Skip to main content
Log in

Investigation and Analysis of Surface Veracity and Parametric Aspects During \({\textit{Wire}}_{{\textit{EDM}}}\) of \(\textit{Al}/\textit{ZrO}_{2(p)}\)-Metal Matrix Composite

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents investigation of surface veracity of \({\textit{Wire}}_{{\textit{EDM}}}\) machined surfaces of \(\textit{Al}/\textit{ZrO}_{2(p)}-{\textit{MMC}}\) obtained utilizing the optimal parametric combinations. The effect of process parameters on the desired performance characteristics, i.e., minimum spark gap (SG), maximum material removal rate (MRR) and minimum surface roughness [SR(\(R_{a}\) & \(R_{t}\))], is also presented. The second-order numerical expressions developed by response surface methodology (RSM) are used as a function in .M file. Genetic Algorithm and Direct Search Toolbox of \({\textit{MATLAB}}^{\circledR }\) are utilized to identify the multi-objective optimum set of the process parameters for the desired performance characteristics. In the present paper, surface veracity aspects that include surface defects and thickness of recast layer are investigated for the machined surfaces obtained after \({\textit{Wire}}_{{\textit{EDM}}}\) to achieve the desired optimum performance characteristics. From the investigation, it can safely be concluded that for the \({\textit{Wire}}_{{\textit{EDM}}}\) of \(\textit{Al}/\textit{ZrO}_{2(p)}-{\textit{MMC}}\)s, lower parameter setting values of pulse width and short pulse time along with higher parameter setting value of time between pulses are desirable from the view point of good surface veracity of the machined surfaces as well as to obtain low average recast layer thickness (\({\textit{Rl}}_{{\textit{tavg}}}\)). The \({\textit{Rl}}_{{\textit{tavg}}}\) decreases as weight fraction of \(\textit{ZrO}_{2(p)}\) increases in \(\textit{Al}/\textit{ZrO}_{2(p)}-{\textit{MMC}}\) from 5 to 15%. The investigation of surface veracity of the \({\textit{Wire}}_{{\textit{EDM}}}\) obtained surfaces will provide the significant guidelines to the production engineers to plan the need of subsequent operations to improve the surface veracity and further the life of the products fabricated using these MMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

PW:

Pulse width

TBP:

Time between pulses

SCMRV:

Servo control mean reference voltage

SPT:

Short pulse time

WFR:

Wire feed rate

WMT:

Wire mechanical tension

SG:

Spark gap

MRR:

Material removal rate

RSM:

Response surface methodology

GA:

Genetic algorithm

SR:

Surface roughness

SEM:

Scanning electron micrograph

EDX:

Energy-dispersive X-ray

\({\textit{Rl}}_{{\textit{tavg}}}\) :

Average recast layer thickness

References

  1. Vijayabhaskar, S.; Rajmohan, T.: Experimental investigation and optimization of machining parameters in WEDM of nano-SiC particles reinforced magnesium matrix composites. Silicon 11(4), 1701 (2019)

    Article  Google Scholar 

  2. Dey, A.; Bandi, V.R.; Pandey, K.: Wire electrical discharge machining characteristics of AA6061/cenosphere aluminium matrix composites using RSM. Mater. Today Proc. 5(1), 1278 (2018)

    Article  Google Scholar 

  3. Pramanik, A.; Littlefair, G.: Wire EDM mechanism of MMCs with the variation of reinforced particle size. Mater. Manuf. Process. 31(13), 1700 (2016)

    Article  Google Scholar 

  4. Ma, J.; Ming, W.; Du, J.; Huang, H.; He, W.; Cao, Y.; Li, X.: Integrated optimization model in wire electric discharge machining using gaussian process regression and wolf pack algorithm approach while machining SiCp/Al composite. Adv. Mech. Eng. 10(9), 1687814018787407 (2018)

    Article  Google Scholar 

  5. Pramanik, A.; Islam, M.N.; Boswell, B.; Basak, A.K.; Dong, Y.; Littlefair, G.: Accuracy and finish during wire electric discharge machining of metal matrix composites for different reinforcement size and machining conditions. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(6), 1068 (2018)

    Article  Google Scholar 

  6. Selvakumar, G.; Kuttalingam, K.T.; Prakash, S.R.: Investigation on machining and surface characteristics of AA5083 for cryogenic applications by adopting trim cut in WEDM. J. Braz. Soc. Mech. Sci. Eng. 40(5), 267 (2018)

