Skip to main content

Advertisement

Log in

Charting the Next Road Map for CSF Biomarkers in Alzheimer’s Disease and Related Dementias

  • Review
  • Published:
Neurotherapeutics

Abstract

Clinical prediction of underlying pathologic substrates in people with Alzheimer’s disease (AD) dementia or related dementia syndromes (ADRD) has limited accuracy. Etiologic biomarkers — including cerebrospinal fluid (CSF) levels of AD proteins and cerebral amyloid PET imaging — have greatly modernized disease-modifying clinical trials in AD, but their integration into medical practice has been slow. Beyond core CSF AD biomarkers (including beta-amyloid 1–42, total tau, and tau phosphorylated at threonine 181), novel biomarkers have been interrogated in single- and multi-centered studies with uneven rigor. Here, we review early expectations for ideal AD/ADRD biomarkers, assess these goals’ future applicability, and propose study designs and performance thresholds for meeting these ideals with a focus on CSF biomarkers. We further propose three new characteristics: equity (oversampling of diverse populations in the design and testing of biomarkers), access (reasonable availability to 80% of people at risk for disease, along with pre- and post-biomarker processes), and reliability (thorough evaluation of pre-analytical and analytical factors influencing measurements and performance). Finally, we urge biomarker scientists to balance the desire and evidence for a biomarker to reflect its namesake function, indulge data- as well as theory-driven associations, re-visit the subset of rigorously measured CSF biomarkers in large datasets (such as Alzheimer’s disease neuroimaging initiative), and resist the temptation to favor ease over fail-safe in the development phase. This shift from discovery to application, and from suspended disbelief to cogent ingenuity, should allow the AD/ADRD biomarker field to live up to its billing during the next phase of neurodegenerative disease research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data available through ADNI or through reasonable requests.

Abbreviations

ACTH:

Adrenocorticotropic hormone

AD:

Alzheimer’s disease

ADNC:

Alzheimer’s disease neuropathologic changes

ADRD:

Alzheimer’s related disorders including FTLD, LBD, and vascular dementia

ADNI:

Alzheimer’s disease neuro-imaging initiative

AgRP:

Agouti-related peptide

ALS:

Amyotrophic lateral sclerosis

BACE1:

Beta-site amyloid precursor protein cleaving enzyme 1

BDNF:

Brain-derived neurotrophic factor

CAH:

Critical access hospital

CIED:

Cardiac implantable electronic device

CSF:

Cerebrospinal fluid

EDTA:

Ethylenediaminetetraacetic acid

FDA:

Food and Drug Administration

FTLD:

Frontotemporal lobar degeneration

HIV:

Human immunodeficiency virus

IL:

Interleukin

IP-10:

Interferon response protein 10

LBD:

Lewy body disease

LP:

Lumbar puncture

MCI:

Mild cognitive impairment

MCP1:

Monocyte chemoattractant protein 1

MS:

Multiple sclerosis

QALY:

Quality-adjusted life years

NfL:

Neurofilament light chain

NIH:

National Institute of Health

PD:

Parkinson’s disease

PET:

Positron emission tomography

TDP-43:

TAR DNA binding protein of 43 kD

References

  1. Pardridge WM, Vinters HV, Miller BL, Tourtellotte WW, Eisenberg JB, Yang J. High molecular weight Alzheimer’s disease amyloid peptide immunoreactivity in human serum and CSF is an immunoglobulin G. Biochem Biophys Res Commun. 1987;145(1):241–8.

    Article  CAS  PubMed  Google Scholar 

  2. Trunz LM, Gandhi AV, Karambelkar AD, Lange SM, Rao VM, Flanders AE. National trends in lumbar puncture from 2010 to 2018: a shift reversal from the emergency department to the hospital setting for radiologists and advanced practice providers. AJNR Am J Neuroradiol. 2021;42(1):206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  4. Lowenthal A, Vansande M, Karcher D. The differential diagnosis of neurological diseases by fractionating electrophoretically the CSF gamma-globulins. J Neurochem. 1960;6:51–6.

    Article  CAS  PubMed  Google Scholar 

  5. Ebers GC, Paty DW. CSF electrophoresis in one thousand patients. Can J Neurol Sci. 1980;7(4):275–80.

    Article  CAS  PubMed  Google Scholar 

  6. Wybo I, Van Blerk M, Malfait R, Goubert P, Gorus F. Oligoclonal bands in cerebrospinal fluid detected by PhastSystem isoelectric focusing. Clin Chem. 1990;36(1):123–5.

    Article  CAS  PubMed  Google Scholar 

  7. Desplat-Jego S, Feuillet L, Pelletier J, Bernard D, Cherif AA, Boucraut J. Quantification of immunoglobulin free light chains in cerebrospinal fluid by nephelometry. J Clin Immunol. 2005;25(4):338–45.

    Article  CAS  PubMed  Google Scholar 

  8. Boudet S, Peyrodie L, Wang Z, Forzy G. Semi-automated image analysis of gel electrophoresis of cerebrospinal fluid for oligoclonal band detection. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:744–7.

    CAS  PubMed  Google Scholar 

  9. Puissant-Lubrano B. Evaluation of Cobas 8000(R) for the quantification of albumin and IgG in serum and cerebrospinal fluid. Clin Biochem. 2018;56:105–8.

    Article  CAS  PubMed  Google Scholar 

  10. Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology. 2009;73(22):1914–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu XN, Chen XJ, Sun XB, Qiu W, Peng LS, Li HF, et al. Establishment and consistency verification of the standard operation procedure for laboratory detection of immunoglobulin G oligoclonal bands in cerebrospinal fluid. Zhonghua Yi Xue Za Zhi. 2021;101(31):2465–70.

    CAS  PubMed  Google Scholar 

  12. Edwards C, Leira EC, Gonzalez-Alegre P. Residency training: a failed lumbar puncture is more about obesity than lack of ability. Neurology. 2015;84(10):e69–72.

    Article  PubMed  Google Scholar 

  13. Voigt J, Krause C, Rohwader E, Saschenbrecker S, Hahn M, Danckwardt M, et al. Automated indirect immunofluorescence evaluation of antinuclear autoantibodies on HEp-2 cells. Clin Dev Immunol. 2012;2012:651058.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grossmann K, Roggenbuck D, Schroder C, Conrad K, Schierack P, Sack U. Multiplex assessment of non-organ-specific autoantibodies with a novel microbead-based immunoassay. Cytometry A. 2011;79(2):118–25.

    Article  PubMed  Google Scholar 

  15. Melegari A, Bonaguri C, Russo A, Luisita B, Trenti T, Lippi G. A comparative study on the reliability of an automated system for the evaluation of cell-based indirect immunofluorescence. Autoimmun Rev. 2012;11(10):713–6.

