Skip to main content
Log in

Development of empirical models and machinability comparison on wire electrical discharge machining of aluminium based hybrid and metal matrix composites

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Aluminum based Metal Matrix and Hybrid Composites are known to have various advantages over conventional materials when it comes to their various engineering applications, namely aerospace, automotive, and marine. Because of their enhanced characteristics, such as their strength and hardness, they are more commonly utilized in these areas. Due to their reinforced properties, the manufactured composites became more harder which complicates the machining while comparing with the base material. This makes the process of material removal more complex. One of the most common methods of removing these materials is through wire electrical discharge machining. This process allows the easy removal of these materials regardless of their hardness. In this study, the mechanical properties of different types of metal matrix and hybrid composites were analysed through wire electrical discharge machining. An explorative investigation has been performed to analyse the machinability of stir casted aluminium based hybrid and metal matrix composites (AA2024 + BN, AA2024 + AL2O3 + BN). Taguchi’s approach performs the planning of experiments and analysis of the attained data. The output measures considered in this investigation are material removal rate and dimensional deviation. The empirical relationships are developed by the multiple regression approach which is used to reveal the relationship between the independent and dependent variables. Various Multi Criteria Decision Making tools are adopted and the machinability of selected composites are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MMC:

Metal matrix composites

HMMC:

Hybrid metal matrix composites

MCDM:

Multi-criterion decision making methods

WEDM:

Wire electrical discharge machining

OA:

Orthogonal array

MRR:

Material removal rate

DD:

Dimensional deviation

GRA:

Grey relational analysis

GRG:

Grey relational grade

TOPSIS:

Technique for order of preference by similarity to ideal solution

References

  1. Campbell, F. C.: ed. Lightweight materials: understanding the basics. ASM International, 2012

  2. Liu, M., Guo, Y., Wang, J., Yergin, M.: Corrosion avoidance in lightweight materials for automotive applications. NPJ Mater. Degrad. 2(1), 1–4 (2018)

    Article  Google Scholar 

  3. Macke, A., Schultz, B.F., Rohatgi, P.: Metal matrix composites. Adv. Mater. Process. 170(3), 19–23 (2012)

    Google Scholar 

  4. Harrigan, W.C., Jr.: Commercial processing of metal matrix composites. Mater. Sci. Eng. A 244(1), 75–79 (1998)

    Article  Google Scholar 

  5. Ramnath, B.V., Elanchezhian, C., Annamalai, R.M., Aravind, S., Sri AnandaAtreya, T., Vignesh, V., Subramanian, C.: Aluminium metal matrix composites—a review. Rev. Adv. Mater. Sci. 38(5), 55–60 (2014)

    Google Scholar 

  6. Imran, M., Khan, A.A.: Characterization of Al-7075 metal matrix composites: a review. J. Mater. Res. Technol. 8(3), 3347–3356 (2019)

    Article  Google Scholar 

  7. Chawla, N., Shen, Y.L.: Mechanical behavior of particle reinforced metal matrix composites. Adv. Eng. Mater. 3(6), 357–370 (2001)

    Article  Google Scholar 

  8. Suresh, S., Shenbag, N., Moorthi, V.: Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities. Procedia Eng. 38, 89–97 (2012). https://doi.org/10.1016/j.proeng.2012.06.013

    Article  Google Scholar 

  9. Yaghobizadeh, O., Baharvandi, H.R., Ahmadi, A.R., Aghaei, E.: Development of the properties of Al/SiC Nano-composite fabricated by stir cast method by means of coating SiC particles with Al. SILICON 11(2), 643–649 (2019). https://doi.org/10.1007/s12633-018-9867-3

    Article  Google Scholar 

  10. Kim, C.-S., Cho, K., Manjili, M.H., Nezafati, M.: Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J. Mater. Sci. 52(23), 13319–13349 (2017)

    Article  Google Scholar 

  11. Kandpal, B.C., Kumar, J., Singh, H.: Manufacturing and technological challenges in stir casting of metal matrix composites–a review. Mater. Today Proc. 5(1), 5–10 (2018)

    Article  Google Scholar 

  12. Zhou, M.Y., Ren, L.B., Fan, L.L., Zhang, Y.W.X., Lu, T.H., Quan, G.F., Gupta, M.: Progress in research on hybrid metal matrix composites. J. Alloy. Compd. 838, 155274 (2020)

    Article  Google Scholar 

  13. Xavior, M.A., Kumar, J.A.: Machinability of hybrid metal matrix composite—a review. Procedia Eng. 174, 1110–1118 (2017)

    Article  Google Scholar 

  14. Thejasree, P., Manikandan, N., Krishnamachary, P. C., Varaprasad, K. C., and Selvi, B. J.: Application of Taguchi Approach on Wire Electrical Discharge Machining of SS304. No. 2021–28–0271. SAE Technical Paper, 2021

