Skip to main content
Log in

Effect of different reinforcements in wire electric discharge machining of various geometrical profiles in metal matrix composites

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this study three different geometrical profiles with same perimeter were fabricated in aluminum metal matrix composite (AMMCs) using wire electric discharge machining (WEDM). AMMCs containing Al6061 as matrix and 10% alumina (Al2O3), 10% silicon carbide (SiC) and mixture of 5% Al2O3 and 5% SiC as reinforcements were fabricated by stir casting method. The basic objective of this study is to develop response surface methodology (RSM) based second order regression model to analyze the effect of various input parameters on cutting velocity (CV) and surface roughness (SR) during WEDM of triangular, circular, and square profiles of same perimeter. Effect of pulse-on time (Ton = 30–50 µs), pulse-off time (Toff = 6–12 µs), current (I = 1–5 A) and geometrical profiles on CV and SR have been investigated using response surface plots. Parametric analysis reveals that increase of current from 1 to 5 A at Ton = 40 µs, Toff = 12 µs increases the CV by 115% in all the three composites. Similarly, increase of Toff from 6 to 12 µs at Ton = 40 µs and I = 1 A reduces the SR by more than 35% in all composites. Multiobjective optimization using composite desirability (CD) approach shows that optimal results are obtained for triangular profiles and at optimal input parameters SR reduces by 21%, 24.19% and 33.39% respectively for alumina, silicon carbide and hybrid composite. Energy dispersive spectroscopy (EDS) analysis and SEM analysis were carried out to investigate the variation in elemental composition and surface morphology of machined surfaces respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

WEDM:

Wire electric discharge machine

AMMC:

Aluminum metal matrix composite

ANOVA:

Analysis of variance

MRR:

Material removal rate

GRA:

Grey relational analysis

TOPSIS:

Technique for order of preference by similarity to ideal solution

BBD:

Box–Behken design

RSM:

Response surface method

SEM:

Scanning electron microscopy

References

  1. Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana 28(1), 319–334 (2003). https://doi.org/10.1007/BF02717141

    Article  Google Scholar 

  2. Zolotova, D., Serpova, V., Prokofiev, M., Rabinskiy, L., Shavnev, A.: A study of the composition and microstructure of aluminum matrix composites reinforced with alumina fibers. IOP Conf. Ser. Mater. Sci. Eng. 124(1), 012135 (2016). https://doi.org/10.1088/1757-899X/124/1/012135

    Article  Google Scholar 

  3. Miracle, D.B.: Metal matrix composites–from science to technological significance. Compos. Sci. Technol. 65(15–16), 2526–2540 (2005). https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  Google Scholar 

  4. Ahmad, Z.: Mechanical behavior and fabrication characteristics of aluminum metal matrix composite alloys. J. Reinf. Plast. Compos. 20(11), 921–944 (2001). https://doi.org/10.1177/073168401772678896

    Article  Google Scholar 

  5. Teng, X., Huo, D.: Conventional machining of metal matrix composites. In: Advances in machining of composite materials: conventional and non-conventional processes, pp. 159–181. Springer, Cham (2021)

    Chapter  Google Scholar 

  6. Darji, Y., Patel, D., Patel, D., Ramesh, R., Oza, A.D., Bhole, K.S., Shinde, S.M., Kumar, M.: Experimentation with the EDM parameter through a full factorial technique and optimization using regression analysis with carbon nanotubes. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01263-2

    Article  Google Scholar 

  7. Goyal, K.K., Sharma, N., Dev Gupta, R., Singh, G., Rani, D., Banga, H.K., Giasin, K.: A soft computing-based analysis of cutting rate and recast layer thickness for AZ31 alloy on WEDM using RSM-MOPSO. Materials 15(2), 635 (2022). https://doi.org/10.3390/ma15020635