    Article  CAS  PubMed  Google Scholar 

  16. Kivity S, Gilburd B, Agmon-Levin N, Carrasco MG, Tzafrir Y, Sofer Y, et al. A novel automated indirect immunofluorescence autoantibody evaluation. Clin Rheumatol. 2012;31(3):503–9.

    Article  PubMed  Google Scholar 

  17. Bonroy C, Verfaillie C, Smith V, Persijn L, De Witte E, De Keyser F, et al. Automated indirect immunofluorescence antinuclear antibody analysis is a standardized alternative for visual microscope interpretation. Clin Chem Lab Med. 2013;51(9):1771–9.

    Article  CAS  PubMed  Google Scholar 

  18. Agmon-Levin N, Damoiseaux J, Kallenberg C, Sack U, Witte T, Herold M, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis. 2014;73(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  19. Bizzaro N, Antico A, Platzgummer S, Tonutti E, Bassetti D, Pesente F, et al. Automated antinuclear immunofluorescence antibody screening: a comparative study of six computer-aided diagnostic systems. Autoimmun Rev. 2014;13(3):292–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bertin D, Mouhajir Y, Bongrand P, Bardin N. ICARE improves antinuclear antibody detection by overcoming the barriers preventing accreditation. Clin Chim Acta. 2016;454:57–61.

    Article  CAS  PubMed  Google Scholar 

  21. Van den Bremt S, Schouwers S, Van Blerk M, Van Hoovels L. ANA IIF automation: moving towards harmonization? Results of a multicenter study. J Immunol Res. 2017;2017:6038137.

    PubMed  PubMed Central  Google Scholar 

  22. Ricchiuti V, Adams J, Hardy DJ, Katayev A, Fleming JK. Automated processing and evaluation of anti-nuclear antibody indirect immunofluorescence testing. Front Immunol. 2018;9:927.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carbone T, Gilio M, Padula MC, Tramontano G, D’Angelo S, Pafundi V. A step towards standardization: a method for end-point titer determination by fluorescence index of an automated microscope. End-point titer determination by fluorescence index. J Immunol Methods. 2018;456:67–71.

    Article  CAS  PubMed  Google Scholar 

  24. Bogaert L, Van den Bremt S, Schouwers S, Bossuyt X, Van Hoovels L. Harmonizing by reducing inter-run variability: performance evaluation of a quality assurance program for antinuclear antibody detection by indirect immunofluorescence. Clin Chem Lab Med. 2019;57(7):990–8.

    Article  CAS  PubMed  Google Scholar 

  25. Van Hoovels L, Bossuyt X, Manfredi M, Grossi V, Benucci M, Van Den Bremt S, et al. Integrating quality assurance in autoimmunity: the changing face of the automated ANA IIF test. Clin Chem Lab Med. 2021;59(7):1247–55.

    Article  PubMed  Google Scholar 

  26. Yoon S, Moon HW, Kim H, Hur M, Yun YM. Clinical performance of two automated immunoassays, EliA CTD screen and QUANTA flash CTD screen plus, for antinuclear antibody screening. Ann Lab Med. 2022;42(1):63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller TM, Johnston SC. Should the Babinski sign be part of the routine neurologic examination? Neurology. 2005;65(8):1165–8.

    Article  PubMed  Google Scholar 

  28. Thaller M, Hughes T. Inter-rater agreement of observable and elicitable neurological signs. Clin Med (Lond). 2014;14(3):264–7.

    Article  PubMed  Google Scholar 

  29. Potnis KC, Ross JS, Aneja S, Gross CP, Richman IB. Artificial intelligence in breast cancer screening: evaluation of FDA device regulation and future recommendations. JAMA Intern Med. 2022;182(12):1306–12.

    Article  PubMed  Google Scholar 

  30. Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM, et al. Biomarker discovery for Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease. Acta Neuropathol. 2010;120(3):385–99.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mielke MM, Frank RD, Dage JL, Jeromin A, Ashton NJ, Blennow K, et al. Comparison of plasma phosphorylated tau species with amyloid and tau positron emission tomography, neurodegeneration, vascular pathology, and cognitive outcomes. JAMA Neurol. 2021;78(9):1108–17.

    Article  PubMed  Google Scholar 

  32. Clifford DB, Fagan AM, Holtzman DM, Morris JC, Teshome M, Shah AR, et al. CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology. 2009;73(23):1982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ances BM, Benzinger TL, Christensen JJ, Thomas J, Venkat R, Teshome M, et al. 11C-PiB imaging of human immunodeficiency virus-associated neurocognitive disorder. Arch Neurol. 2012;69(1):72–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ozturk T, Kollhoff A, Anderson AM, Christina Howell J, Loring DW, Waldrop-Valverde D, et al. Linked CSF reduction of phosphorylated tau and IL-8 in HIV associated neurocognitive disorder. Sci Rep. 2019;9(1):8733.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Davis Giardina T, Menon S, Parrish DE, Sittig DF, Singh H. Patient access to medical records and healthcare outcomes: a systematic review. J Am Med Inform Assoc. 2014;21(4):737–41.

    Article  PubMed  Google Scholar 

  36. Steitz BD, Sulieman L, Wright A, Rosenbloom ST. Association of immediate release of test results to patients with implications for clinical workflow. JAMA Netw Open. 2021;4(10):e2129553.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1(2):182–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ghouneimy A, Mahfouz M. Straightforward, inexpensive and sensitive. Nat Biomed Eng. 2022;6(8):923–4.

    Article  Google Scholar 

  39. McMahon GM, Waikar SS. Biomarkers in nephrology: core curriculum 2013. Am J Kidney Dis. 2013;62(1):165–78.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Taghdiri F, Gumus M, Algarni M, Fasano A, Tang-Wai D, Tartaglia MC. Association between cerebrospinal fluid biomarkers and age-related brain changes in patients with normal pressure hydrocephalus. Sci Rep. 2020;10(1):9106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vanninen A, Nakajima M, Miyajima M, Rauramaa T, Kokki M, Musialowicz T, et al. Elevated CSF LRG and decreased Alzheimer’s disease biomarkers in idiopathic normal pressure hydrocephalus. J Clin Med. 2021;10(5).

  42. Mazzeo S, Emiliani F, Bagnoli S, Padiglioni S, Del Re LM, Giacomucci G, et al. Alzheimer’s disease CSF biomarker profiles in idiopathic normal pressure hydrocephalus. J Pers Med. 2022;12(6).

  43. Graff-Radford NR. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus. Neurology. 2014;83(17):1573–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wennberg AM, Whitwell JL, Tosakulwong N, Weigand SD, Murray ME, Machulda MM, et al. The influence of tau, amyloid, alpha-synuclein, TDP-43, and vascular pathology in clinically normal elderly individuals. Neurobiol Aging. 2019;77:26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gold BT, Brown CA, Hakun JG, Shaw LM, Trojanowski JQ, Smith CD. Clinically silent Alzheimer’s and vascular pathologies influence brain networks supporting executive function in healthy older adults. Neurobiol Aging. 2017;58:102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mattsson N, Insel P, Nosheny R, Trojanowski JQ, Shaw LM, Jack CR Jr, et al. Effects of cerebrospinal fluid proteins on brain atrophy rates in cognitively healthy older adults. Neurobiol Aging. 2014;35(3):614–22.