  15. Krishna, M.V., Xavior, A.M.: An investigation on the mechanical properties of hybrid metal matrix composites. Procedia Eng. 97, 918–924 (2014)

    Article  Google Scholar 

  16. Shridhar, T.N., Krishnamurthy, L., Sridhara, B.K.: Machinability studies on aluminium matrix hybrid composites. Adv. Mat. Res. 894, 27–31 (2014). https://doi.org/10.4028/www.scientific.net/amr.894.27

    Article  Google Scholar 

  17. Padmavathi, K.R., Ramakrishnan, R.: Tribological behaviour of aluminium hybrid metal matrix composite. Procedia Eng. 97, 660–667 (2014)

    Article  Google Scholar 

  18. Ravi Kumar, K., Kiran, K., Sreebalaji, V.S.: Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J. Alloys Compd. 723, 795–801 (2017). https://doi.org/10.1016/j.jallcom.2017.06.309

    Article  Google Scholar 

  19. Gururaja, S., Ramulu, M., Pedersen, W.: Machining of MMCs: a review. Mach. Sci. Technol. 17(1), 41–73 (2013). https://doi.org/10.1080/10910344.2012.747897

    Article  Google Scholar 

  20. Muley, A.V., Aravindan, S., Singh, I.P.: Nano and hybrid aluminum based metal matrix composites: an overview. Manuf. Rev. 2, 15 (2015)

    Google Scholar 

  21. Mavhungu, S.T., Akinlabi, E.T., Onitiri, M.A., Varachia, F.M.: Aluminum matrix composites for industrial use: advances and trends. Procedia Manuf. 7, 178–182 (2017). https://doi.org/10.1016/j.promfg.2016.12.045

    Article  Google Scholar 

  22. Hemalatha, A., Reddy, V.D., Prasad, K.: Evolution of regression and ANFIS models for wire spark erosion machining of aluminium metal matrix composites for aerospace applications. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01012-x

    Article  Google Scholar 

  23. Thévenot, F.: Boron Carbide—a comprehensive review. J. Eur. Ceram. Soc. 6(4), 205–225 (1990). https://doi.org/10.1016/0955-2219(90)90048-k

    Article  Google Scholar 

  24. Asm International. Materials Information Society. ASM Engineered Materials Reference Book; Asm International: Metals Park, Ohio, 1994

  25. Binoj, J. S., Thejasree, P., Palanisamy, D., Naidu, B., Manikandan, N., Raju, R., and Manideep, M.: Application of Multiple Regression Analysis for Wire Electrical Discharge Machining of Ti–6Al–4 V (Grade 5). In Recent Advances in Materials and Modern Manufacturing, pp. 1085–1093. Springer, Singapore, 2022

  26. Vishnu Vardhana Naidu, B., Varaprasad, K. C., Manikandan, N., and Binoj, J. S.: Development of Multiple Regression Models for Wire Spark Erosion Machining of AA2024 Alloy. In Advances in Industrial Automation and Smart Manufacturing, pp. 653–661. Springer, Singapore, 2021

  27. Palanisamy, D., Devaraju, A., Manikandan, N., Balasubramanian, K., Arulkirubakaran, D.: Experimental investigation and optimization of process parameters in EDM of aluminium metal matrix composites. Mater. Today Proc. 22, 525–530 (2020)

    Article  Google Scholar 

  28. Thejasree, P., Binoj, J.S., Manikandan, N., Krishnamachary, P.C., Raju, R., Palanisamy, D.: Multi objective optimization of wire electrical discharge machining on Inconel 718 using Taguchi grey relational analysis. Mater. Today Proc. 39, 230–235 (2021)

    Article  Google Scholar 

  29. Natarajan, M., Pasupuleti, T., Silambarasan, R., Ramesh, R., and Katta, L. N.: Development of Prediction Models for Spark Erosion Machining of SS304 Using Regression Analysis. No. 2022–28–0339. SAE Technical Paper, 2022

  30. Thejasree, P., Narasimhamu, K.L., Natarajan, M., Raju, R.: Generative modelling of laser beam welded Inconel 718 thin weldments using ANFIS based hybrid algorithm. Int. J. Interact. Des. Manuf. (IJIDeM) (2022). https://doi.org/10.1007/s12008-022-00959-1

    Article  Google Scholar 

  31. Manikandan, N., Varaprasad, K. C., Thejasree, P., Palanisamy, D., Arulkirubakaran, D., Raju, R., and Badrinath, K.: Prediction of Performance Measures Using Multiple Regression Analysis for Wire Electrical Discharge Machining of Titanium Alloy. In Recent Advances in Materials and Modern Manufacturing, pp. 601–612. Springer, Singapore, 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hemalatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, A., Reddy, V.D. & Hemachandra, S. Development of empirical models and machinability comparison on wire electrical discharge machining of aluminium based hybrid and metal matrix composites. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01200-3

Keywords

Navigation