    Article  Google Scholar 

  8. Bagal, D.K., Barua, A., Jeet, S., Satapathy, P., Patnaik, D.: MCDM optimization of parameters for wire-EDM machined stainless steel using hybrid RSM-TOPSIS, genetic algorithm and simulated annealing. Int. J. Eng. Adv. Technol. 9(1), 366–371 (2019). https://doi.org/10.35940/ijeat.A9349.109119

    Article  Google Scholar 

  9. Naidu, B.V.V., Varaprasad, K.C., Rao, K.P.: Development of regression models for wire electrical discharge machining of aluminium metal matrix composites. Mater. Today Proc. 39(1), 236–239 (2021). https://doi.org/10.1016/j.matpr.2020.06.586

    Article  Google Scholar 

  10. Abhilash, P.M., Chakradhar, D.: Multi-response optimization of wire EDM of Inconel 718 using a hybrid entropy weighted GRA-TOPSIS method. Process Integr. Optim. Sustain. 6(1), 61–72 (2022). https://doi.org/10.1007/s41660-021-00202-6

    Article  Google Scholar 

  11. Magesh, M., Jyothiraj, K., Janarthanan, G., Keerthivasan, C., Sivaraman, P.: Optimization of wire-EDM parameters to calculate MRR and measure surface finish on SS410. Int. J. Innov. Sci. Res. Technol. 2(3), 2456–2165 (2017)

    Google Scholar 

  12. Sadhasivam, R.M., Ramanathan, K.: Investigating the parametric effects and analysis of stir cast aluminium matrix composite by Wirecut-EDM using Topsis method. Sadhana 46(3), 1–10 (2021). https://doi.org/10.1007/s12046-021-01674-5

    Article  Google Scholar 

  13. Kumar, A., Grover, N., Manna, A., Chohan, J.S., Kumar, R., Singh, S., Pruncu, C.I.: Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. (2020). https://doi.org/10.1177/2633366X20963137

    Article  Google Scholar 

  14. Paul, R.C., Joseph, R., Nadana Kumar, V., Booma Devi, P., Manigandan, S.: Experimental analysis of hybrid metal matrix composite reinforced with Al2O3 and graphite. Int. J. Amb. Energy 43(1), 648–652 (2022). https://doi.org/10.1080/01430750.2019.1653984

    Article  Google Scholar 

  15. Sivananthan, S., Ravi, K., Samuel, C.S.: Effect of SiC particles reinforcement on mechanical properties of aluminium 6061 alloy processed using stir casting route. Mater. Today Proc. 21, 968–970 (2020). https://doi.org/10.1016/j.matpr.2019.09.068

    Article  Google Scholar 

  16. Sivananthan, S., Reddy, V.R., Samuel, C.S.: Preparation and evaluation of mechanical properties of 6061Al-Al2O3 metal matrix composites by stir casting process. Mater. Today Proc. 21, 713–716 (2020). https://doi.org/10.1016/j.matpr.2019.06.744

    Article  Google Scholar 

  17. Kumar, A., Grover, N., Manna, A., Kumar, R., Chohan, J.S., Singh, S., Pruncu, C.I.: Multi-objective optimization of WEDM of aluminum hybrid composites using AHP and genetic algorithm. Arab. J. Sci. Eng. 47(7), 8031–8043 (2022). https://doi.org/10.1007/s13369-021-05865-4

    Article  Google Scholar 

  18. Lal, S., Kumar, S., Khan, Z.A., Siddiquee, A.N.: Multi-response optimization of wire electrical discharge machining process parameters for Al7075/Al2O3/SiC hybrid composite using Taguchi-based grey relational analysis. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229(2), 229–237 (2015). https://doi.org/10.1177/0954405414526382

    Article  Google Scholar 

  19. Raju, K., Balakrishnan, M., Priya, C.B., Sivachitra, M., Narasimha Rao, D.: Parametric optimization of wire electrical discharge machining in AA7075 metal matrix composite. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/4438419