    Article  Google Scholar 

  7. Sharma, P.; Chakradhar, D.; Narendranath, S.: Analysis and optimization of WEDM performance characteristics of Inconel 706 for aerospace application. Silicon 10(3), 921 (2018)

    Article  Google Scholar 

  8. Ramamurthy, A.; Sivaramakrishnan, R.; Muthuramalingam, T.; Venugopal, S.: Performance analysis of wire electrodes on machining Ti–6Al–4V alloy using electrical discharge machining process. Mach. Sci. Technol. 19(4), 577 (2015)

    Article  Google Scholar 

  9. Oliver Nesa Raj, S.; Prabhu, S.: Modeling and analysis of titanium alloy in wire-cut EDM using grey relation coupled with principle component analysis. Aust. J. Mech. Eng. 15(3), 198 (2017)

    Article  Google Scholar 

  10. Kumar, M.; Singh, H.: Multi response optimization in wire electrical discharge machining of Inconel X-750 using Taguchi’s technique and grey relational analysis. Cogent Eng. 3(1), 1266123 (2016)

    Article  Google Scholar 

  11. Kandpal, B.C.; Kumar, J.; Singh, H.: Optimization and characterization of EDM of aa 6061/10% Al2O3 AMMC using Taguchi’s approach and utility concept. Prod. Manuf. Res. 5(1), 351 (2017)

    Google Scholar 

  12. Maher, I.; Sarhan, A.A.; Marashi, H.; Barzani, M.M.; Hamdi, M.: White layer thickness prediction in wire-EDM using CuZn-coated wire electrode-ANFIS modelling. Trans. IMF 94(4), 204 (2016)

    Article  Google Scholar 

  13. Chalisgaonkar, R.; Kumar, J.: Parametric optimization and modelling of rough cut WEDM operation of pure titanium using grey-fuzzy logic and dimensional analysis. Cogent Eng. 1(1), 979973 (2014)

    Article  Google Scholar 

  14. Dey, A.; Pandey, K.: Selection of optimal processing condition during WEDM of compocasted AA6061/cenosphere AMCS based on grey-based hybrid approach. Mater. Manuf. Process. 33(14), 1549 (2018)

    Article  Google Scholar 

  15. Khanna, R.; Singh, H.: Comparison of optimized settings for cryogenic-treated and normal D-3 steel on WEDM using grey relational theory. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 230(1), 219 (2016)

    Google Scholar 

  16. Garg, S.K.; Manna, A.; Jain, A.: Experimental investigation of spark gap and material removal rate of Al/ZrO2 (p)-MMC machined with wire EDM. J. Braz. Soc. Mech. Sci. Eng. 38(2), 481 (2016)

    Article  Google Scholar 

  17. Wang, J.; Wang, T.; Wu, H.; Qiu, F.: Experimental study on high-speed WEDM finishing in steam water mist. Int. J. Adv. Manuf. Technol. 91(9–12), 3285 (2017)

    Article  Google Scholar 

  18. Senkathir, S.; Aravind, R.; Samson, R.M.; Raj, A.A.: Advances in Manufacturing Processes, pp. 383–392. Springer, Berlin (2019)

    Book  Google Scholar 

  19. Sharma, N.; Raj, T.; Jangra, K.K.: Parameter optimization and experimental study on wire electrical discharge machining of porous Ni\(_40\)Ti\(_60\) alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(6), 956 (2017)

    Article  Google Scholar 

  20. Sreenivasa Rao, M.; Venkaiah, N.: Experimental investigations on surface integrity issues of Inconel-690 during wire-cut electrical discharge machining process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(4), 731 (2018)

    Article  Google Scholar 

  21. Saha, P.; Singha, A.; Pal, S.K.; Saha, P.: Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite. Int. J. Adv. Manuf. Technol. 39(1–2), 74 (2008)

    Article  Google Scholar 

  22. Kumar, A.; Abhishek, K.; Vivekananda, K.; Upadhyay, C.: Soft Computing for Problem Solving, pp. 721–736. Springer, Berlin (2019)

