Eng. 47, 8031–8043 (2022). https://doi.org/10.1007/s13369-021-05865-4

    Article  Google Scholar 

  8. Bains, P.S.; Sidhu, S.S.; Payal, H.S.: Fabrication and machining of metal matrix composites: a review. Mater. Manuf. Process. 31(5), 553–573 (2016). https://doi.org/10.1080/10426914.2015.1025976

    Article  Google Scholar 

  9. Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M.: Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J. Manuf. Process. 59, 131–152 (2020). https://doi.org/10.1016/j.jmapro.2020.09.010

    Article  Google Scholar 

  10. Sardar, S.; Karmakar, S.K.; Das, D.: Experimental investigation on two-body abrasion of cast aluminum-alumina composites: influence of abrasive size and reinforcement content. J. Tribol. (2020). https://doi.org/10.1115/1.4045378

    Article  Google Scholar 

  11. Suthar, J.; Patel, K.M.: Processing issues, machining, and applications of aluminum metal matrix composites. Mater. Manuf. Process. 33(5), 499–527 (2018). https://doi.org/10.1080/10426914.2017.1401713

    Article  Google Scholar 

  12. Liao, Z.; Abdelhafeez, A.; Li, H.; Yang, Y.; Diaz, O.G.; Axinte, D.: State-of-the-art of surface integrity in machining of metal matrix composites. Int. J. Mach. Tools Manuf 143, 63–91 (2019). https://doi.org/10.1016/j.ijmachtools.2019.05.006

    Article  Google Scholar 

  13. Slătineanu, L.; Dodun, O.; Coteaţă, M.; Nagîţ, G.; Băncescu, I.B.; Hriţuc, A.: Wire electrical discharge machining—a review. Machines 8(4), 69 (2020). https://doi.org/10.3390/machines8040069

    Article  Google Scholar 

  14. Garg, S.K.; Manna, A.; Jain, A.: Investigation and analysis of surface veracity and parametric aspects during WireEDM of Al/ZrO2(p)-metal matrix composite. Arab. J. Sci. Eng. 47, 8417–8438 (2022). https://doi.org/10.1007/s13369-021-05531-9

    Article  Google Scholar 

  15. Pramanik, A.: Developments in the non-traditional machining of particle reinforced metal matrix composites. Int. J. Mach. Tools Manuf 86, 44–61 (2014). https://doi.org/10.1016/j.ijmachtools.2014.07.003

    Article  Google Scholar 

  16. Li, J.; Laghari, R.A.: A review on machining and optimization of particle–reinforced metal matrix composites. Int. J. Adv. Manuf. Technol. 100, 2929–2943 (2019). https://doi.org/10.1007/s00170-018-2837-5

    Article  Google Scholar 

  17. Maher, I.; Sarhan, A.A.D.; Hamdi, M.: Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining. Int. J. Adv. Manuf. Technol. 76, 329–351 (2015). https://doi.org/10.1007/s00170-014-6243-3

    Article  Google Scholar 

  18. Gowthaman, P.S.; Gowthaman, J.S.; Athisankar, P.: A study on wire electric discharge machining process parameters. Int. J. Mech. Eng. Technol. IJMET 9, 908–921 (2018)

    Google Scholar 

  19. Ho, K.H.; Newman, S.T.; Rahimifard, S.; Allen, R.D.: State of the art in wire electrical discharge machining (WEDM). Int. J. Mach. Tools Manuf 44, 1247–1259 (2004). https://doi.org/10.1016/j.ijmachtools.2004.04.017

    Article  Google Scholar 

  20. Vivek, J.; Maridurai, T.; Lewise, K.A.S.; Pandiyarajan, R.; Chandrasekaran, K.: Recast layer thickness and residual stress analysis for EDD AA8011/h-BN/B4C composites using cryogenically treated SiC and CFRP powder-added kerosene. Arab. J. Sci. Eng. 47, 15613–15632 (2022). https://doi.org/10.1007/s13369-022-06636-5

    Article  Google Scholar 

  21. Garg, R.K.; Singh, K.K.; Sachdeva, A.; Sharma, V.S.; Ojha, K.; Singh, S.: Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int. J. Adv. Manuf. Technol. 50, 611–624 (2010). https://doi.org/10.1007/s00170-010-2534-5

    Article  Google Scholar 

  22. Mohd Abbas, N.; Solomon, D.G.; Fuad Bahari, M.: A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf 47, 1214–1228 (2007). https://doi.org/10.1016/j.ijmachtools.2006.08.026