    Article  CAS  PubMed  Google Scholar 

  47. Mattsson N, Insel P, Nosheny R, Zetterberg H, Trojanowski JQ, Shaw LM, et al. CSF protein biomarkers predicting longitudinal reduction of CSF beta-amyloid42 in cognitively healthy elders. Transl Psychiatry. 2013;3(8):e293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitchell TW, Mufson EJ, Schneider JA, Cochran EJ, Nissanov J, Han LY, et al. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer’s disease. Ann Neurol. 2002;51(2):182–9.

    Article  PubMed  Google Scholar 

  49. Mollenhauer B, Caspell-Garcia CJ, Coffey CS, Taylor P, Shaw LM, Trojanowski JQ, et al. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurology. 2017;89(19):1959–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.

    Article  PubMed  Google Scholar 

  52. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM, et al. Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol. 2010;119(6):669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu WT, Josephs KA, Knopman DS, Boeve BF, Dickson DW, Petersen RC, et al. Temporal lobar predominance of TDP-43 neuronal cytoplasmic inclusions in Alzheimer disease. Acta Neuropathol. 2008;116(2):215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA. TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain. 2016;139(11):2983–93.

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Flores R, Wisse LEM, Das SR, Xie L, McMillan CT, Trojanowski JQ, et al. Contribution of mixed pathology to medial temporal lobe atrophy in Alzheimer’s disease. Alzheimers Dement. 2020;16(6):843–52.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Urwin H, Josephs KA, Rohrer JD, Mackenzie IR, Neumann M, Authier A, et al. FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol. 2010;120(1):33–41.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Koga S, Kouri N, Walton RL, Ebbert MTW, Josephs KA, Litvan I, et al. Corticobasal degeneration with TDP-43 pathology presenting with progressive supranuclear palsy syndrome: a distinct clinicopathologic subtype. Acta Neuropathol. 2018;136(3):389–404.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waybright T, Avellino AM, Ellenbogen RG, Hollinger BJ, Veenstra TD, Morrison RS. Characterization of the human ventricular cerebrospinal fluid proteome obtained from hydrocephalic patients. J Proteomics. 2010;73(6):1156–62.

    Article  CAS  PubMed  Google Scholar 

  61. Rosler N, Wichart I, Jellinger KA. Ex vivo lumbar and post mortem ventricular cerebrospinal fluid substance P-immunoreactivity in Alzheimer’s disease patients. Neurosci Lett. 2001;299(1–2):117–20.

    Article  CAS  PubMed  Google Scholar 

  62. Tarnaris A, Toma AK, Chapman MD, Petzold A, Keir G, Kitchen ND, et al. Rostrocaudal dynamics of CSF biomarkers. Neurochem Res. 2011;36(3):528–32.

    Article  CAS  PubMed  Google Scholar 

  63. Brandner S, Thaler C, Lewczuk P, Lelental N, Buchfelder M, Kleindienst A. Neuroprotein dynamics in the cerebrospinal fluid: intraindividual concomitant ventricular and lumbar measurements. Eur Neurol. 2013;70(3–4):189–94.

    Article  PubMed  Google Scholar 

  64. Brandner S, Thaler C, Lelental N, Buchfelder M, Kleindienst A, Maler JM, et al. Ventricular and lumbar cerebrospinal fluid concentrations of Alzheimer’s disease biomarkers in patients with normal pressure hydrocephalus and posttraumatic hydrocephalus. J Alzheimers Dis. 2014;41(4):1057–62.

    Article  CAS  PubMed  Google Scholar 

  65. Djukic M, Spreer A, Lange P, Bunkowski S, Wiltfang J, Nau R. Small cisterno-lumbar gradient of phosphorylated tau protein in geriatric patients with suspected normal pressure hydrocephalus. Fluids Barriers CNS. 2016;13(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Minta K, Jeppsson A, Brinkmalm G, Portelius E, Zetterberg H, Blennow K, et al. Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2021;18(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ, Prudencio M, et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci Transl Med. 2017;9(383).

  69. Gendron TF, C9ORF72 Neurofilament Study Group, Daughrity LM, Heckman MG, Diehl NN, Wuu J, et al. Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol. 2017;82(1):139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu WT, Chen-Plotkin A, Grossman M, Arnold SE, Clark CM, Shaw LM, et al. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology. 2010;75(23):2079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu WT, Watts K, Grossman M, Glass J, Lah JJ, Hales C, et al. Reduced CSF p-Tau181 to tau ratio is a biomarker for FTLD-TDP. Neurology. 2013;81(22):1945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Strull WM, Lo B, Charles G. Do patients want to participate in medical decision making? JAMA. 1984;252(21):2990–4.

    Article  CAS  PubMed  Google Scholar 

  73. Street RL Jr, Gordon H, Haidet P. Physicians’ communication and perceptions of patients: is it how they look, how they talk, or is it just the doctor? Soc Sci Med. 2007;65(3):586–98.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Street RL Jr, Haidet P. How well do doctors know their patients? Factors affecting physician understanding of patients’ health beliefs. J Gen Intern Med. 2011;26(1):21–7.

    Article  PubMed  Google Scholar 

  75. Menendez-Gonzalez M. Routine lumbar puncture for the early diagnosis of Alzheimer’s disease. Is it safe? Front Aging Neurosci. 2014;6:65.

    PubMed  PubMed Central  Google Scholar 

  76. Jellinger KA, Janetzky B, Attems J, Kienzl E. Biomarkers for early diagnosis of Alzheimer disease: ‘ALZheimer ASsociated gene’–a new blood biomarker? J Cell Mol Med. 2008;12(4):1094–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Freudenberg JA, Bembas K, Greene MI, Zhang H. Non-invasive, ultra-sensitive, high-throughput assays to quantify rare biomarkers in the blood. Methods. 2008;46(1):33–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, et al. Elevation of plasma beta-amyloid level by glucose loading in Alzheimer mouse models. Biochem Biophys Res Commun. 2009;385(2):193–7.

    Article  CAS  PubMed  Google Scholar 

  79. Laske C, Leyhe T, Stransky E, Hoffmann N, Fallgatter AJ, Dietzsch J. Identification of a blood-based biomarker panel for classification of Alzheimer’s disease. Int J Neuropsychopharmacol. 2011;14(9):1147–55.

