Skip to main content
Log in

Recast Layer Formation during Wire Electrical Discharge Machining of Titanium (Ti-Al6-V4) Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Titanium alloys, in particularly Ti-6Al-4V alloy is used enormously in many high-tech sectors specially in aerospace industries due to its superior properties. Machining process (for example wire electrical discharge machining) to reshape this alloy affects the integrity of the newly generated surfaces. This experimental study has identified three affected layers using scanning electron microscopy on the cross section of the machined titanium (Ti-6Al-4V) alloy surface generated from wire electrical discharge machining (WEDM). This study also explained the formation mechanism of those three layers as no detail investigation is available in this area so far. It was found that the top flaky layers are formed due to the highest cooling rate at the outermost surface, which is induced due to the low thermal conductivity of the titanium alloy as well as the quenching effect because of the existence of dielectric. The recast layer is formed at a cooling rate lower than that at the outer surface, where the melted material is resolidified very quickly without having any grain boundaries. The heat-affected zone appears at a slightly different color, which does not melt but experience heat treatment during the machining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Bisaria and P. Shandilya, Surface Integrity Aspects for NiTi Shape Memory Alloys During Wire Electric Discharge Machining: A Review, J. Mater. Res., 2020, 35(6), p 537–558.

    Article  CAS  Google Scholar 

  2. A. Smirnov, P. Peretyagin and J. Bartolomé, Wire Electrical Discharge Machining of 3Y-TZP/Ta Ceramic-Metal Composites, J. Alloy. Compd., 2018, 739, p 62–68.

    Article  CAS  Google Scholar 

  3. H. Bisaria and P. Shandilya, Experimental Studies on Electrical Discharge Wire Cutting of Ni-Rich NiTi Shape Memory Alloy, Mater. Manuf. Processes, 2018, 33(9), p 977–985.

    Article  CAS  Google Scholar 

  4. E.K. Mussada, C.C. Hua and A.K.P. Rao, Surface Hardenability Studies of the Die Steel Machined by WEDM, Mater. Manuf. Process., 2018, 1, p 1–6.

    Google Scholar 

  5. S. Kar and P.K. Patowari, Electrode Wear Phenomenon and Its Compensation in Micro Electrical Discharge Milling: A Review, Mater. Manuf. Process., 2018, 1, p 1–27.

    Google Scholar 

  6. A. Pramanik et al., Processing of Duplex Stainless Steel by WEDM, Mater. Manuf. Process., 2018, 1, p 1–9.

    Google Scholar 

  7. A. Pramanik and A. Basak, Sustainability in Wire Electrical Discharge Machining of Titanium Alloy: Understanding Wire Rupture, J. Clean. Prod., 2018, 198, p 472–479.

    Article  CAS  Google Scholar 

  8. N. Varote and S.S. Joshi, Microstructural Analysis of Machined Surface Integrity in Drilling a Titanium Alloy, J. Mater. Eng. Perform., 2017, 26(9), p 4391–4401.

    Article  CAS  Google Scholar 

  9. L.D. Frame et al., Impacts of Machining and Heat Treating Practices on Residual Stresses in Alpha-Beta Titanium Alloys, J. Mater. Eng. Perform., 2020, 29(6), p 3626–3637.

    Article  CAS  Google Scholar 

  10. D.P. Yan and X. Jin, Characterization of Shear Band Formation and Microstructure Evolution during Orthogonal Cutting of Ti-5553: Part I—Shear Angle, Strain and Strain Rate, J. Mater. Eng. Perform., 2020, 29(6), p 4063–4074.

    Article  CAS  Google Scholar 

  11. S. Sartori et al., Surface Integrity Analysis of Ti6Al4V After Semi-finishing Turning Under Different Low-Temperature Cooling Strategies, J. Mater. Eng. Perform., 2018, 27(9), p 4810–4818.

    Article  CAS  Google Scholar 

  12. A. Pramanik, Problems and Solutions in Machining of Titanium Alloys, Int. J. Adv. Manuf. Technol., 2014, 70(5–8), p 919–928.

    Article  Google Scholar 

  13. A. Pramanik et al., Machining and Tool Wear Mechanisms During Machining Titanium Alloys. Advanced Materials Research, Trans Tech Publications, 2013.

  14. A. Pramanik et al., Burr Formation During Drilling of Mild Steel at Different Machining Conditions, Mater. Manuf. Processes, 2019, 34(7), p 726–735.