    Book  Google Scholar 

  23. Zhang, J.; Lee, T.; Wu, C.; Tang, C.: Surface integrity and modification of electro-discharge machined alumina-based ceramic composite. J. Mater. Process. Technol. 123(1), 75 (2002)

    Article  Google Scholar 

  24. Kuriakose, S.; Shunmugam, M.: Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. J. Mater. Process. Technol. 170(1–2), 133 (2005)

    Article  Google Scholar 

  25. Bhattacharyya, B.; Gangopadhyay, S.; Sarkar, B.: Modelling and analysis of EDMed job surface integrity. J. Mater. Process. Technol. 189(1–3), 169 (2007)

    Article  Google Scholar 

  26. Han, F.; Jiang, J.; Yu, D.: Influence of discharge current on machined surfaces by thermo-analysis in finish cut of WEDM. Int. J. Mach. Tools Manuf. 47(7–8), 1187 (2007)

    Article  Google Scholar 

  27. Chua, M.; Rahman, M.; Wong, Y.; Loh, H.: Determination of optimal cutting conditions using design of experiments and optimization techniques. Int. J. Mach. Tools Manuf. 33(2), 297 (1993)

    Article  Google Scholar 

  28. Gaitonde, V.; Karnik, S.; Davim, J.P.: Some studies in metal matrix composites machining using response surface methodology. J. Reinf. Plast. Compos. 28(20), 2445 (2009)

    Article  Google Scholar 

  29. Liao, Z.; Abdelhafeez, A.; Li, H.; Yang, Y.; Diaz, O.G.; Axinte, D.: State-of-the-art of surface integrity in machining of metal matrix composites. Int. J. Mach. Tools Manuf. 143, 63 (2019)

    Article  Google Scholar 

  30. Garg, S.K.: Optimization of wire electrical discharge machining parameters for machining of \({\rm Al}\)/\({\rm ZrO}_{2}\) (p) metal matrix composite. Phd thesis, NIT, Kurukshetra (2015)

  31. Kumar, H.; Manna, A.; Kumar, R.: Modeling and desirability approach-based multi-response optimization of WEDM parameters in machining of aluminum metal matrix composite. J. Braz. Soc. Mech. Sci. Eng. 40(9), 458 (2018)

    Article  Google Scholar 

  32. Kumar, H.; Manna, A.; Kumar, R.: Modeling of process parameters for surface roughness and analysis of machined surface in WEDM of Al/SiC-MMC. Trans. Indian Inst. Met. 71(1), 231 (2018)

    Article  Google Scholar 

  33. Pramanik, A.: Developments in the non-traditional machining of particle reinforced metal matrix composites. Int. J. Mach. Tools Manuf. 86, 44 (2014)

    Article  Google Scholar 

  34. Liu, J.; Li, J.; Xu, C.: Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: a review. CIRP J. Manuf. Sci. Technol. 7(2), 55 (2014)

    Article  Google Scholar 

  35. Selamat, M.; Watson, L.; Baker, T.: XRD and XPS studies on surface mmc layer of sic reinforced Ti–6Al–4V alloy. J. Mater. Process. Technol. 142(3), 725 (2003)

    Article  Google Scholar 

  36. Goswami, A.; Kumar, J.: Investigation of surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method. Eng. Sci. Technol. Int. J. 17(4), 173 (2014)

    Google Scholar 

  37. Jadam, T.; Datta, S.; Masanta, M.: Study of surface integrity and machining performance during main/rough cut and trim/finish cut mode of WEDM on Ti–6Al–4V: effects of wire material. J. Braz. Soc. Mech. Sci. Eng. 41(3), 151 (2019)

    Article  Google Scholar 

  38. Kumar, A.; Kumar, V.; Kumar, J.: Microstructure analysis and material transformation of pure titanium and tool wear surface after wire electric discharge machining process. Mach. Sci. Technol. 18(1), 47 (2014)

    Article  Google Scholar 

  39. Lin, K.; Dai Pang, S.: The influence of thermal residual stresses and thermal generated dislocation on the mechanical response of particulate-reinforced metal matrix nanocomposites. Compos. Part B Eng. 83, 105 (2015)

    Article  Google Scholar 

  40. Premnath, A.A.: Studies on machining parameters while milling particle reinforced hybrid (Al6061/Al\(_2\)O\(_3\)/Gr) MMC. Part. Sci. Technol. 33(6), 682 (2015)