    Article  CAS  PubMed  Google Scholar 

  80. Meng X, Li T, Wang X, Lv X, Sun Z, Zhang J, et al. Association between increased levels of amyloid-beta oligomers in plasma and episodic memory loss in Alzheimer’s disease. Alzheimers Res Ther. 2019;11(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cheng S, Banerjee S, Daiello LA, Nakashima A, Jash S, Huang Z, et al. Novel blood test for early biomarkers of preeclampsia and Alzheimer’s disease. Sci Rep. 2021;11(1):15934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sadigh G, Applegate KE, Saindane AM. Prevalence of unanticipated events associated with MRI examinations: a benchmark for MRI quality, safety, and patient experience. J Am Coll Radiol. 2017;14(6):765–72.

    Article  PubMed  Google Scholar 

  83. Duits FH, Martinez-Lage P, Paquet C, Engelborghs S, Lleo A, Hausner L, et al. Performance and complications of lumbar puncture in memory clinics: results of the multicenter lumbar puncture feasibility study. Alzheimers Dement. 2016;12(2):154–63.

    Article  PubMed  Google Scholar 

  84. Prakash N, Caspell-Garcia C, Coffey C, Siderowf A, Tanner CM, Kieburtz K, et al. Feasibility and safety of lumbar puncture in the Parkinson’s disease research participants: Parkinson’s Progression Marker Initiative (PPMI). Parkinsonism Relat Disord. 2019;62:201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Howell JC, Parker MW, Watts KD, Kollhoff A, Tsvetkova DZ, Hu WT. Research lumbar punctures among African Americans and Caucasians: perception predicts experience. Front Aging Neurosci. 2016;8:296.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Peskind ER, Riekse R, Quinn JF, Kaye J, Clark CM, Farlow MR, et al. Safety and acceptability of the research lumbar puncture. Alzheimer Dis Assoc Disord. 2005;19(4):220–5.

    Article  PubMed  Google Scholar 

  87. Hampel H, Shaw LM, Aisen P, Chen C, Lleo A, Iwatsubo T, et al. State-of-the-art of lumbar puncture and its place in the journey of patients with Alzheimer’s disease. Alzheimers Dement. 2022;18(1):159–77.

    Article  PubMed  Google Scholar 

  88. Russo RJ, Costa HS, Silva PD, Anderson JL, Arshad A, Biederman RW, et al. Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med. 2017;376(8):755–64.

    Article  PubMed  Google Scholar 

  89. Padmanabhan D, Kella DK, Mehta R, Kapa S, Deshmukh A, Mulpuru S, et al. Safety of magnetic resonance imaging in patients with legacy pacemakers and defibrillators and abandoned leads. Heart Rhythm. 2018;15(2):228–33.

    Article  PubMed  Google Scholar 

  90. Fluschnik N, Tahir E, Erley J, Mullerleile K, Metzner A, Wenzel JP, et al. 3 Tesla magnetic resonance imaging in patients with cardiac implantable electronic devices: a single centre experience. Europace. 2022.

  91. Aissani S, Laistler E, Felblinger J. MR safety assessment of active implantable medical devices. Radiologe. 2019;59(Suppl 1):40–5.

    Article  PubMed  Google Scholar 

  92. Diehn FE, Wood CP, Watson RE Jr, Mauck WD, Burke MM, Hunt CH. Clinical safety of magnetic resonance imaging in patients with implanted SynchroMed EL infusion pumps. Neuroradiology. 2011;53(2):117–22.

    Article  PubMed  Google Scholar 

  93. De Andres J, Villanueva V, Palmisani S, Cerda-Olmedo G, Lopez-Alarcon MD, Monsalve V, et al. The safety of magnetic resonance imaging in patients with programmable implanted intrathecal drug delivery systems: a 3-year prospective study. Anesth Analg. 2011;112(5):1124–9.

    Article  PubMed  Google Scholar 

  94. Reiss AL, Jo B, Arbelaez AM, Tsalikian E, Buckingham B, Weinzimer SA, et al. A Pilot randomized trial to examine effects of a hybrid closed-loop insulin delivery system on neurodevelopmental and cognitive outcomes in adolescents with type 1 diabetes. Nat Commun. 2022;13(1):4940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wheelock KM, Ross JS, Murugiah K, Lin Z, Krumholz HM, Khera R. Clinician trends in prescribing direct oral anticoagulants for US Medicare beneficiaries. JAMA Netw Open. 2021;4(12):e2137288.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Shiyovich A, Shalev V, Chodick G, Tirosh M, Katz A, Klar MM, et al. Shifting from vitamin K antagonists to non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation: predictors, patterns and temporal trends. BMC Cardiovasc Disord. 2021;21(1):493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Span P. A brain scan may predict Alzheimer’s. Should you get one? New York Times; 2019.

    Google Scholar 

  98. Guo S, Getsios D, Hernandez L, Cho K, Lawler E, Altincatal A, et al. Florbetaben PET in the early diagnosis of Alzheimer’s disease: a discrete event simulation to explore its potential value and key data gaps. Int J Alzheimers Dis. 2012;2012:548157.

    PubMed  PubMed Central  Google Scholar 

  99. Hornberger J, Bae J, Watson I, Johnston J, Happich M. Clinical and cost implications of amyloid beta detection with amyloid beta positron emission tomography imaging in early Alzheimer’s disease - the case of florbetapir. Curr Med Res Opin. 2017;33(4):675–85.

    Article  CAS  PubMed  Google Scholar 

  100. Hornberger J, Michalopoulos S, Dai M, Andrade P, Dilla T, Happich M. Cost-effectiveness of florbetapir-PET in Alzheimer’s disease: a Spanish societal perspective. J Ment Health Policy Econ. 2015;18(2):63–73.

    PubMed  Google Scholar 

  101. Lee YS, Youn H, Jeong HG, Lee TJ, Han JW, Park JH, et al. Cost-effectiveness of using amyloid positron emission tomography in individuals with mild cognitive impairment. Cost Eff Resour Alloc. 2021;19(1):50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Howell JC, Watts KD, Parker MW, Wu J, Kollhoff A, Wingo TS, et al. Race modifies the relationship between cognition and Alzheimer’s disease cerebrospinal fluid biomarkers. Alzheimers Res Ther. 2017;9(1):88.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Morris JC, Schindler SE, McCue LM, Moulder KL, Benzinger TLS, Cruchaga C, et al. Assessment of racial disparities in biomarkers for Alzheimer disease. JAMA Neurol. 2019;76(3):264–73.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wharton W, Kollhoff AL, Gangishetti U, Verble DD, Upadhya S, Zetterberg H, et al. Interleukin 9 alterations linked to alzheimer disease in african americans. Ann Neurol. 2019;86(3):407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Misiura MB, Howell JC, Wu J, Qiu D, Parker MW, Turner JA, et al. Race modifies default mode connectivity in Alzheimer’s disease. Transl Neurodegener. 2020;9:8.