    Article  Google Scholar 

  23. Senthil Kumar, S.; Senthilkumar, T.S.; Pitchipoo, P.; Dwivedi, Y.D.; Nagaprasad, N.; Saxena, K.; Rathinavel, S.M.; Eldin, S.; Ramaswamy, K.: Grey relational analysis and surface texture analysis of Al-based metal matrix composites. J. Mater. Res. Technol. 24, 5372–5388 (2023). https://doi.org/10.1016/j.jmrt.2023.04.118

    Article  Google Scholar 

  24. Singh, S.P.; Raja, D.E.; Ananthapadmanaban, D.; Sonar, T.; Ivanov, M.: Analyzing the effect of WEDM parameters on machining of heat treated SiC and TiO2 reinforced LM25 aluminium alloy hybrid composite using Taguchi methodology. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01417-2

    Article  Google Scholar 

  25. Singh, D.P.; Mishra, S.: Multi-objective optimization for the sustainable machining of metal matrix composites using wire electric discharge machining. J. Adv. Manuf. Syst. (2023). https://doi.org/10.1142/S0219686724500082

    Article  Google Scholar 

  26. Sarmah, P.; Patowari, P.K.: Machinability study of Al 6063-based MMCs with SiC reinforcement particles using WEDM process. Mater. Manuf. Process. 38, 783–796 (2023). https://doi.org/10.1080/10426914.2022.2149786

    Article  Google Scholar 

  27. Shanmugavel, R.; Chinthakndi, N.; Selvam, M.; Madasamy, N.; Shanmugakani, S.K.; Nair, A.; Prakash, C.; Buddhi, D.; Dixit, S.: Al–Mg–MoS2 reinforced metal matrix composites: machinability characteristics. Materials (Basel) 15, 4548 (2022). https://doi.org/10.3390/ma15134548

    Article  Google Scholar 

  28. Hemalatha, A.; Reddy, V.D.; Prasad, K.: Evolution of regression and ANFIS models for wire spark erosion machining of aluminium metal matrix composites for aerospace applications. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01012-x

    Article  Google Scholar 

  29. Raju, K.; Balakrishnan, M.; Priya, C.B.; Sivachitra, M.; Narasimha Rao, D.: Parametric optimization of wire electrical discharge machining in AA7075 metal matrix composite. Adv. Mater. Sci. Eng. 2022, 1–8 (2022). https://doi.org/10.1155/2022/4438419

    Article  Google Scholar 

  30. Doreswamy, D.; Bongale, A.M.; Piekarski, M.; Bongale, A.; Kumar, S.; Pimenov, D.Y.; Giasin, K.; Nadolny, K.: Optimization and modeling of material removal rate in wire-EDM of silicon particle reinforced Al6061 composite. Materials (Basel) 14, 6420 (2021). https://doi.org/10.3390/ma14216420

    Article  Google Scholar 

  31. Sakthi Sadhasivam, R.; Ramanathan, K.: Investigating the parametric effects and analysis of stir cast aluminium matrix composite by wirecut-EDM using Topsis method. Sādhanā (2021). https://doi.org/10.1007/s12046-021-01674-5S

    Article  Google Scholar 

  32. Lenin, N.; Sivakumar, M.; Selvakumar, G.; Rajamani, D.; Sivalingam, V.; Gupta, M.K.; Mikolajczyk, T.; Pimenov, D.Y.: Optimization of process control parameters for wedm of AL-LM25/fly ASH/B4C hybrid composites using evolutionary algorithms: a comparative study. Metals (Basel) 11, 1105 (2021). https://doi.org/10.3390/met11071105

    Article  Google Scholar 

  33. Reddy, M.C.; Venkata Rao, K.; Suresh, G.: An experimental investigation and optimization of energy consumption and surface defects in wire cut electric discharge machining. J. Alloys Compd. 861, 158582 (2021). https://doi.org/10.1016/j.jallcom.2020.158582

    Article  Google Scholar 

  34. Phate, M.; Toney, S.; Phate, V.: Response surface modelling and effective application of adaptive neuro-fuzzy inference system to analyze surface roughness of Al/Gr/Cp5 MMC machined using WEDM. Aust. J. Mech. Eng. 21, 653–667 (2023). https://doi.org/10.1080/14484846.2021.1913852

    Article  Google Scholar 

  35. Mythili, T.; Thanigaivelan, R.: Optimization of wire EDM process parameters on Al6061/Al2O3 composite and its surface integrity studies. Bull. Pol. Acad. Sci. Tech. Sci. 68, 1403–1412 (2020). https://doi.org/10.24425/bpasts.2020.135382