    Article  Google Scholar 

  20. Tapadar, J., Thakur, R., Chetia, P., Tamang, S.K., Samanta, S.: Modeling of WEDM parameters while machining Mg-SiC metal matrix composite. Mech. Eng. (2017). https://doi.org/10.14716/ijtech.v8i5.870

    Article  Google Scholar 

  21. Singh, H., Garg, R.: Effects of process parameters on material removal rate in WEDM. J. Achiev. Mater. Manuf. Eng. 32(1), 70–74 (2009)

    Google Scholar 

  22. Khanna, R., Sharma, N., Kumar, N., Gupta, R.D., Sharma, A.: WEDM of Al/SiC/Ti composite: a hybrid approach of RSM-ARAS-TLBO algorithm. Int. J. Lightw. Mater. Manuf. 5(3), 315–325 (2022). https://doi.org/10.1016/j.ijlmm.2022.04.003

    Article  Google Scholar 

  23. Beck, R.J., Aspinwall, D.K., Soo, S.L., Williams, P., Perez, R.: Fatigue performance of surface ground and wire electrical discharge machined TiNi shape memory alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 236(4), 355–362 (2022). https://doi.org/10.1177/09544054211028844

    Article  Google Scholar 

  24. Pramanik, A., Islam, M.N., Boswell, B., Basak, A.K., Dong, Y., Littlefair, G.: Accuracy and finish during wire electric discharge machining of metal matrix composites for different reinforcement size and machining conditions. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(6), 1068–1078 (2018). https://doi.org/10.1177/0954405416662079

    Article  Google Scholar 

  25. Straka, L., Corny, I.: Adjustment of wire vibrations in order to improve geometric accuracy and surface roughness at WEDM. Appl. Sci. 11(11), 4734 (2021). https://doi.org/10.3390/app11114734

    Article  Google Scholar 

  26. Sadeghi, M., Razavi, H., Esmaeilzadeh, A., Kolahan, F.: Optimization of cutting conditions in WEDM process using regression modelling and Tabu-search algorithm. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225(10), 1825–1834 (2011). https://doi.org/10.1177/0954405411406639

    Article  Google Scholar 

  27. Singh, D.P., Mishra, S., Yadav, S.K.S., Porwal, R.K., Singh, V.: Comparative analysis and optimization of thermoelectric machining of alumina and silicon carbide-reinforced aluminum metal matrix composites using different electrodes. J. Adv. Manuf. Syst. (2022). https://doi.org/10.1142/S0219686723500191

    Article  Google Scholar 

  28. Joy, R., Manoj, I.V., Narendranath, S.: Investigation of cutting speed, recast layer and micro-hardness in angular machining using slant type taper fixture by WEDM of Hastelloy X. Mater. Today Proc. 27, 1943–1946 (2020). https://doi.org/10.1016/j.matpr.2019.09.021

    Article  Google Scholar 

  29. Nayak, B.B., Mahapatra, S.S.: A utility concept approach for multi-objective optimization of taper cutting operation using WEDM. Procedia Eng. 97, 469–478 (2014). https://doi.org/10.1016/j.proeng.2014.12.271

    Article  Google Scholar 

  30. Manoj, I.V., Narendranath, S.: Effect of profile geometry and cutting speed override parameter on profiling speed during tapering using wire electric discharge machining. In: Sustainable machining strategies for better performance, pp. 111–122. Springer (2022)

    Chapter  Google Scholar 

  31. Manoj, I.V., Soni, H., Narendranath, S., Mashinini, P.M., Kara, F.: Examination of machining parameters and prediction of cutting velocity and surface roughness using RSM and ANN using WEDM of Altemp HX. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/5192981

    Article  Google Scholar 

  32. Selvakumar, G., BravilinJiju, K., Sarkar, S., Mitra, S.: Enhancing die corner accuracy through trim cut in WEDM. Int. J. Adv. Manuf. Technol. 83(5), 791–803 (2016). https://doi.org/10.1007/s00170-015-7606-0