    Article  PubMed  PubMed Central  Google Scholar 

  108. McGregor J. Racial, ethnic, and tribal classifications in biomedical research with biological and group harm. Am J Bioeth. 2010;10(9):23–4.

    Article  PubMed  Google Scholar 

  109. Fullerton SM, Lee SS. Secondary uses and the governance of de-identified data: lessons from the human genome diversity panel. BMC Med Ethics. 2011;12:16.

    Article  PubMed  PubMed Central  Google Scholar 

  110. ASHG denounces attempts to link genetics and racial supremacy. Am J Hum Genet. 2018;103(5):636.

  111. Hu H, Meng L, Bi YL, Zhang W, Xu W, Shen XN, et al. Tau pathologies mediate the association of blood pressure with cognitive impairment in adults without dementia: the CABLE study. Alzheimers Dement. 2022;18(1):53–64.

    Article  CAS  PubMed  Google Scholar 

  112. Hou XH, Xu W, Bi YL, Shen XN, Ma YH, Dong Q, et al. Associations of healthy lifestyles with cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in cognitively intact older adults: the CABLE study. Alzheimers Res Ther. 2021;13(1):81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Babapour Mofrad R, Tijms BM, Scheltens P, Barkhof F, van der Flier WM, Sikkes SAM, et al. Sex differences in CSF biomarkers vary by Alzheimer disease stage and APOE epsilon4 genotype. Neurology. 2020;95(17):e2378–88.

    Article  CAS  PubMed  Google Scholar 

  114. Saunders TS, Jenkins N, Blennow K, Ritchie C, Muniz-Terrera G. Interactions between apolipoprotein E, sex, and amyloid-beta on cerebrospinal fluid p-tau levels in the European prevention of Alzheimer’s dementia longitudinal cohort study (EPAD LCS). EBioMedicine. 2022;83:104241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hu WT. Reporting and social construction of race in Alzheimer’s disease clinical trials. Alzheimers Dement. 2022;18(4):865–6.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sankar PL, Parker LS. The Precision Medicine Initiative’s All of Us Research Program: an agenda for research on its ethical, legal, and social issues. Genet Med. 2017;19(7):743–50.

    Article  PubMed  Google Scholar 

  117. Corporation R. Health Care Access 2004. Available from: https://www.rand.org/topics/healthcare-access.html. Accessed 11 Nov 2022.

  118. Gulliford M, Figueroa-Munoz J, Morgan M, Hughes D, Gibson B, Beech R, et al. What does ‘access to health care’ mean? J Health Serv Res Policy. 2002;7(3):186–8.

    Article  PubMed  Google Scholar 

  119. Quality AfHRa. Access to care. Available from: https://www.ahrq.gov/topics/access-care.html. Accessed 3 Dec 2022.

  120. Mattke S, Hanson M. Expected wait times for access to a disease-modifying Alzheimer’s treatment in the United States. Alzheimers Dement. 2022;18(5):1071–4.

    Article  CAS  PubMed  Google Scholar 

  121. Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56(9):1143–53.

    Article  CAS  PubMed  Google Scholar 

  122. Liu CC, Liu CH, Sun Y, Lee HJ, Tang LY, Chiu MJ. Rural-urban disparities in the prevalence of mild cognitive impairment and dementia in Taiwan: a door-to-door nationwide study. J Epidemiol. 2022;32(11):502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lopez Ricardo Y, Reyes Zamora MC, Perodin Hernandez J, Rodriguez MC. Prevalence of Alzheimer’s disease in rural and urban areas in Cuba and factors influencing on its occurrence: epidemiological cross-sectional protocol. BMJ Open. 2022;12(11):e052704.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rahman M, White EM, Mills C, Thomas KS, Jutkowitz E. Rural-urban differences in diagnostic incidence and prevalence of Alzheimer’s disease and related dementias. Alzheimers Dement. 2021;17(7):1213–30.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Abner EL, Jicha GA, Christian WJ, Schreurs BG. Rural-urban differences in Alzheimer’s disease and related disorders diagnostic prevalence in Kentucky and West Virginia. J Rural Health. 2016;32(3):314–20.

    Article  PubMed  Google Scholar 

  126. Xu WY, Jung J, Retchin SM, Li Y, Roy S. Rural-urban disparities in diagnosis of early-onset dementia. JAMA Netw Open. 2022;5(8):e2225805.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rhew SH, Jacklin K, Bright P, McCarty C, Henning-Smith C, Warry W. Rural health disparities in health care utilization for dementia in Minnesota. J Rural Health. 2022.

  128. O’Hanlon CE, Kranz AM, DeYoreo M, Mahmud A, Damberg CL, Timbie J. Access, quality, and financial performance of rural hospitals following health system affiliation. Health Aff (Millwood). 2019;38(12):2095–104.

    Article  PubMed  Google Scholar 

  129. Khaliq AA, Nsiah E, Bilal NH, Hughes DR, Duszak R Jr. The scope and distribution of imaging services at critical access hospitals. J Am Coll Radiol. 2014;11(9):857–62.

    Article  PubMed  Google Scholar 

  130. Mukendi D, Kalo JL, Kayembe T, Lutumba P, Barbe B, Gillet P, et al. Where there is no brain imaging: safety and diagnostic value of lumbar puncture in patients with neurological disorders in a rural hospital of Central Africa. J Neurol Sci. 2018;393:72–9.

    Article  PubMed  Google Scholar 

  131. Vecchio AC, Williams DW, Xu Y, Yu D, Saylor D, Lofgren S, et al. Sex-specific associations between cerebrospinal fluid inflammatory marker levels and cognitive function in antiretroviral treated people living with HIV in rural Uganda. Brain Behav Immun. 2021;93:111–8.

    Article  CAS  PubMed  Google Scholar 

  132. Joshi R, Mishra PK, Joshi D, Santhosh SR, Parida MM, Desikan P, et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg. 2013;115(9):1753–61.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sall O, Thulin Hedberg S, Neander M, Tiwari S, Dornon L, Bom R, et al. Etiology of central nervous system infections in a rural area of Nepal using molecular approaches. Am J Trop Med Hyg. 2019;101(1):253–9.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Waymack JR, Markwell S, Milbrandt JC, Clark TR. Comparison of rates of emergency department procedures and critical diagnoses in metropolitan and rural hospitals. Rural Remote Health. 2015;15(4):3298.

    PubMed  Google Scholar 

  135. Wu X, Kalra VB, Forman HP, Malhotra A. Cost-effectiveness analysis of CTA and LP for evaluation of suspected SAH after negative non-contrast CT. Clin Neurol Neurosurg. 2016;142:104–11.

    Article  PubMed  Google Scholar 

  136. Kozikowski BA, Burt TM, Tirey DA, Williams LE, Kuzmak BR, Stanton DT, et al. The effect of freeze/thaw cycles on the stability of compounds in DMSO. J Biomol Screen. 2003;8(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  137. Francis CA, Hector MP, Proctor GB. Precipitation of specific proteins by freeze-thawing of human saliva. Arch Oral Biol. 2000;45(7):601–6.

