Skip to main content
Log in

The association of cerebrospinal fluid pressure with optic nerve head and macular vessel density

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The present study aims to investigate the effect of temporary cerebrospinal fluid pressure (CSFP) reduction on optic nerve head (ONH) and macular vessel density (VD) using optical coherence tomography angiography. Forty-four eyes of 44 adults with diagnostic lumbar puncture and CSFP reduction were recruited. Thirty-two eyes of 32 healthy volunteers were controls. ONH and macular VD images were evaluated differences between baseline and after CSFP reduction. The results showed that the mean CSFP decreased from (11.6±2.1) mmHg to (8.2±3.4) mmHg (P<0.001). VD in the macular regions decreased significantly after CSFP reduction in the study group (all P<0.05). The control group showed no significant changes in macular VD (all P>0.05). In the study group, decreased VD in the macular parainferior region was associated with CSFP reduction (R2=0.192, P=0.003), the reduction of macular VD in parafoveal (R2=0.098, P=0.018), parainferior (R2=0.104, P=0.021), parasuperior (R2=0.059, P=0.058), paranasal (R2=0.057, P=0.042), paratemporal (R2=0.079, P=0.026) was associated with mean ocular perfusion pressure decrease following CSFP reduction. ONH vessel density did not differ after CSFP reduction (all P>0.05). In conclusion, macular vessel density decreased in association with CSFP reduction. Retinal vessel density in the macular region is more sensitive than that in peripapillary region after CSFP reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arevalo-Rodriguez, I., Ciapponi, A., Roqué i Figuls, M., Muñoz, L., and Bonfill Cosp, X. (2016). Posture and fluids for preventing post-dural puncture headache. Cochrane Database Syst Rev 3, CD009199.

    PubMed  Google Scholar 

  • Berdahl, J.P., Fautsch, M.P., Stinnett, S.S., and Allingham, R.R. (2008). Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci 49, 5412.

    Article  Google Scholar 

  • Binggeli, T., Schoetzau, A., and Konieczka, K. (2018). In glaucoma patients, low blood pressure is accompanied by vascular dysregulation. EPMA J 9, 387–391.

    Article  Google Scholar 

  • Chen, H.S.L., Liu, C.H., Wu, W.C., Tseng, H.J., and Lee, Y.S. (2017). Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci 58, 3637.

    Article  Google Scholar 

  • Fard, M.A., Jalili, J., Sahraiyan, A., Khojasteh, H., Hejazi, M., Ritch, R., and Subramanian, P.S. (2018). Optical coherence tomography angiography in optic disc swelling. Am J Ophthalmol 191, 116–123.

    Article  Google Scholar 

  • Hayreh, S.S. (2016). Pathogenesis of optic disc edema in raised intracranial pressure. Prog Retinal Eye Res 50, 108–144.

    Article  Google Scholar 

  • Hood, D.C., Raza, A.S., de Moraes, C.G.V., Liebmann, J.M., and Ritch, R. (2013). Glaucomatous damage of the macula. Prog Retinal Eye Res 32, 1–21.

    Article  Google Scholar 

  • Hou, H., Moghimi, S., Proudfoot, J.A., Ghahari, E., Penteado, R.C., Bowd, C., Yang, D., and Weinreb, R.N. (2020). Ganglion cell complex thickness and macular vessel density loss in primary open-angle glaucoma. Ophthalmology 127, 1043–1052.

    Article  Google Scholar 

  • Jonas, J.B., Wang, N., Yang, D., Ritch, R., and Panda-Jonas, S. (2015). Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retinal Eye Res 46, 67–83.

    Article  Google Scholar 

  • Kc, H.B., and Pahari, T. (2017). Effect of posture on post lumbar puncture headache after spinal anesthesia: a prospective randomized study. Kathmandu Univ Med J (KUMJ) 15, 324–328.

    Google Scholar 

  • Khan, J.C., Hughes, E.H., Tom, B.D., and Diamond, J.P. (2002). Pulsatile ocular blood flow: the effect of the Valsalva manoeuvre in open angle and normal tension glaucoma: a case report and prospective study. Br J Ophthalmol 86, 1089–1092.

