Skip to main content

Advertisement

Log in

Rostrocaudal Dynamics of CSF Biomarkers

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2011

Abstract

The rostrocaudal gradient (RCG) of markers present in cerebrospinal fluid (CSF) has not been studied adequately due to lack of appropriate control populations and ethical restrictions. The aim of this study is to understand the rostrocaudal gradient of CSF biomarkers. We contacted a study comparing CSF levels of seven biomarkers from cisternal (rostral) and lumbar (caudal) CSF obtained from patients with trigeminal neuralgia and tension-type headache. The RCGs of CSF/serum albumin ratio, 8-isoprostane. GFAP, total tau and beta amyloid protein were higher than one. The RCGs of lactate, VEGF and the heavy chain of neurofilament protein were lower than one. The study provides new values for several commonly examined markers of cisternal CSF. Knowledge of the RCG gradient of different CSF markers is important in interpreting studies reporting ventricular CSF values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grove J, Schechter PJ, Hanke NF, de Smet Y, Agid Y, Tell G et al (1982) Concentration gradients of free and total gamma-aminobutyric acid and homocarnosine in human CSF: comparison of suboccipital and lumbar sampling. J Neurochem 39(6):1618–1622

    Article  PubMed  CAS  Google Scholar 

  2. Menachem EB, Persson L, Schechter PJ, Haegele KD, Huebert N, Hardenberg J (1989) Cerebrospinal fluid parameters in healthy volunteers during serial lumbar punctures. J Neurochem 52:632–635

    Article  PubMed  Google Scholar 

  3. Sommer JB, Gaul C, Heckmann J, Neundorfer B, Erbguth FJ (2002) Does lumbar cerebrospinal fluid reflect ventricular cerebrospinal fluid? A prospective study in patients with external ventricular drainage. Eur Neurol 47(4):224–232

    Article  PubMed  CAS  Google Scholar 

  4. Reiber H (1994) Flow rate of cerebrospinal fluid (CSF)–a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 122(2):189–203

    Article  PubMed  CAS  Google Scholar 

  5. Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21(3):79–96

    PubMed  CAS  Google Scholar 

  6. Hühmer AF, Biringer RG, Amato H, Fonteh AN, Harrington MG (2006) Protein analysis in human cerebrospinal fluid: Physiological aspects, current progress and future challenges. Dis Markers 22(1):3–26

    PubMed  Google Scholar 

  7. Reiber H (1998) Cerebrospinal fluid–physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult Scler 4(3):99–107

    PubMed  CAS  Google Scholar 

  8. Petzold A, Keir G, Green AJE, Giovannoni G, Thompson EJ (2003) A specific ELISA for measuring neurofilament heavy chain phosphoforms. J Immunol Methods 278(1–2):179–190

    Article  PubMed  CAS  Google Scholar 

  9. Petzold A, Keir G, Green AJE, Giovannoni G, Thompson EJ (2004) An ELISA for glial fibrillary acidic protein. J Immunol Methods 287(1–2):169–177

    Article  PubMed  CAS  Google Scholar 

  10. Tarnaris A, Toma AK, Chapman MD, Petzold A, Kitchen ND, Keir G et al (2009) The longitudinal profile of CSF markers during external lumbar drainage. Br Med J 80(10):1130

    CAS  Google Scholar 

  11. Petzold A, Brettschneider J, Jin K, Keir G, Murray NM, Hirsch NP et al (2009) CSF protein biomarkers for proximal axonal damage improve prognostic accuracy in the acute phase of Guillain-Barré syndrome. Muscle Nerve 40(1):42–49

    Article  PubMed  CAS  Google Scholar 

  12. Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, Deyn PPD et al (1999) Improved discrimination of AD patients using ß-amyloid (1–42) and tau levels in CSF. Neurology 52(8):1555

    PubMed  CAS  Google Scholar 

  13. Reiber H (2001) Dynamics of brain-derived proteins in cerebrospinal fluid. Clinica Chimica Acta 310(2):173–186

    Article  CAS  Google Scholar 

  14. Reiber H, Peter JB (2001) Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci 184(2):101–122

    Article  PubMed  CAS  Google Scholar 

  15. Van Gool WA, Schenk DB, Bolhuis PA (1994) Concentrations of amyloid-beta protein in cerebrospinal fluid increase with age in patients free from neurodegenerative disease. Neurosci Lett 172(1–2):122

    PubMed  Google Scholar 

  16. Kanai M, Matsubara E, Isoe K, Urakami K, Nakashima K, Arai H et al (1998) Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1–42 (43) in Alzheimer’s disease: a study in Japan. Ann Neurol 44(1):17

    Article  PubMed  CAS  Google Scholar 

  17. Pryce JD, Gant PW, Saul KJ (1970) Normal concentrations of lactate, glucose, and protein in cerebrospinal fluid, and the diagnostic implications of abnormal concentrations. Clin Chem 16(7):562