    Article  CAS  PubMed  Google Scholar 

  138. Chen F, Ye J, Chio C, Liu W, Shi J, Qin W. A simplified quick microbial genomic DNA extraction via freeze-thawing cycles. Mol Biol Rep. 2020;47(1):703–9.

    Article  CAS  PubMed  Google Scholar 

  139. Falk RT, Rossi SC, Fears TR, Sepkovic DW, Migella A, Adlercreutz H, et al. A new ELISA kit for measuring urinary 2-hydroxyestrone, 16alpha-hydroxyestrone, and their ratio: reproducibility, validity, and assay performance after freeze-thaw cycling and preservation by boric acid. Cancer Epidemiol Biomarkers Prev. 2000;9(1):81–7.

    CAS  PubMed  Google Scholar 

  140. Ellington AA, Kullo IJ, Bailey KR, Klee GG. Measurement and quality control issues in multiplex protein assays: a case study. Clin Chem. 2009;55(6):1092–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schoonenboom NS, Mulder C, Vanderstichele H, Van Elk EJ, Kok A, Van Kamp GJ, et al. Effects of processing and storage conditions on amyloid beta (1–42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin Chem. 2005;51(1):189–95.

    Article  CAS  PubMed  Google Scholar 

  142. Piguet O, Petersen A, Yin Ka Lam B, Gabery S, Murphy K, Hodges JR, et al. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol. 2011;69(2):312–9.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hu WT, Howell JC, Ozturk T, Gangishetti U, Kollhoff AL, Hatcher-Martin JM, et al. CSF cytokines in aging, multiple sclerosis, and dementia. Front Immunol. 2019;10:480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hu WT, Ozturk T, Kollhoff A, Wharton W, Christina Howell J. Alzheimer’s disease neuroimaging I. Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer’s disease. Nat Commun. 2021;12(1):4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Niedzwiecki MM, Walker DI, Howell JC, Watts KD, Jones DP, Miller GW, et al. High-resolution metabolomic profiling of Alzheimer’s disease in plasma. Ann Clin Transl Neurol. 2020;7(1):36–45.

    Article  CAS  PubMed  Google Scholar 

  146. Klener J, Hofbauerova K, Bartos A, Ricny J, Ripova D, Kopecky V. Instability of cerebrospinal fluid after delayed storage and repeated freezing: a holistic study by drop coating deposition Raman spectroscopy. Clin Chem Lab Med. 2014;52(5):657–64.

    Article  CAS  PubMed  Google Scholar 

  147. Fraser S, Fleener C, Ogborne K, Soderstrom C. When close is not close enough: a comparison of endogenous and recombinant biomarker stability samples. Bioanalysis. 2015;7(11).

  148. Verberk IMW, Misdorp EO, Koelewijn J, Ball AJ, Blennow K, Dage JL, et al. Characterization of pre-analytical sample handling effects on a panel of Alzheimer’s disease-related blood-based biomarkers: results from the Standardization of Alzheimer’s Blood Biomarkers (SABB) working group. Alzheimers Dement. 2022;18(8):1484–97.

    Article  CAS  PubMed  Google Scholar 

  149. Gervaise-Henry C, Watfa G, Albuisson E, Kolodziej A, Dousset B, Olivier JL, et al. Cerebrospinal fluid Abeta42/Abeta40 as a means to limiting tube- and storage-dependent pre-analytical variability in clinical setting. J Alzheimers Dis. 2017;57(2):437–45.

    Article  CAS  PubMed  Google Scholar 

  150. Liu HC, Chiu MJ, Lin CH, Yang SY. Stability of plasma amyloid-beta 1–40, amyloid-beta 1–42, and total tau protein over repeated freeze/thaw cycles. Dement Geriatr Cogn Dis Extra. 2020;10(1):46–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ashton NJ, Suarez-Calvet M, Karikari TK, Lantero-Rodriguez J, Snellman A, Sauer M, et al. Effects of pre-analytical procedures on blood biomarkers for Alzheimer’s pathophysiology, glial activation, and neurodegeneration. Alzheimers Dement (Amst). 2021;13(1):e12168.

    Article  PubMed  Google Scholar 

  152. Keshavan A, Heslegrave A, Zetterberg H, Schott JM. Stability of blood-based biomarkers of Alzheimer’s disease over multiple freeze-thaw cycles. Alzheimers Dement (Amst). 2018;10:448–51.

    Article  PubMed  Google Scholar 

  153. Diaz-Ortiz ME, Seo Y, Posavi M, Carceles Cordon M, Clark E, Jain N, et al. GPNMB confers risk for Parkinson’s disease through interaction with alpha-synuclein. Science. 2022;377(6608):eabk0637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Abdi IY, Majbour NK, Willemse EAJ, van de Berg WDJ, Mollenhauer B, Teunissen CE, et al. Preanalytical stability of CSF total and oligomeric alpha-synuclein. Front Aging Neurosci. 2021;13:638718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Numis AL, Fox CH, Lowenstein DJ, Norris PJ, Di Germanio C. Comparison of multiplex cytokine assays in a pediatric cohort with epilepsy. Heliyon. 2021;7(3):e06445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ishigami J, Karger AB, Lutsey PL, Coresh J, Matsushita K. Stability of serum bone-mineral, kidney, and cardiac biomarkers after a freeze-thaw cycle: the ARIC study. Am J Epidemiol. 2022;191(3):534–7.

    Article  PubMed  Google Scholar 

  157. Haijes HA, Willemse EAJ, Gerrits J, van der Flier WM, Teunissen CE, Verhoeven-Duif NM, et al. Assessing the pre-analytical stability of small-molecule metabolites in cerebrospinal fluid using direct-infusion metabolomics. Metabolites. 2019;9(10).

  158. Schwieler L, Trepci A, Krzyzanowski S, Hermansson S, Granqvist M, Piehl F, et al. A novel, robust method for quantification of multiple kynurenine pathway metabolites in the cerebrospinal fluid. Bioanalysis. 2020;12(6):379–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hu WT, Watts KD, Shaw LM, Howell JC, Trojanowski JQ, Basra S, et al. CSF beta-amyloid 1–42 - what are we measuring in Alzheimer’s disease? Ann Clin Transl Neurol. 2015;2(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  160. Gejl AK, Enevold C, Bugge A, Andersen MS, Nielsen CH, Andersen LB. Associations between serum and plasma brain-derived neurotrophic factor and influence of storage time and centrifugation strategy. Sci Rep. 2019;9(1):9655.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wessels JM, Agarwal RK, Somani A, Verschoor CP, Agarwal SK, Foster WG. Factors affecting stability of plasma brain-derived neurotrophic factor. Sci Rep. 2020;10(1):20232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mohamed M, Skolasky RL, Zhou Y, Ye W, Brasic JR, Brown A, et al. Beta-amyloid (Abeta) uptake by PET imaging in older HIV+ and HIV- individuals. J Neurovirol. 2020;26(3):382–90.