    Article  CAS  Google Scholar 

  15. A. Pramanik and G. Littlefair, Machining of Titanium Alloy (Ti-6Al-4V)—Theory to Application, Mach. Sci. Technol., 2015, 19(1), p 1–49.

    Article  CAS  Google Scholar 

  16. S. Pradhan et al., Investigation of Machining Characteristics of Hard-to-Machine Ti-6Al-4V-ELI Alloy for Biomedical Applications, J. Market. Res., 2019, 8(5), p 4849–4862.

    CAS  Google Scholar 

  17. N.M. Kumar, S.S. Kumaran and L. Kumaraswamidhas, An Investigation of Mechanical Properties and Material Removal Rate, Tool Wear Rate in EDM Machining Process of AL2618 Alloy Reinforced with Si3N4, AlN and ZrB2 Composites, J. Alloy. Compd., 2015, 650, p 318–327.

    Article  CAS  Google Scholar 

  18. Y.C. Lin, B.H. Yan and Y.S. Chang, Machining Characteristics of Titanium Alloy (Ti–6Al–4V) Using a Combination Process of EDM with USM, J. Mater. Process. Technol., 2000, 104(3), p 171–177.

    Article  Google Scholar 

  19. M. Kunieda, S. Furuoya and N. Taniguchi, Improvement of EDM Efficiency by Supplying Oxygen Gas into Gap, CIRP Ann. Manuf. Technol., 1991, 40(1), p 215–218.

    Article  Google Scholar 

  20. M.-D. Moses and M.P. Jahan, Micro-EDM Machinability of Difficult-to-Cut Ti-6Al-4V Against Soft Brass, Int. J. Adv. Manuf. Technol., 2015, 81(5), p 1345–1361.

    Article  Google Scholar 

  21. H. Huang and J. Yan, Microstructural Changes of Zr-Based Metallic Glass During Micro-electrical Discharge Machining and Grinding by a Sintered Diamond Tool, J. Alloy. Compd., 2016, 688, p 14–21.

    Article  CAS  Google Scholar 

  22. S.-L. Chen et al., Effect of Electro-Discharging on Formation of Biocompatible Layer on Implant Surface, J. Alloy. Compd., 2008, 456(1–2), p 413–418.

    Article  CAS  Google Scholar 

  23. T.-S. Yang et al., Effect of Electrical Discharging on Formation of Nanoporous Biocompatible Layer on Ti-6Al-4V Alloys, Implant Dent., 2013, 22(4), p 374–379.

    Article  Google Scholar 

  24. F. Otsuka, Y. Kataoka and T. Miyazaki, Enhanced Osteoblast Response to Electrical Discharge Machining Surface, Dent. Mater. J., 2012, 31(2), p 309–315.

    Article  CAS  Google Scholar 

  25. P.-W. Peng et al., Effect of Electrical-Discharging on Formation of Nanoporous Biocompatible Layer on Titanium, J. Alloy. Compd., 2010, 492(1–2), p 625–630.

    Article  CAS  Google Scholar 

  26. Y.H. Shih et al., Effect of Nano-Titanium Hydride on Formation of Multi-nanoporous TiO2 Film on Ti, Appl. Surf. Sci., 2007, 253(7), p 3678–3682.

    Article  CAS  Google Scholar 

  27. H.-C. Cheng et al., Titanium Nanostructural Surface Processing for Improved Biocompatibility, Appl. Phys. Lett., 2006, 89(17), p 1702.

    Article  Google Scholar 

  28. S.-L. Chen et al., Research of the Recast Layer on Implant Surface Modified by Micro-current Electrical Discharge Machining Using Deionized Water Mixed with Titanium Powder as Dielectric Solvent, Appl. Surf. Sci., 2014, 311, p 47–53.

    Article  CAS  Google Scholar 

  29. A.R. Prasad, K. Ramji and G. Datta, An Experimental Study of Wire EDM on Ti-6Al-4V Alloy, Procedia Mater. Sci., 2014, 5, p 2567–2576.

    Article  CAS  Google Scholar 

  30. A. Kumar, V. Kumar and J. Kumar, Investigation of machining parameters and surface integrity in wire electric discharge machining of pure titanium, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2013, 227(7), p 972–992.