    Article  Google Scholar 

  33. Devarajaiah, D., Muthumari, C.: Evaluation of power consumption and MRR in WEDM of Ti–6Al–4V alloy and its simultaneous optimization for sustainable production. J. Braz. Soc. Mech. Sci. Eng. 40(8), 1–18 (2018). https://doi.org/10.1007/s40430-018-1318-y

    Article  Google Scholar 

  34. Ilani, M.A., Khoshnevisan, M.: Powder mixed-electrical discharge machining (EDM) with the electrode is made by fused deposition modeling (FDM) at Ti-6Al-4V machining procedure. Multisc. Multidiscip. Model. Exp. Des. 3, 173–186 (2020). https://doi.org/10.1007/s41939-020-00070-6

    Article  Google Scholar 

  35. Ilani, M.A., Khoshnevisan, M.: Mathematical and physical modeling of FE-SEM surface quality surrounded by the plasma channel within Al powder-mixed electrical discharge machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 112, 3263–3277 (2021). https://doi.org/10.1007/s00170-021-06626-1

    Article  Google Scholar 

  36. Taherkhani, A., Ilani, M.A., Ebrahimi, F., Huu, P.N., Long, B.T., Van Dong, P., Tam, N.C., Minh, N.D., Van Duc, N.: Investigation of surface quality in cost of goods manufactured (COGM) method of μ-Al2O3 powder-mixed-EDM process on machining of Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 116(5–6), 1783–1799 (2021). https://doi.org/10.1007/s00170-021-07573-7

    Article  Google Scholar 

  37. Ilani, M.A., Khoshnevisan, M.: Study of surfactant effects on intermolecular forces (IMF) in powder-mixed electrical discharge machining (EDM) of Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 116(5–6), 1763–1782 (2021). https://doi.org/10.1007/s00170-021-07569-3

    Article  Google Scholar 

  38. Ilani, M.A., Khoshnevisan, M.: An evaluation of the surface integrity and corrosion behavior of Ti–6Al–4 V processed thermodynamically by PM-EDM criteria. Int. J. Adv. Manuf. Technol. 120(7–8), 5117–5129 (2022). https://doi.org/10.1007/s00170-022-09093-4

    Article  Google Scholar 

  39. Phan, N.H., Pi, V.N., Tuan, N.Q., Shirguppikar, S., Patil, M.S., Ilani, M.A., Hung, L.X., Muthuramalingam, T., Hung, T.Q.: Tool wear rate analysis of uncoated and AlCrNi coated aluminum electrode in EDM for Ti-6Al-4 V titanium alloy. In: Advances in Engineering Research and Application Proceedings of the International Conference on Engineering Research and Applications, pp 832–838. Springer: Heidelberg (2021)

  40. Phan, N.H., Pi, V.N., Shirguppikar, S., Patil, M.S., Ilani, M.A., Hung, L.X., Muthuramalingam, T., Hung, T.Q.: Material removal rate in electric discharge machining with aluminum tool electrode for Ti-6Al-4V titanium alloy. In: Advances in Engineering Research and Application: Proceedings of the International Conference on Engineering Research and Applications, pp 527–533. Springer: Heidelberg (2021)

  41. Mahdavinejad, R.A., Ilani, M.A.: Superior advance research in the electro-discharge machining of Ti alloys. Int. J. Sci. Res. Mech. Mater. Eng. 3, 19–38 (2019)

    Google Scholar 

  42. Boopathi, S.: An investigation on gas emission concentration and relative emission rate of the near-dry wire-cut electrical discharge machining process. Environ. Sci. Pollut. Res. 29(57), 86237–86246 (2022). https://doi.org/10.1007/s11356-021-17658-1

    Article  Google Scholar 

  43. Gowri, N.V., Dwivedi, J.N., Krishnaveni, K., Boopathi, S., Palaniappan, M., Medikondu, N.R.: Experimental investigation and multi-objective optimization of eco-friendly near-dry electrical discharge machining of shape memory alloy using Cu/SiC/Gr composite electrode. Environ. Sci. Pollut. Res. 2023, 1–19 (2023). https://doi.org/10.1007/s11356-023-26983-6