    Article  Google Scholar 

  41. Patil, N.G.; Brahmankar, P.: Semi-empirical modeling of surface roughness in wire electro-discharge machining of ceramic particulate reinforced al matrix composites. Procedia CIRP 42(1), 280 (2016)

    Article  Google Scholar 

  42. Patil, N.G.; Brahmankar, P.: Some studies into wire electro-discharge machining of alumina particulate-reinforced aluminum matrix composites. Int. J. Adv. Manuf. Technol. 48(5–8), 537 (2010)

    Article  Google Scholar 

  43. Habib, S.; Okada, A.: Study on the movement of wire electrode during fine wire electrical discharge machining process. J. Mater. Process. Technol. 227, 147 (2016)

    Article  Google Scholar 

  44. Nag, A.; Srivastava, A.K.; Dixit, A.R.; Mandal, A.; Das, A.K.; Tiwari, T.: Surface integrity analysis of wire-EDM on in-situ hybrid composite A359/Al\(_2\)O\(_3\)/B\(_4\)C. Mater. Today Proc. 5(11), 24632 (2018)

    Article  Google Scholar 

  45. Kumar, A.; Kumar, V.; Kumar, J.: Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. Int. J. Adv. Manuf. Technol. 68(9–12), 2645 (2013)

    Article  Google Scholar 

  46. Majumder, H.; Maity, K.: Prediction and optimization of surface roughness and micro-hardness using grnn and MOORA-fuzzy-a MCDM approach for nitinol in WEDM. Measurement 118, 1 (2018)

    Article  Google Scholar 

  47. Sharma, P.; Chakradhar, D.; Narendranath, S.: Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application. Mater. Des. 88, 558 (2015)

    Article  Google Scholar 

  48. Satishkumar, D.; Kanthababu, M.; Vajjiravelu, V.; Anburaj, R.; Sundarrajan, N.T.; Arul, H.: Investigation of wire electrical discharge machining characteristics of Al606\(_3\)/SiC\(_{\rm p}\) composites. Int. J. Adv. Manuf. Technol. 56(9–12), 975 (2011)

  49. Majumder, H.; Paul, T.; Dey, V.; Dutta, P.; Saha, A.: Use of PCA-grey analysis and RSM to model cutting time and surface finish of Inconel 800 during wire electro discharge cutting. Measurement 107, 19 (2017)

    Article  Google Scholar 

  50. Zhenlong, W.; Xuesong, G.; Guanxin, C.; Yukui, W.: Surface integrity associated with SiC/Al particulate composite by micro-wire electrical discharge machining. Mater. Manuf. Process. 29(5), 532 (2014)

    Article  Google Scholar 

  51. Yan, B.H.; Tsai, H.C.; Huang, F.Y.; Lee, L.C.: Examination of wire electrical discharge machining of Al\(_2\)O\(_3\)p/6061Al composites. Int. J. Mach. Tools Manuf. 45(3), 251 (2005)

    Article  Google Scholar 

  52. Diaz, O.G.; Luna, G.G.; Liao, Z.; Axinte, D.: The new challenges of machining ceramic matrix composites (CMCs): review of surface integrity. Int. J. Mach. Tools Manuf. 139, 24 (2019)

    Article  Google Scholar 

  53. Anand, G.; Sardar, S.; Guha, A.; Das, D.: WEDM process parameter optimization of Al-Al3Fe in-situ composites. Mater. Today Proc. (2020)

  54. Müller, F.; Monaghan, J.: Non-conventional machining of particle reinforced metal matrix composite. Int. J. Mach. Tools Manuf. 40(9), 1351 (2000)

    Article  Google Scholar 

  55. Singh, H.; Singh, S.; Singh, T.: Analysis of surface topography of \({\rm AL}\)/\({\rm AL}_2{\rm O}_3\) MMC machined during WEDM. Int. J. Sci. Tech. Adv. 4(1), 157–160 (2018)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S.K., Manna, A. & Jain, A. Investigation and Analysis of Surface Veracity and Parametric Aspects During \({\textit{Wire}}_{{\textit{EDM}}}\) of \(\textit{Al}/\textit{ZrO}_{2(p)}\)-Metal Matrix Composite. Arab J Sci Eng 47, 8417–8438 (2022). https://doi.org/10.1007/s13369-021-05531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05531-9

Keywords

Navigation