    Article  CAS  Google Scholar 

  31. P. Sivaprakasam, P. Hariharan and S. Gowri, Modeling and Analysis of Micro-WEDM Process of Titanium Alloy (Ti–6Al–4V) Using Response Surface Approach, Eng. Sci. Technol. Int. J., 2014, 17(4), p 227–235.

    Google Scholar 

  32. S.P. Arikatla, K.T. Mannan and A. Krishnaiah, Investigations on surface Characterisation of Wire Electric Discharge Machined Surface of Titanium Alloy, Int. J. Eng. Res. Technol., 2013, 6(4), p 663–570.

    Google Scholar 

  33. D. Aspinwall et al., Workpiece Surface Roughness and Integrity After WEDM of Ti–6Al–4V and Inconel 718 Using Minimum Damage Generator Technology, CIRP Ann. Manuf. Technol., 2008, 57(1), p 187–190.

    Article  Google Scholar 

  34. M. Manjaiah et al., Wire Electric Discharge Machining Characteristics of Titanium Nickel Shape Memory Alloy, Trans. Nonferr. Met. Soc. China, 2014, 24(10), p 3201–3209.

    Article  CAS  Google Scholar 

  35. A. Kumar, V. Kumar and J. Kumar, Parametric Effect on Wire Breakage Frequency and Surface Topography in WEDM of Pure Titanium, J. Mech. Eng. Technol., 2013, 1(2), p 51–56.

    Article  Google Scholar 

  36. S.D. Lenin et al., Influence of Pulse-on-Time on the Performance of Wire Electrical Discharge Machining of Ti-6Al-4V Using Zinc Coated Brass Wire, Appl. Mech. Mater., 2014, 592–594, p 416–420.

    Article  Google Scholar 

  37. M.K. Kuttuboina, A. Uthirapathi and S.D. Lenin, Effect of Process Parameters in Electric Discharge Machining of Ti-6Al–4V Alloy by Three Different Tool Electrode Materials, Adv. Mater. Res., 2012, 488–489, p 876–880.

    Article  Google Scholar 

  38. A. Alias, B. Abdullah and N.M. Abbas, Influence of Machine Feed Rate in WEDM of Titanium Ti-6Al-4 V with Constant Current (6A) Using Brass Wire, Procedia Engineering, 2012, 41, p 1806–1811.

    Article  CAS  Google Scholar 

  39. A. Pramanik et al., Optimizing Dimensional Accuracy of Titanium Alloy Features Produced by Wire Electrical Discharge Machining, Mater. Manuf. Processes, 2019, 34(10), p 1083–1090.

    Article  CAS  Google Scholar 

  40. A. Pramanik, A.K. Basak and C. Prakash, Understanding the wire electrical discharge machining of Ti6Al4V alloy, Heliyon, 2019, 5(4), p e01473.

    Article  CAS  Google Scholar 

  41. M.N. Islam and A. Pramanik, Comparison of design of experiments via traditional and Taguchi method, J. Adv. Manuf. Syst., 2016, 15(03), p 151–160.

    Article  Google Scholar 

  42. B. Gugulothu, Optimization of Process Parameters on EDM of Titanium Alloy, Mater. Today: Proc., 2020, 27, p 257–262.

    CAS  Google Scholar 

  43. M.R. Singh, P.K. Shrivastava and P. Singh, Optimization of EDM Process of Titanium Alloy Using EPSDE Technique, Multisc. Multidiscip. Model. Experim. Des., 2020, 1, p 1–10.

    Google Scholar 

  44. M. Priyadarshini et al., Multi-objective Optimization of EDM Process for Titanium Alloy, Materials Today: Proc., 2020, 33, p 5526–5529.

    CAS  Google Scholar 

  45. S. Yeo, W. Kurnia and P. Tan, Critical Assessment and Numerical Comparison of Electro-thermal Models in EDM, J. Mater. Process. Technol., 2008, 203(1–3), p 241–251.

    Article  CAS  Google Scholar 

  46. H. Bisaria and P. Shandilya, Study on Crater Depth During Material Removal in WEDC of Ni-Rich Nickel–Titanium Shape Memory Alloy, J. Braz. Soc. Mech. Sci. Eng., 2019, 41(3), p 1–11.