    Article  CAS  PubMed  Google Scholar 

  163. Stroffolini G, Guastamacchia G, Audagnotto S, Atzori C, Trunfio M, Nigra M, et al. Low cerebrospinal fluid amyloid-betaeta 1–42 in patients with tuberculous meningitis. BMC Neurol. 2021;21(1):449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Verma S, Perry K, Razdan R, Howell JC, Dawson AL, Hu WT. CSF IL-8 associated with response to gene therapy in a case series of spinal muscular atrophy. Neurotherapeutics. 2022;1–9.

  165. Campbell MC, Jackson JJ, Koller JM, Snyder AZ, Kotzbauer PT, Perlmutter JS. Proteinopathy and longitudinal changes in functional connectivity networks in Parkinson disease. Neurology. 2020;94(7):e718–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Campbell MC, Koller JM, Snyder AZ, Buddhala C, Kotzbauer PT, Perlmutter JS. CSF proteins and resting-state functional connectivity in Parkinson disease. Neurology. 2015;84(24):2413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain. 2010;133(Pt 5):1352–67.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Greenberg BD, Pettigrew C, Soldan A, Wang J, Wang MC, Darrow JA, et al. CSF Alzheimer disease biomarkers: time-varying relationships with MCI symptom onset and associations with age, sex, and ApoE4. Neurology. 2022;99(15):e1640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Blomberg M, Jensen M, Basun H, Lannfelt L, Wahlund LO. Cerebrospinal fluid tau levels increase with age in healthy individuals. Dement Geriatr Cogn Disord. 2001;12(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  170. Lleo A, Alcolea D, Martinez-Lage P, Scheltens P, Parnetti L, Poirier J, et al. Longitudinal cerebrospinal fluid biomarker trajectories along the Alzheimer’s disease continuum in the BIOMARKAPD study. Alzheimers Dement. 2019;15(6):742–53.

    Article  PubMed  Google Scholar 

  171. de Leon MJ, Pirraglia E, Osorio RS, Glodzik L, Saint-Louis L, Kim HJ, et al. The nonlinear relationship between cerebrospinal fluid Abeta42 and tau in preclinical Alzheimer’s disease. PLoS ONE. 2018;13(2):e0191240.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. de Rojas I, Moreno-Grau S, Tesi N, Grenier-Boley B, Andrade V, Jansen IE, et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat Commun. 2021;12(1):3417.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sariya S, Felsky D, Reyes-Dumeyer D, Lali R, Lantigua RA, Vardarajan B, et al. Polygenic risk score for Alzheimer’s disease in Caribbean Hispanics. Ann Neurol. 2021;90(3):366–76.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhou X, Chen Y, Ip FCF, Lai NCH, Li YYT, Jiang Y, et al. Genetic and polygenic risk score analysis for Alzheimer’s disease in the Chinese population. Alzheimers Dement (Amst). 2020;12(1):e12074.

    PubMed  Google Scholar 

  176. Lachno DR, Evert BA, Vanderstichele H, Robertson M, Demattos RB, Konrad RJ, et al. Validation of assays for measurement of amyloid-beta peptides in cerebrospinal fluid and plasma specimens from patients with Alzheimer’s disease treated with solanezumab. J Alzheimers Dis. 2013;34(4):897–910.

    Article  CAS  PubMed  Google Scholar 

  177. Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, et al. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol. 2012;69(8):1002–10.

    Article  PubMed  Google Scholar 

  178. Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 2012;8(4):261–71.

    Article  CAS  PubMed  Google Scholar 

  179. Kennedy ME, Stamford AW, Chen X, Cox K, Cumming JN, Dockendorf MF, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS beta-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med. 2016;8(363):363ra150.

    Article  PubMed  Google Scholar 

  180. Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2018;378(18):1691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimers Dis. 2022;9(2):197–210.

    CAS  PubMed  Google Scholar 

  182. Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Abeta protofibril antibody. Alzheimers Res Ther. 2021;13(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2022.

  184. Hu WT, Watts KD, Tailor P, Nguyen TP, Howell JC, Lee RC, et al. CSF complement 3 and factor H are staging biomarkers in Alzheimer’s disease. Acta Neuropathol Commun. 2016;4:14.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Pillai JA, Khrestian M, Bena J, Leverenz JB, Bekris LM. Temporal ordering of inflammatory analytes sTNFR2 and sTREM2 in relation to Alzheimer’s disease biomarkers and clinical outcomes. Front Aging Neurosci. 2021;13:676744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Morenas-Rodriguez E, Li Y, Nuscher B, Franzmeier N, Xiong C, Suarez-Calvet M, et al. Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer’s disease: a longitudinal observational study. Lancet Neurol. 2022;21(4):329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ewers M, Franzmeier N, Suarez-Calvet M, Morenas-Rodriguez E, Caballero MAA, Kleinberger G, et al. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. Sci Transl Med. 2019;11(507).

  188. Suarez-Calvet M, Capell A, Araque Caballero MA, Morenas-Rodriguez E, Fellerer K, Franzmeier N, et al. CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med. 2018;10(12).

  189. Hu WT, Holtzman DM, Fagan AM, Shaw LM, Perrin R, Arnold SE, et al. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology. 2012;79(9):897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Leung YY, Toledo JB, Nefedov A, Polikar R, Raghavan N, Xie SX, et al. Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer’s disease in a multicohort study. Alzheimers Dement (Amst). 2015;1(3):339–48.

    Article  PubMed  Google Scholar 

  191. Harari O, Cruchaga C, Kauwe JS, Ainscough BJ, Bales K, Pickering EH, et al. Phosphorylated tau-Abeta42 ratio as a continuous trait for biomarker discovery for early-stage Alzheimer’s disease in multiplex immunoassay panels of cerebrospinal fluid. Biol Psychiatry. 2014;75(9):723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Visser PJ, Reus LM, Gobom J, Jansen I, Dicks E, van der Lee SJ, et al. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer’s disease. Mol Neurodegener. 2022;17(1):27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fardo DW, Katsumata Y, Kauwe JSK, Deming Y, Harari O, Cruchaga C, et al. CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN. Exp Gerontol. 2017;90:83–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pillai JA, Maxwell S, Bena J, Bekris LM, Rao SM, Chance M, et al. Key inflammatory pathway activations in the MCI stage of Alzheimer’s disease. Ann Clin Transl Neurol. 2019;6(7):1248–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Guo LH, Alexopoulos P, Perneczky R. Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 2013;263(7):553–60.