    Article  Google Scholar 

  44. Boopathi, S., Alqahtani, A.S., Mubarakali, A., Panchatcharam, P.: Sustainable developments in near-dry electrical discharge machining process using sunflower oil-mist dielectric fluid. Environ. Sci. Pollut. Res. 2023, 1–20 (2023). https://doi.org/10.1007/s11356-023-27494-0

    Article  Google Scholar 

  45. Xie, W., Guo, C., Wang, X. and Zhang, J.: Experimental comparative study on Near-dry wire-cut electrical discharge machining process using moistened wire. (2023). https://doi.org/10.21203/rs.3.rs-2612583/v1

  46. Kuo, C.G., Hsu, C.Y., Chen, J.H., Lee, P.W.: Discharge current effect on machining characteristics and mechanical properties of aluminum alloy 6061 workpiece produced by electric discharging machining process. Adv. Mech. Eng. 9(11), 1687814017730756 (2017). https://doi.org/10.1177/1687814017730756

    Article  Google Scholar 

  47. Montgomery, D.C., Myers, R.H.: Process and product optimization using designed experiments. Wiley, New York (2002)

    Google Scholar 

  48. Box, G.E., Hunter, J.S., Hunter, W.G.: Statistics for experimenters. Wiley series in probability and statistics. Wiley, New York (2005)

    Google Scholar 

  49. Montgomery, D.C.: Design and analysis of experiments. Wiley, New York (2006)

    Google Scholar 

  50. Heinze, G., Dunkler, D.: Five myths about variable selection. Transpl. Int. 30, 6–10 (2017). https://doi.org/10.1111/tri.12895

    Article  Google Scholar 

  51. Mishra, Y.K., Mishra, S., Jaiswal, S.C.: Comparative analysis of grey relational analysis integrated with the principal component analysis and analytic hierarchy process for multi-objective optimization of inclined laser percussion drilling in carbon fiber reinforced composites. J. Adv. Manuf. Syst. 21(1), 1–23 (2022). https://doi.org/10.1142/S0219686721500475

    Article  Google Scholar 

  52. Mishra, Y.K., Mishra, S., Jaiswal, S.C.: Parametric analysis and optimization of inclined laser percussion drilling of carbon fiber reinforced plastic using solid state Nd: YAG laser. Lasers Manuf. Mater. Process. 8, 325–354 (2021). https://doi.org/10.1007/s40516-021-00151-5

    Article  Google Scholar 

  53. Singh, D.P., Mishra, S., Porwal, R.K.: Parametric analysis through ANFIS modelling and optimization of micro-hole machining in super duplex stainless steel by die-sinking EDM. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2135733

    Article  Google Scholar 

  54. Ezeddini, S., Boujelbene, M., Bayraktar, E., Ben Salem, S.: Optimization of the surface roughness parameters of Ti–Al intermetallic based composite machined by wire electrical discharge machining. Coatings 10(9), 900 (2020). https://doi.org/10.3390/coatings10090900

    Article  Google Scholar 

Download references

Acknowledgements

The All India Council for Technical Education's (AICTE) 2019-20 Research Promotion Scheme (File No. 8-104/FDC/RPS(POLICY-1)/2019-20) funding help is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Contributions

DPS: conceived of the presented idea. He conducted the experiments and performed the computations. DPS: wrote the manuscript with the support of SM. SM: supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Sanjay Mishra.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there are no financial or non-financial interest. Directly related to the submitted work. Both the authors hereby certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D.P., Mishra, S. Effect of different reinforcements in wire electric discharge machining of various geometrical profiles in metal matrix composites. Int J Interact Des Manuf 18, 351–373 (2024). https://doi.org/10.1007/s12008-023-01477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01477-4

Keywords

Navigation