    Article  Google Scholar 

  36. Goutham Murari, V.P.; Selvakumar, G.; Chandrasekhara Sastry, C.: Experimental investigation of wire-EDM machining of low conductive Al–SiC–TiC metal matrix composite. Metals (Basel) 10, 1–31 (2020). https://doi.org/10.3390/met10091188

    Article  Google Scholar 

  37. Singh, R.; Hussain, S.A.I.; Dash, A.; Rai, R.N.: Modelling and optimizing performance parameters in the wire-electro discharge machining of Al5083/B4C composite by multi-objective response surface methodology. J. Braz. Soc. Mech. Sci. Eng. (2020). https://doi.org/10.1007/s40430-020-02418-y

    Article  Google Scholar 

  38. Manikandan, N.; Balasubramanian, K.; Palanisamy, D.; Gopal, P.M.; Arulkirubakaran, D.; Binoj, J.S.: Machinability analysis and ANFIS modelling on advanced machining of hybrid metal matrix composites for aerospace applications. Mater. Manuf. Process. 34, 1866–1881 (2019). https://doi.org/10.1080/10426914.2019.1689264

    Article  Google Scholar 

  39. Suresh, S.; Sudhakara, D.: Investigations on machining and wear characteristics of Al 7075/nano-SiC composites with WEDM. J. Bio Tribo Corros. (2019). https://doi.org/10.1007/s40735-019-0293-x

    Article  Google Scholar 

  40. Phate, M.R.; Toney, S.B.: Modeling and prediction of WEDM performance parameters for Al/SiCp MMC using dimensional analysis and artificial neural network. Eng. Sci. Technol. Int. J. 22, 468–476 (2019). https://doi.org/10.1016/j.jestch.2018.12.002

    Article  Google Scholar 

  41. Thankachan, T.; Soorya Prakash, K.; Malini, R.; Ramu, S.; Sundararaj, P.; Rajandran, S.; Rammasamy, D.; Jothi, S.: Prediction of surface roughness and material removal rate in wire electrical discharge machining on aluminum based alloys/composites using Taguchi coupled grey relational analysis and artificial neural networks. Appl. Surf. Sci. 472, 22–35 (2019). https://doi.org/10.1016/j.apsusc.2018.06.117

    Article  Google Scholar 

  42. Patel, J.D.; Maniya, K.D.: WEDM process parameter selection using preference ranking method: a comparative study. Int. J. Manuf. Res. 14(2), 118–144 (2019). https://doi.org/10.1504/IJMR.2019.099978

    Article  Google Scholar 

  43. Phate, M.R.; Toney, S.B.; Phate, V.R.: Analysis of machining parameters in WEDM of Al/SiCp20 MMC using Taguchi-based grey-fuzzy approach. Model. Simul. Eng. 2019, 1–13 (2019). https://doi.org/10.1155/2019/1483169

    Article  Google Scholar 

  44. Kumar, S.D.; Ravichandran, M.: Synthesis, characterization and wire electric erosion behaviour of AA7178-10 wt.% ZrB2 composite. SILICON 10, 2653–2662 (2018). https://doi.org/10.1007/s12633-018-9802-7

    Article  Google Scholar 

  45. Ma, J.; Ming, W.; Du, J.; Huang, H.; He, W.; Cao, Y.; Li, X.: Integrated optimization model in wire electric discharge machining using Gaussian process regression and wolf pack algorithm approach while machining SiCp/Al composite. Adv. Mech. Eng. (2018). https://doi.org/10.1177/1687814018787407

    Article  Google Scholar 

  46. Pramanik, A.; Islam, M.N.; Boswell, B.; Basak, A.K.; Dong, Y.; Littlefair, G.: Accuracy and finish during wire electric discharge machining of metal matrix composites for different reinforcement size and machining conditions. . Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232, 1068–1078 (2018). https://doi.org/10.1177/0954405416662079

    Article  Google Scholar 

  47. Rao, T.B.: Optimizing machining parameters of wire-EDM process to cut Al7075/SiCp composites using an integrated statistical approach. Adv. Manuf. 4, 202–216 (2016). https://doi.org/10.1007/s40436-016-0148-3

    Article  Google Scholar 

  48. Ekici, E.; Motorcu, A.R.; Kuş, A.: Evaluation of surface roughness and material removal rate in the wire electrical discharge machining of Al/B4C composites via the Taguchi method. J. Compos. Mater. 50, 2575–2586 (2016). https://doi.org/10.1177/0021998315609788