    Article  CAS  Google Scholar 

  47. F.T. Macedo et al., Fundamental Investigation of Dry Electrical Discharge Machining (DEDM) by Optical Emission Spectroscopy and Its Numerical Interpretation, Int. J. Adv. Manuf. Technol., 2017, 90(9), p 3697–3709.

    Article  Google Scholar 

  48. S. Yeo, W. Kurnia and P. Tan, Electro-thermal Modelling of Anode and Cathode in micro-EDM, J. Phys. D Appl. Phys., 2007, 40(8), p 2513.

    Article  CAS  Google Scholar 

  49. H. Singh, Experimental Study of Distribution of Energy During EDM Process for Utilization in Thermal Models, Int. J. Heat Mass Transf., 2012, 55(19–20), p 5053–5064.

    Article  Google Scholar 

  50. A.A. Khan, Role of Heat Transfer on Process Characteristics During Electrical Discharge Machining, Developments in Heat Transfer, InTech, 2011.

  51. K. Salonitis et al., Thermal Modeling of the Material Removal Rate and Surface Roughness for Die-sinking EDM, Int. J. Adv. Manuf. Technol., 2009, 40(3–4), p 316–323.

    Article  Google Scholar 

  52. M. Kunieda et al., Advancing EDM Through Fundamental Insight into the Process, CIRP Ann. Manuf. Technol., 2005, 54(2), p 64–87.

    Article  Google Scholar 

  53. A. Basak et al., Chemical Reactivity of Thermo-hardenable Steel Weld Joints Investigated by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2008, 53(25), p 7575–7582.

    Article  CAS  Google Scholar 

  54. A. Pramanik et al., Electrical Discharge Machining of 6061 Aluminium Alloy, Trans. Nonferr. Met. Soc. China, 2015, 25(9), p 2866–2874.

    Article  CAS  Google Scholar 

  55. A. Pramanik, Electrical Discharge Machining of MMCs Reinforced with Very Small Particles, Mater. Manuf. Process., 2016, 31(4), p 397–404.

    Article  CAS  Google Scholar 

  56. A. Mohanty, G. Talla and S. Gangopadhyay, Experimental Investigation and Analysis of EDM Characteristics of Inconel 825, Mater. Manuf. Processes, 2014, 29(5), p 540–549.

    Article  CAS  Google Scholar 

  57. L. Li et al., Machining Characteristics of Inconel 718 by Sinking-EDM and wire-EDM, Mater. Manuf. Processes, 2015, 30(8), p 968–973.

    Article  Google Scholar 

  58. P. Shandilya, H. Bisaria and P. Jain, Parametric Study on the Recast Layer During EDWC of a Ni-Rich NiTi Shape Memory Alloy, J. Micromanuf., 2018, 1(2), p 134–141.

    Article  Google Scholar 

  59. P. Sharma, D. Chakradhar and S. Narendranath, Effect of wire material on productivity and surface integrity of WEDM-processed Inconel 706 for aircraft application, J. Mater. Eng. Perform., 2016, 25(9), p 3672–3681.

    Article  CAS  Google Scholar 

  60. P. Sharma, D. Chakradhar and S. Narendranath, Effect of Wire Diameter on Surface Integrity of Wire Electrical Discharge Machined Inconel 706 for Gas Turbine Application, J. Manuf. Process., 2016, 24, p 170–178.

    Article  Google Scholar 

  61. P. Sharma, D. Chakradhar and S. Narendranath, Evaluation of WEDM Performance Characteristics of Inconel 706 for Turbine Disk Application, Mater. Des., 2015, 88, p 558–566.

    Article  CAS  Google Scholar 

  62. A. Pramanik and G. Littlefair, Wire EDM Mechanism of MMCs with the Variation of Reinforced Particle Size, Mater. Manuf. Process., 2016, 31(13), p 1700–1708.

    Article  CAS  Google Scholar 

  63. I. Maher, A.A. Sarhan and M. Hamdi, Review of Improvements in Wire Electrode Properties for Longer Working Time and Utilization in Wire EDM Machining, The International Journal of Advanced Manufacturing Technology, 2015, 76(1–4), p 329–351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pramanik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, A., Basak, A.K., Prakash, C. et al. Recast Layer Formation during Wire Electrical Discharge Machining of Titanium (Ti-Al6-V4) Alloy. J. of Materi Eng and Perform 30, 8926–8935 (2021). https://doi.org/10.1007/s11665-021-06116-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06116-1

Keywords

Navigation