    PubMed  CAS  Google Scholar 

  18. Prockop LD (1968) Cerebrospinal fluid lactic acid. Clearance and effect on facilitated diffusion of a glucose analogue. Neurology 18(2):189

    PubMed  CAS  Google Scholar 

  19. Valenca LM, Shannon DC, Kazemi H (1971) Clearance of lactate from the cerebrospinal fluid. Neurology 21(6):615–620

    PubMed  CAS  Google Scholar 

  20. Vámosi B, Diószeghy P, Molnar L (1983) Lactate and pyruvate content of the human cisternal cerebrospinal fluid. Normal values, age and sex dependency, correlations with glucose concentrations. Archiv für Psychiatrie und Nervenkrankheiten 232(6):521

    Article  PubMed  Google Scholar 

  21. Posner JB, Plum F (1967) Independence of blood and cerebrospinal fluid lactate. Arch Neurol 16(5):492

    PubMed  CAS  Google Scholar 

  22. Brettschneider J, Petzold A, Schottle D, Claus A, Riepe M, Tumani H (2006) The neurofilament heavy chain (NfH) in the cerebrospinal fluid diagnosis of Alzheimer’s disease. Dement Geriatr Cogn Disord 21(5–6):291–295

    Article  PubMed  CAS  Google Scholar 

  23. DeGiorgio LA, Sheu KF, Blass JP (1994) Culture from human leptomeninges of cells containing neurofilament protein and neuron-specific enolase. J Neurol Sci 124(2):141

    Article  PubMed  CAS  Google Scholar 

  24. Silverberg G, Caralopoulos I, Saul T, Slone S, Miller M, Messier A et al (2009) Amyloid and tau accumulation precede CSF production decline in normal aging. Cerebrospinal Fluid Res 6(Suppl 1):S38

    Article  Google Scholar 

  25. Hamano T, Yoshimura M, Yamazaki T, Shinkai Y, Yanagisawa K, Kuriyama M et al (1997) Amyloid [beta]-protein (A [beta]) Accumulation in the Leptomeninges during Aging and in Alzheimer Disease. J Neuropathol Exp Neurol 56(8):922

    Article  PubMed  CAS  Google Scholar 

  26. Shinkai Y, Yoshimura M, Morishima-Kawashima M, Ito Y, Shimada H, Yanagisawa K et al (1997) Amyloid -protein deposition in the leptomeninges and cerebral cortex. Ann Neurol 42(6):899–908

    Article  PubMed  CAS  Google Scholar 

  27. Hart MN, Merz P, Bennett-Gray J, Menezes AH, Goeken JA, Schelper RL et al (1988) beta-amyloid protein of Alzheimer’s disease is found in cerebral and spinal cord vascular malformations. Am J Pathol 132(1):167

    PubMed  CAS  Google Scholar 

  28. Horowitz S, Thomas C, Gruener G, Nand S, Shea JF (1998) MR of leptomeningeal spinal and posterior fossa amyloid. AJNR Am J Neuroradiol 19(5):900

    PubMed  CAS  Google Scholar 

  29. Bateman RJ, Wen G, Morris JC, Holtzman DM (2007) Fluctuations of CSF amyloid-ss levels: implications for a diagnostic and therapeutic biomarker. Neurology 68(9):666

    Article  PubMed  CAS  Google Scholar 

  30. Edsbagge M, Starck G, Zetterberg H, Ziegelitz D, Wikkelso C (2009) Volumes of spinal CSF and the spinal cord. Hydrocephalus 16–19, Sept 2009, Baltimore US2009

  31. Hartikainen P, Soininen H, Reinikainen KJ, Sirviö J, Soikkeli R, Riekkinen PJ (1991) Neurotransmitter markers in the cerebrospinal fluid of normal subjects effects of aging and other confounding factors. J Neural Transm 84(1):103–117

    Article  CAS  Google Scholar 

  32. Hildebrand J, Moussa Z, Raftopoulos C, Vanhouche J, Laute MA, Przedborski S (1992) Variations of homovanillic acid levels in ventricular cerebrospinal fluid. Acta Neurol Scand 85(5):340–342

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AT and AKT were supported by a grant from B Braun/Aesculap Academia.

Conflict of interests

There are no conflict of interests.

Ethical approval

The study received ethical approval from the Local Research Ethics Committee (Great Ormond Street Hospital L.R.E.C.) (06/Q0505/59).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Tarnaris.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-011-0609-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnaris, A., Toma, A.K., Chapman, M.D. et al. Rostrocaudal Dynamics of CSF Biomarkers. Neurochem Res 36, 528–532 (2011). https://doi.org/10.1007/s11064-010-0374-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0374-1

Keywords

Navigation