    Article  Google Scholar 

  49. Suresh Kumar, S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Parameswaran, P.; Mohandas, E.; Kempulraj, G.; Ramesh Babu, B.S.; Natarajan, S.A.: Parametric optimization of wire electrical discharge machining on aluminium based composites through grey relational analysis. J. Manuf. Process. 20, 33–39 (2015). https://doi.org/10.1016/j.jmapro.2015.09.011

    Article  Google Scholar 

  50. Lal, S.; Kumar, S.; Khan, Z.A.; Siddiquee, A.N.: Multi-response optimization of wire electrical discharge machining process parameters for Al7075/Al2O3/SiC hybrid composite using Taguchi-based grey relational analysis. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229, 229–237 (2015). https://doi.org/10.1177/0954405414526382

    Article  Google Scholar 

  51. Dalve, V.R.; Keshavamurthy, R.; Ugrasen, G.; Prakash, C.P.S.: Experimental investigations on wire EDM of Al7075-TiB2 in-situ metal matrix composite. Appl. Mech. Mater. 592, 321–325 (2014). https://doi.org/10.4028/www.scientific.net/AMM.592-594.321

    Article  Google Scholar 

  52. Rao, T.B.; Krishna, A.G.: Selection of optimal process parameters in WEDM while machining Al7075/SiCp metal matrix composites. Int. J. Adv. Manuf. Technol. 73, 299–314 (2014). https://doi.org/10.1007/s00170-014-5780-0

    Article  Google Scholar 

  53. Singh, D.P.; Mishra, S.: Effect of different reinforcements in wire electric discharge machining of various geometrical profiles in metal matrix composites. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01477-4

    Article  Google Scholar 

  54. Patil, N.G.: Determination of optimal performance in wire electrical discharge machining of Al/Al2O3/22p composites using response surface methods and grey relational analysis. Aust. J. Mech. Eng. 21, 1259–1271 (2023). https://doi.org/10.1080/14484846.2021.1977454

    Article  Google Scholar 

  55. Deepak, D.; Gowrishankar, M.C.; Shreyas, D.S.: Investigation on the wire electric discharge machining performance of artificially aged Al6061/B4C composites by response surface method. Mater. Res. (2022). https://doi.org/10.1590/1980-5373-MR-2022-0010

    Article  Google Scholar 

  56. Soundararajan, R.; Ramesh, A.; Ponappa, K.; Sivasankaran, S.; Arvind, D.: Optimization of WEDM process parameters by RSM in machining of stir cum squeeze cast A413–B4C composites. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-03409-3

    Article  Google Scholar 

  57. Shadab, M.; Singh, R.; Rai, R.N.: Multi-objective optimization of wire electrical discharge machining process parameters for Al5083/7% B4C composite using metaheuristic techniques. Arab. J. Sci. Eng. 44, 591–601 (2019). https://doi.org/10.1007/s13369-018-3491-9

    Article  Google Scholar 

  58. Dey, A.; Pandey, K.M.: Selection of optimal processing condition during WEDM of compocasted AA6061/cenosphere AMCs based on grey-based hybrid approach. Mater. Manuf. Process. 33, 1549–1558 (2018). https://doi.org/10.1080/10426914.2018.1453154

    Article  Google Scholar 

  59. Sivaprakasam, P.; Hariharan, P.; Gowri, S.: Optimization of micro-WEDM process of aluminum matrix composite (A413–B4C): a response surface approach. Mater. Manuf. Process. 28, 1340–1347 (2013). https://doi.org/10.1080/10426914.2013.823502

    Article  Google Scholar 

  60. Modrak, V.; Pandian, R.S.; Kumar, S.S.: Parametric study of wire-EDM process in Al–Mg–MoS2 composite using NSGA-II and MOPSO algorithms. Processes 9, 1–13 (2021). https://doi.org/10.3390/pr9030469

    Article  Google Scholar 

  61. Ishfaq, K.; Anwar, S.; Asad Ali, M.; Huzaifa Raza, M.; Umar Farooq, M.; Ahmad, S.; Pruncu, C.I.; Saleh, M.; Salah, B.: Optimization of WEDM for precise machining of novel developed Al6061-7.5% SiC squeeze-casted composite. Int. J. Adv. Manuf. Technol. 111, 2031–2049 (2020). https://doi.org/10.1007/s00170-020-06218-5/Published

