Skip to main content

Advertisement

Log in

Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Altered levels of cerebrospinal fluid (CSF) peptides related to Alzheimer’s disease (AD) are associated with pathologic AD diagnosis, although cognitively normal subjects can also have abnormal levels of these AD biomarkers. To identify novel CSF biomarkers that distinguish pathologically confirmed AD from cognitively normal subjects and patients with other neurodegenerative disorders, we collected antemortem CSF samples from 66 AD patients and 25 patients with other neurodegenerative dementias followed longitudinally to neuropathologic confirmation, plus CSF from 33 cognitively normal subjects. We measured levels of 151 novel analytes via a targeted multiplex panel enriched in cytokines, chemokines and growth factors, as well as established AD CSF biomarkers (levels of Aβ42, tau and p-tau181). Two categories of biomarkers were identified: (1) analytes that specifically distinguished AD (especially CSF Aβ42 levels) from cognitively normal subjects and other disorders; and (2) analytes altered in multiple diseases (NrCAM, PDGF, C3, IL-1α), but not in cognitively normal subjects. A multi-prong analytical approach showed AD patients were best distinguished from non-AD cases (including cognitively normal subjects and patients with other neurodegenerative disorders) by a combination of traditional AD biomarkers and novel multiplex biomarkers. Six novel biomarkers (C3, CgA, IL-1α, I-309, NrCAM and VEGF) were correlated with the severity of cognitive impairment at CSF collection, and altered levels of IL-1α and TECK associated with subsequent cognitive decline in 38 longitudinally followed subjects with mild cognitive impairment. In summary, our targeted proteomic screen revealed novel CSF biomarkers that can improve the distinction between AD and non-AD cases by established biomarkers alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T (2006) Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res 28:155–163

    Article  CAS  PubMed  Google Scholar 

  2. Clark CM, Davatzikos C, Borthakur A et al (2008) Biomarkers for early detection of Alzheimer pathology. Neurosignals 16:11–18

    Article  CAS  PubMed  Google Scholar 

  3. Clark CM, Xie S, Chittams J et al (2003) Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 60:1696–1702

    Article  PubMed  Google Scholar 

  4. Custer AW, Kazarinova-Noyes K, Sakurai T et al (2003) The role of the ankyrin-binding protein Nrcam in node of Ranvier formation. J Neurosci 23:10032–10039

    CAS  PubMed  Google Scholar 

  5. Davis JQ, Bennett V (1994) Ankyrin binding activity shared by the Neurofascin/L1/Nrcam family of nervous system cell adhesion molecules. J Biol Chem 269:27163–27166

    CAS  PubMed  Google Scholar 

  6. Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the Nincds–Adrda criteria. Lancet Neurol 6:734–746

    Article  PubMed  Google Scholar 

  7. Finehout EJ, Franck Z, Choe LH, Relkin N, Lee KH (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer’s disease. Ann Neurol 61:120–129

    Article  CAS  PubMed  Google Scholar 

  8. Fruttiger M, Calver AR, Richardson WD (2000) Platelet-derived growth factor is constitutively secreted from neuronal cell bodies but not from axons. Curr Biol 10:1283–1286

    Article  CAS  PubMed  Google Scholar 

  9. Gianni D, Zambrano N, Bimonte M et al (2003) Platelet-derived growth factor induces the beta-gamma-secretase-mediated cleavage of Alzheimer’s amyloid precursor protein through a Src-Rac-dependent pathway. J Biol Chem 278:9290–9297

    Article  CAS  PubMed  Google Scholar 

  10. Gozal YM, Duong DM, Gearing M et al (2009) Proteomics analysis reveals novel components in the detergent-insoluble subproteome in Alzheimer’s disease. J Proteome Res 8:5069–5079