    Article  PubMed  Google Scholar 

  196. Khan W, Aguilar C, Kiddle SJ, Doyle O, Thambisetty M, Muehlboeck S, et al. A subset of cerebrospinal fluid proteins from a multi-analyte panel associated with brain atrophy, disease classification and prediction in Alzheimer’s disease. PLoS ONE. 2015;10(8):e0134368.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Paterson RW, Bartlett JW, Blennow K, Fox NC, Alzheimer’s Disease Neuroimaging Initiative, Shaw LM, et al. Cerebrospinal fluid markers including trefoil factor 3 are associated with neurodegeneration in amyloid-positive individuals. Transl Psychiatry. 2014;4(7):e419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tijms BM, Gobom J, Reus L, Jansen I, Hong S, Dobricic V, et al. Pathophysiological subtypes of Alzheimer’s disease based on cerebrospinal fluid proteomics. Brain. 2020;143(12):3776–92.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Meyer PF, Savard M, Poirier J, Labonte A, Rosa-Neto P, Weitz TM, et al. Bi-directional association of cerebrospinal fluid immune markers with stage of Alzheimer’s disease pathogenesis. J Alzheimers Dis. 2018;63(2):577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kauwe JS, Bailey MH, Ridge PG, Perry R, Wadsworth ME, Hoyt KL, et al. Genome-wide association study of CSF levels of 59 Alzheimer’s disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation. PLoS Genet. 2014;10(10):e1004758.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K, et al. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet. 2012;21(20):4558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Liu X, Khodeiry MM, Lin D, Sun Y, Zhang Q, Wang J, et al. The association of cerebrospinal fluid pressure with optic nerve head and macular vessel density. Sci China Life Sci. 2022;65(6):1171–80.

    Article  PubMed  Google Scholar 

  203. Deming Y, Xia J, Cai Y, Lord J, Holmans P, Bertelsen S, et al. A potential endophenotype for Alzheimer’s disease: cerebrospinal fluid clusterin. Neurobiol Aging. 2016;37(208):e1–9.

    Google Scholar 

  204. Ayton S, Faux NG, Bush AI, Alzheimer’s Disease Neuroimaging Initiative. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun. 2015;6:6760.

    Article  CAS  PubMed  Google Scholar 

  205. Diouf I, Fazlollahi A, Bush AI, Ayton S, Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid ferritin levels predict brain hypometabolism in people with underlying beta-amyloid pathology. Neurobiol Dis. 2019;124:335–9.

    Article  CAS  PubMed  Google Scholar 

  206. Pan R, Luo S, Huang Q, Li W, Cai T, Lai K, et al. The associations of cerebrospinal fluid ferritin with neurodegeneration and neuroinflammation along the Alzheimer’s disease continuum. J Alzheimers Dis. 2022;88(3):1115–25.

    Article  CAS  PubMed  Google Scholar 

  207. Varma VR, Varma S, An Y, Hohman TJ, Seddighi S, Casanova R, et al. Alpha-2 macroglobulin in Alzheimer’s disease: a marker of neuronal injury through the RCAN1 pathway. Mol Psychiatry. 2017;22(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  208. Pillai JA, Bebek G, Khrestian M, Bena J, Bergmann CC, Bush WS, et al. TNFRSF1B gene variants and related soluble TNFR2 levels impact resilience in Alzheimer’s disease. Front Aging Neurosci. 2021;13:638922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zou S, Zhang J, for Alzheimer’s Disease Neuroimaging Initiative, Chen W. Subtypes based on six apolipoproteins in non-demented elderly are associated with cognitive decline and subsequent tau accumulation in cerebrospinal fluid. J Alzheimers Dis. 2019;72(2):413–23.

    Article  CAS  PubMed  Google Scholar 

  210. Dabiri S, Ramirez Ruiz MI, Jean-Louis G, Ntekim OE, Obisesan TO, Campbell AL, et al. The mediating role of inflammation in the relationship between alpha-synuclein and cognitive functioning. J Gerontol A Biol Sci Med Sci. 2022.

  211. Tubi MA, Kothapalli D, Hapenney M, Feingold FW, Mack WJ, King KS, et al. Regional relationships between CSF VEGF levels and Alzheimer’s disease brain biomarkers and cognition. Neurobiol Aging. 2021;105:241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cadamuro J, Lippi G, von Meyer A, Ibarz M, van Dongen E, Lases, et al. European survey on preanalytical sample handling - part 2: practices of European laboratories on monitoring and processing haemolytic, icteric and lipemic samples. On behalf of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for the Preanalytical Phase (WG-PRE). Biochem Med (Zagreb). 2019;29(2):20705.

  213. Piva E, Tosato F, Plebani M. Pre-analytical phase: the automated ProTube device supports quality assurance in the phlebotomy process. Clin Chim Acta. 2015;451(Pt B):287–91.

    Article  CAS  PubMed  Google Scholar 

  214. Kollhoff AL, Howell JC, Hu WT. Automation vs. experience: measuring Alzheimer’s beta-amyloid 1–42 peptide in the CSF. Front Aging Neurosci. 2018;10:253.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Hu WT, Shaw LM, Trojanowski JQ. Alzheimer’s disease biomarkers: walk with deliberate haste, don’t run blithely on? Acta Neuropathol. 2013;126(5):625–9.

    Article  PubMed  Google Scholar 

  216. Pillai JA, Bena J, Bebek G, Bekris LM, Bonner-Jackson A, Kou L, et al. Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease. Ann Clin Transl Neurol. 2020;7(7):1225–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tijms BM, Gobom J, Teunissen C, Dobricic V, Tsolaki M, Verhey F, et al. CSF proteomic Alzheimer’s disease-predictive subtypes in cognitively intact amyloid negative individuals. Proteomes. 2021;9(3):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Funding

This work is supported by NIH R01 AG054046 and NIH RF1 AG054991.

Author information

Authors and Affiliations

Authors

Contributions

WTH conceived and designed the study; WTH and MK analyzed and interpreted the biomarker data; WTH and AN analyzed and interpreted the clinical, pathologic, and biomarker literature; WTH performed the statistical analysis; WTH and AN drafted a significant portion of the manuscript; MK revised the manuscript critically for important intellectual content. All authors read and approved the submission.

Corresponding author

Correspondence to William T. Hu.

Ethics declarations

Competing Interests

WTH has patents on CSF-based diagnosis of FTLD-TDP, prognosis of very mild AD, and prognosis of spinal muscular atrophy following treatment; consulted for Apellis Pharmaceuticals, Biogen, Fujirebio Diagnostics, Hoffman-LaRoche; and received research support from Fujirebio Diagnostics and Linus Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W.T., Nayyar, A. & Kaluzova, M. Charting the Next Road Map for CSF Biomarkers in Alzheimer’s Disease and Related Dementias. Neurotherapeutics 20, 955–974 (2023). https://doi.org/10.1007/s13311-023-01370-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01370-8

Keywords

Navigation