    Article  Google Scholar 

  62. Muralidharan, N.; Chockalingam, K.; Parameshwaran, R.; Kalaiselvan, K.; Nithyavathy, N.: Optimization of CNC-WEDM parameters for AA2024/ZrB2 in situ stir cast composites using response surface methodology with desirability function technique. Arab. J. Sci. Eng. 45, 5563–5579 (2020). https://doi.org/10.1007/s13369-020-04490-x

    Article  Google Scholar 

  63. Kumar, H.; Manna, A.; Kumar, R.: Modeling and desirability approach-based multi-response optimization of WEDM parameters in machining of aluminum metal matrix composite. J. Braz. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1368-1

    Article  Google Scholar 

  64. Kumar, H.; Manna, A.; Kumar, R.: Modeling of process parameters for surface roughness and analysis of machined surface in WEDM of Al/SiC-MMC. Trans. Indian Inst. Met. 71, 231–244 (2018). https://doi.org/10.1007/s12666-017-1159-x

    Article  Google Scholar 

  65. Garg, M.P.; Sharma, A.: Examination of accuracy aspect in machining of ZrSiO4p/6063 aluminium MMC using CNC wire electrical discharge machining. Compos. Commun. 6, 6–10 (2017). https://doi.org/10.1016/j.coco.2017.07.002

    Article  Google Scholar 

  66. Shandilya, P.; Jain, P.K.; Jain, N.K.: Modelling and process optimisation for wire electric discharge machining of metal matrix composites. Int. J. Mach. Mach. Mater. 18(4), 377–391 (2016). https://doi.org/10.1504/IJMMM.2016.077713

    Article  Google Scholar 

  67. Rahman, M.; Dey, A.; Pandey, K.M.: Machinability of cenosphere particulate–reinforced AA6061 aluminium alloy prepared by compocasting. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 232, 2499–2509 (2018). https://doi.org/10.1177/0954405417699013

    Article  Google Scholar 

  68. Pramanik, A.; Littlefair, G.: Wire EDM mechanism of MMCs with the variation of reinforced particle size. Mater. Manuf. Process. 31, 1700–1708 (2016). https://doi.org/10.1080/10426914.2015.1117621

    Article  Google Scholar 

  69. Hemalatha, K.; Venkatachalapathy, V.S.K.; Alagumurthi, N.: Multi-objective optimization in wire-cut electric discharge machining of Al 6063/Al2O3 metal matrix composite through response surface methodology. Appl. Mech. Mater. 592, 534–539 (2014). https://doi.org/10.4028/www.scientific.net/AMM.592-594.534

    Article  Google Scholar 

  70. Wang, Z.; Geng, X.; Chi, G.; Wang, Y.: Surface integrity associated with SiC/Al particulate composite by micro-wire electrical discharge machining. Mater. Manuf. Process. 29, 532–539 (2014). https://doi.org/10.1080/10426914.2014.901520

    Article  Google Scholar 

  71. Tjong, S.: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R. Rep. 29, 49–113 (2000). https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  72. Liew, P.J.; Yap, C.Y.; Wang, J.; Zhou, T.; Yan, J.: Surface modification and functionalization by electrical discharge coating: a comprehensive review. Int. J. Extrem. Manuf. 2, 012004 (2020). https://doi.org/10.1088/2631-7990/ab7332

    Article  Google Scholar 

  73. Varin, R.A.: Intermetallic-reinforced light-metal matrix in-situ composites. Metall. Mater. Trans. A 33, 193–201 (2002). https://doi.org/10.1007/s11661-002-0018-4

    Article  Google Scholar 

  74. Pradhan, S.K.; Chatterjee, S.; Mallick, A.B.; Das, D.: A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites. Perspect. Sci. 8, 529–532 (2016). https://doi.org/10.1016/j.pisc.2016.06.011

    Article  Google Scholar 

  75. Balakrishnan, M.; Dinaharan, I.; Palanivel, R.; Sathiskumar, R.: Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites. J. Alloys Compd. 785, 531–541 (2019). https://doi.org/10.1016/j.jallcom.2019.01.211

    Article  Google Scholar 

  76. Gautam, G.; Kumar, N.; Mohan, A.; Gautam, R.K.; Mohan, S.: Tribology and surface topography of tri-aluminide reinforced composites. Tribol. Int. 97, 49–58 (2016). https://doi.org/10.1016/j.triboint.2016.01.014

    Article  Google Scholar 

  77. Hsu, C.J.; Chang, C.Y.; Kao, P.W.; Ho, N.J.; Chang, C.P.: Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater. 54, 5241–5249 (2006). https://doi.org/10.1016/j.actamat.2006.06.054