    Article  CAS  PubMed  Google Scholar 

  11. Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281

    Article  CAS  PubMed  Google Scholar 

  12. Grossman M, Farmer J, Leight S et al (2005) Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol 57:721–729

    Article  PubMed  Google Scholar 

  13. Lippa CF, Duda JE, Grossman M et al (2007) Dlb and Pdd boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 68:812–819

    Article  CAS  PubMed  Google Scholar 

  14. Lu Z, Kipnis J (2010) Thrombospondin 1—a key astrocyte-derived neurogenic factor. Faseb J

  15. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84

    Article  CAS  PubMed  Google Scholar 

  16. Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    CAS  PubMed  Google Scholar 

  17. Netzer WJ, Dou F, Cai D et al (2003) Gleevec inhibits beta-amyloid production but not notch cleavage. Proc Natl Acad Sci USA 100:12444–12449

    Article  CAS  PubMed  Google Scholar 

  18. Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of Tdp-43 is a consistent feature in all sporadic and familial forms of Tdp-43 proteinopathies. Acta Neuropathol 117:137–149

    Article  CAS  PubMed  Google Scholar 

  19. Park S, Hong SM, Sung SR, Jung HK (2008) Long-term effects of central leptin and resistin on body weight, insulin resistance, and beta-cell function and mass by the modulation of hypothalamic leptin and insulin signaling. Endocrinology 149:445–454

    Article  CAS  PubMed  Google Scholar 

  20. Peskind ER, Li G, Shofer J et al (2006) Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition. Arch Neurol 63:936–939

    Article  PubMed  Google Scholar 

  21. Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362

    Article  CAS  PubMed  Google Scholar 

  22. Ross MA, Miller RG, Berchert L et al (1998) Toward earlier diagnosis of amyotrophic lateral sclerosis: revised criteria: Rhcntf Als Study Group. Neurology 50:768–772

    CAS  PubMed  Google Scholar 

  23. Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6:295–303

    Article  CAS  PubMed  Google Scholar 

  24. Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413

    Article  CAS  PubMed  Google Scholar 

  25. Steinacker P, Mollenhauer B, Bibl M et al (2004) Heart fatty acid binding protein as a potential diagnostic marker for neurodegenerative diseases. Neurosci Lett 370:36–39

    Article  CAS  PubMed  Google Scholar 

  26. Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of alzheimer-type pathologic changes in the brain. Arch Neurol 66:382–389

    Article  PubMed  Google Scholar 

  27. Townson JR, Nibbs RJ (2002) Characterization of mouse Ccx-Ckr, a receptor for the lymphocyte-attracting chemokines Teck/Mccl25, Slc/Mccl21 and Mip-3beta/Mccl19: comparison to human CCX-Ckr. Eur J Immunol 32:1230–1241

    Article  CAS  PubMed  Google Scholar 

  28. Tsuboi Y, Kakimoto K, Nakajima M et al (2003) Increased hepatocyte growth factor level in cerebrospinal fluid in Alzheimer’s disease. Acta Neurol Scand 107:81–86

    Article  CAS  PubMed  Google Scholar 

  29. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  Google Scholar 

  30. Winblad B, Palmer K, Kivipelto M et al (2004) Mild cognitive impairment–beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med 256:240–246

    Article  CAS  PubMed  Google Scholar 

  31. Youn BS, Yu KY, Oh J, Lee J, Lee TH, Broxmeyer HE (2002) Role of the Cc chemokine receptor 9/Teck interaction in apoptosis. Apoptosis 7:271–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Penn-Pfizer Alliance as well as AG-10124 and AG-17586. WTH is supported by the American Academy of Neurology Clinical Translational Research Fellowship. ACP is supported by a Burroughs Wellcome Fund Career Award for Medical Scientists and NIH K08 AG033101. EP, MK, YC, and HDS are employees of Pfizer Global Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Q. Trojanowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 56.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W.T., Chen-Plotkin, A., Arnold, S.E. et al. Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol 119, 669–678 (2010). https://doi.org/10.1007/s00401-010-0667-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0667-0

Keywords

Navigation