    Article  Google Scholar 

  78. Pandee, P.; Sankanit, P.; Uthaisangsuk, V.: Structure-mechanical property relationships of in-situ A356/Al3Zr composites. Mater. Sci. Eng. A 866, 144673 (2023). https://doi.org/10.1016/j.msea.2023.144673

    Article  Google Scholar 

  79. Ramanathan, A.; Krishnan, P.K.; Muraliraja, R.: A review on the production of metal matrix composites through stir casting—furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019). https://doi.org/10.1016/j.jmapro.2019.04.017

    Article  Google Scholar 

  80. Chatterjee, S.; Sinha, A.; Das, D.; Ghosh, S.; Basumallick, A.: Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route. Mater. Sci. Eng. A 578, 6–13 (2013). https://doi.org/10.1016/j.msea.2013.04.008

    Article  Google Scholar 

  81. Pal, B.C.; Ramani, G.; Pillai, R.M.; Satyanarayana, K.G.: Review role of magnesium in cast aluminiurn alloy matrix composites. J. Mater. Sci. 30, 1903–1911 (1995). https://doi.org/10.1007/BF00353012

    Article  Google Scholar 

  82. Sardar, S.; Karmakar, S.K.; Das, D.: Microstructure and tribological performance of alumina-aluminum matrix composites manufactured by enhanced stir casting method. J. Tribol. (2019). https://doi.org/10.1115/1.4042198

    Article  Google Scholar 

  83. Motorcu, A.R.; Ekici, E.; Kuş, A.: Investigation of the WEDM of Al/B4C/Gr reinforced hybrid composites using the Taguchi method and response surface methodology. Sci. Eng. Compos. Mater. 23, 435–445 (2016). https://doi.org/10.1515/secm-2014-0063

    Article  Google Scholar 

  84. Sardar, S.; Karmakar, S.K.; Das, D.: Tribological properties of Al 7075 alloy and 7075/Al2O3 composite under two-body abrasion: a statistical approach. J. Tribol. (2018). https://doi.org/10.1115/1.4039410

    Article  Google Scholar 

  85. Hanizam, H.; Salleh, M.S.; Omar, M.Z.; Sulong, A.B.: Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminium alloy composite through Taguchi method. J. Mater. Res. Technol. 8, 2223–2231 (2019). https://doi.org/10.1016/j.jmrt.2019.02.008

    Article  Google Scholar 

  86. Dhilip, J.D.J.; Ganesan, K.P.; Sivalingam, V.: Machinability studies and optimization of process parameters in wire electrical discharge machining of aluminum hybrid composites by the VIKOR method. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08323-4

    Article  Google Scholar 

  87. Alam, M.N.; Siddiquee, A.N.; Khan, Z.A.; Khan, N.Z.: A comprehensive review on wire EDM performance evaluation. Proc. Inst. Mech. Eng. Part E J. Eng. Manuf. (2022). https://doi.org/10.1177/09544089221074843

    Article  Google Scholar 

  88. Pachaury, Y.; Tandon, P.: An overview of electric discharge machining of ceramics and ceramic based composites. J. Manuf. Process. 25, 369–390 (2017). https://doi.org/10.1016/j.jmapro.2016.12.010

    Article  Google Scholar 

  89. Joshi, A.Y.; Joshi, A.Y.: A systematic review on powder mixed electrical discharge machining. Heliyon 5(12), e02963 (2019). https://doi.org/10.1016/j.heliyon.2019.e02963

    Article  Google Scholar 

  90. Bisaria, H.; Shandilya, P.: The machining characteristics and surface integrity of Ni-rich NiTi shape memory alloy using wire electric discharge machining. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233, 1068–1078 (2019). https://doi.org/10.1177/0954406218763447

    Article  Google Scholar 

  91. Kumar, V.; Sharma, N.; Kumar, K.; Khanna, R.: Surface modification of WC–Co alloy using Al and Si powder through WEDM: a thermal erosion process. Part. Sci. Technol. 36, 878–886 (2018). https://doi.org/10.1080/02726351.2017.1317308

    Article  Google Scholar 

  92. Ezeddini, S.; Rajhi, W.; Boujelbene, M.; Bayraktar, E.; Ben Salem, S.: An investigation to achieve good surface integrity in wire electrical discharge machining of Ti-6242 super alloy. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08270-0

    Article  Google Scholar 

  93. Gezer, B.; Ersoy, Y.: Adsorption behavior of methylene blue dye using carob powder as eco-friendly new adsorbent for cleaning wastewater: optimization by response surface methodology. Erzincan Üniv. Fen Bilim. Enst. Derg. 11, 306–320 (2018). https://doi.org/10.18185/erzifbed.410969

    Article  Google Scholar 

  94. Xu, Z.; Yuan, J.; Wu, M.; Arif, A.F.M.; Li, D.: Effect of laser cladding parameters on Inconel 718 coating performance and multi-parameter optimization. Opt. Laser Technol. 158, 108850 (2023). https://doi.org/10.1016/j.optlastec.2022.108850

    Article  Google Scholar 

  95. Sardar, S.; Das, D.: Multi tribo-performance optimization of AA7075–Al2O3 composites by grey based response surface methodology. Met. Mater. Int. 27, 1859–1879 (2021). https://doi.org/10.1007/s12540-019-00573-z

    Article  Google Scholar 

  96. Ahuja, N.; Batra, U.; Kumar, K.: Experimental investigation and optimization of wire electrical discharge machining for surface characteristics and corrosion rate of biodegradable Mg alloy. J. Mater. Eng. Perform. 29, 4117–4129 (2020). https://doi.org/10.1007/s11665-020-04905-8

    Article  Google Scholar 

  97. Hwa Yan, B.; Tsai, H.C.; Yuan Huang, F.; Chorng Lee, L.: Examination of wire electrical discharge machining of Al2O3p/6061Al composites. Int. J. Mach. Tools Manuf 45, 251–259 (2005). https://doi.org/10.1016/j.ijmachtools.2004.08.015

    Article  Google Scholar 

  98. Patil, N.G.; Brahmankar, P.K.: Some studies into wire electro-discharge machining of alumina particulate-reinforced aluminum matrix composites. Int. J. Adv. Manuf. Technol. 48, 537–555 (2010). https://doi.org/10.1007/s00170-009-2291-5

    Article  Google Scholar 

  99. Lee, J.-M.; Kang, S.-B.; Sato, T.; Tezuka, H.; Kamio, A.: Microstructures and mechanical properties of Al3Fe reinforced aluminum matrix composites fabricated by a plasma synthesis method. Mater. Trans. 43(10), 2487–2493 (2002). https://doi.org/10.2320/matertrans.43.2487

    Article  Google Scholar 

  100. Jabłoński, M.; Knych, T.A.; Smyrak, B.; Jabłoński, M.; Knych, T.; Smyrak, B.: New aluminium alloys for electrical wires of fine diameter for automotive industry. Arch. Metall. Mater. 54(3), 672–676 (2009)

    Google Scholar 

  101. Brandt, R.; Neuer, G.: Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature. Int. J. Thermophys. 28, 1429–1446 (2007). https://doi.org/10.1007/s10765-006-0144-0

    Article  Google Scholar 

  102. Yan, H.; Djo Kabongo, B.; Zhou, H.; Wu, C.; Chen, Z.: Analysis and optimization of the machining characteristics of high-volume content sicp/al composite in wire electrical discharge machining. Crystals (Basel) 11, 1342 (2021). https://doi.org/10.3390/cryst11111342

    Article  Google Scholar 

  103. Karthik, S.; Prakash, K.S.; Gopal, P.M.; Jothi, S.: Influence of materials and machining parameters on WEDM of Al/AlCoCrFeNiMo 0.5 MMC. Mater. Manuf. Process. 34, 759–768 (2019). https://doi.org/10.1080/10426914.2019.1594250

    Article  Google Scholar 

  104. Chen, Z.; Zhou, H.; Yan, Z.; Han, F.; Yan, H.: Machining characteristics of 65 vol.% SiCp/Al composite in micro-WEDM. Ceram. Int. 47, 13533–13543 (2021). https://doi.org/10.1016/j.ceramint.2021.01.212

    Article  Google Scholar 

  105. Kavimani, V.; Prakash, K.S.; Thankachan, T.: Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics. Compos. B Eng. 167, 621–630 (2019). https://doi.org/10.1016/j.compositesb.2019.03.031

    Article  Google Scholar 

  106. Chen, Z.; Zhang, Y.; Zhang, G.; Li, W.: Investigation on a novel surface microstructure wire electrode for improving machining efficiency and surface quality in WEDM. Int. J. Adv. Manuf. Technol. 102, 2409–2421 (2019). https://doi.org/10.1007/s00170-019-03331-y

    Article  Google Scholar 

  107. Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S.; Sharma, S.; Narendranath, S.: Recast layer formation during wire electrical discharge machining of titanium (Ti–Al6–V4) alloy. J. Mater. Eng. Perform. 30, 8926–8935 (2021). https://doi.org/10.1007/s11665-021-06116-1

    Article  Google Scholar 

  108. Singh, B.; Misra, J.P.: Surface finish analysis of wire electric discharge machined specimens by RSM and ANN modeling. Meas. J. Int. Meas. Confed. 137, 225–237 (2019). https://doi.org/10.1016/j.measurement.2019.01.044

    Article  Google Scholar 

  109. Venkatarao, K.; Reddy, M.C.; Kumar, Y.P.; Raju, L.S.; Rao, B.R.; Azad, D.: Multi-response optimization in WEDM process of Al–Si alloy using TLBO-graph theory algorithm towards sustainability. Int. J. Adv. Manuf. Technol. 126, 3679–3694 (2023). https://doi.org/10.1007/s00170-023-11355-8

    Article  Google Scholar 

  110. Aghdeab, S.H.; Ahmed, A.I.: Effect of pulse on time and pulse off time on material removal rate and electrode wear ratio of stainless steel AISI 316L in EDM. Eng. Technol. J. 34, 2940–2949 (2016). https://doi.org/10.30684/etj.34.15a.14

    Article  Google Scholar 

  111. Anand, G.; Sardar, S.; Guha, A.; Das, D.: WEDM process parameter optimization of Al–Al3Fe in-situ composites. Mater. Today Proc. 33, 5250–5256 (2020). https://doi.org/10.1016/j.matpr.2020.02.951

    Article  Google Scholar 

  112. Savaloni, H.; Najmi, S.B.: Characteristics of Cu and Zn films deposited on glass and stainless steel substrates at different substrate temperatures and angle of incidence. Vacuum 66(1), 49–58 (2002). https://doi.org/10.1016/S0042-207X(01)00423-7

    Article  Google Scholar 

  113. Bhattacharya, S.; Kalita, K.; Čep, R.; Chakraborty, S.: A comparative analysis on prediction performance of regression models during machining of composite materials. Materials (Basel) 14, 6689 (2021). https://doi.org/10.3390/ma14216689

    Article  Google Scholar 

  114. Ulas, M.; Aydur, O.; Gurgenc, T.; Ozel, C.: Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by different machine learning algorithms. J. Mater. Res. Technol. 9, 12512–12524 (2020). https://doi.org/10.1016/j.jmrt.2020.08.098

    Article  Google Scholar 

  115. Kumar, R.; Channi, A.S.; Kaur, R.; Sharma, S.; Grewal, J.S.; Singh, S.; Verma, A.; Haber, R.: Exploring the intricacies of machine learning-based optimization of electric discharge machining on squeeze cast TiB2/AA6061 composites: Insights from morphological, and microstructural aspects in the surface structure analysis of recast layer formation A. J. Mater. Res. Technol. 26, 8569–8603 (2023). https://doi.org/10.1016/j.jmrt.2023.09.127

    Article  Google Scholar 

  116. Hemalatha, A.; Reddy, V.D.; Hemachandra, S.: Development of empirical models and machinability comparison on wire electrical discharge machining of aluminium based hybrid and metal matrix composites. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01200-3

    Article  Google Scholar 

  117. Abbas, A.T.; Sharma, N.; Alsuhaibani, Z.A.; Sharma, V.S.; Soliman, M.S.; Sharma, R.C.: Processing of Al/SiC/Gr hybrid composite on EDM by different electrode materials using RSM-COPRAS approach. Metals (Basel) 13, 1125 (2023). https://doi.org/10.3390/met13061125

    Article  Google Scholar 

  118. Hewidy, M.; Salem, O.: Integrating experimental modeling techniques with the Pareto search algorithm for multi-objective optimization in the WEDM of Inconel 718. Int. J. Adv. Manuf. Technol. 129, 299–319 (2023). https://doi.org/10.1007/s00170-023-12200-8

    Article  Google Scholar 

  119. Zheng, P.; Wang, H.; Sang, Z.; Zhong, R.Y.; Liu, Y.; Liu, C.; Mubarok, K.; Yu, S.; Xu, X.: Smart manufacturing systems for industry 4.0: conceptual framework, scenarios, and future perspectives. Front. Mech. Eng. 13, 137–150 (2018). https://doi.org/10.1007/s11465-018-0499-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdulal Das.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, G., Sardar, S., Guha, A. et al. Surface Integrity Characteristics and Multi-response Optimization in Wire-EDM of Al–Al3Fe Composites. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08969-9

Keywords

Navigation