    Article  CAS  Google Scholar 

  • Korner, P.I., Tonkin, A.M., and Uther, J.B. (1976). Reflex and mechanical circulatory effects of graded Valsalva maneuvers in normal man. J Appl Physiol 40, 434–440.

    Article  CAS  Google Scholar 

  • Li, J., Yang, D., Kwong, J.M.K., Fu, J., Hou, R., Jonas, J.B., Wang, H., Zhang, Z., Chen, W., Li, Z., et al. (2020). Long-term follow-up of optic neuropathy in chronic low cerebrospinal fluid pressure monkeys: the Beijing Intracranial and Intraocular Pressure (iCOP) Study. Sci China Life Sci 63, 1762–1765.

    Article  Google Scholar 

  • Liu, L., Li, X., Killer, H.E., Cao, K., Li, J., and Wang, N. (2019). Changes in retinal and choroidal morphology after cerebrospinal fluid pressure reduction: a Beijing iCOP study. Sci China Life Sci 62, 268–271.

    Article  CAS  Google Scholar 

  • Mao, Y., Yang, D., Li, J., Liu, J., Hou, R., Zhang, Z., Yang, Y., Tian, L., Weinreb, R.N., and Wang, N. (2020). Finite element analysis of translamina cribrosa pressure difference on optic nerve head biomechanics: the Beijing Intracranial and Intraocular Pressure Study. Sci China Life Sci 63, 1887–1894.

    Article  Google Scholar 

  • Morgan, W.H., Balaratnasingam, C., Lind, C.R.P., Colley, S., Kang, M.H., House, P.H., and Yu, D.Y. (2016). Cerebrospinal fluid pressure and the eye. Br J Ophthalmol 100, 71–77.

    Article  Google Scholar 

  • Moss, H.E., Vangipuram, G., Shirazi, Z., and Shahidi, M. (2018). Retinal vessel diameters change within 1 hour of intracranial pressure lowering. Trans Vis Sci Tech 7, 6.

    Article  Google Scholar 

  • Price, D.A., Harris, A., Siesky, B., and Mathew, S. (2020). The influence of translaminar pressure gradient and intracranial pressure in glaucoma: a review. J Glaucoma 29, 141–146.

    Article  Google Scholar 

  • Prum Jr, B.E., Rosenberg, L.F., Gedde, S.J., Mansberger, S.L., Stein, J.D., Moroi, S.E., Herndon Jr., L.W., Lim, M.C., and Williams, R.D. (2016). Primary Open-Angle Glaucoma Preferred Practice Pattern® Guidelines. Ophthalmology 123, P41–P111.

    Article  Google Scholar 

  • Ren, R., Jonas, J.B., Tian, G., Zhen, Y., Ma, K., Li, S., Wang, H., Li, B., Zhang, X., and Wang, N. (2010). Cerebrospinal fluid pressure in glaucoma. Ophthalmology 117, 259–266.

    Article  Google Scholar 

  • Rougier, M.B., Le Goff, M., and Korobelnik, J.F. (2018). Optical coherence tomography angiography at the acute phase of optic disc edema. Eye Vis 5, 15.

    Article  Google Scholar 

  • Shoji, T., Zangwill, L.M., Akagi, T., Saunders, L.J., Yarmohammadi, A., Manalastas, P.I.C., Penteado, R.C., and Weinreb, R.N. (2017). Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol 182, 107–117.

    Article  Google Scholar 

  • Sibony, P., Kupersmith, M.J., Honkanen, R., Rohlf, F.J., and Torab-Parhiz, A. (2014). Effects of lowering cerebrospinal fluid pressure on the shape of the peripapillary retina in intracranial hypertension. Investig Ophthalmol Vis Sci 55, 8223–8231.

    Article  Google Scholar 

  • Takusagawa, H.L., Liu, L., Ma, K.N., Jia, Y., Gao, S.S., Zhang, M., Edmunds, B., Parikh, M., Tehrani, S., Morrison, J.C., et al. (2017). Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 124, 1589–1599.

    Article  Google Scholar 

  • Tüntaş Bilen, F., and Atilla, H. (2019). Peripapillary vessel density measured by optical coherence tomography angiography in idiopathic intracranial hypertension. J Neuro-Ophthalmol 39, 319–323.

    Article  Google Scholar 

  • Werne, A., Harris, A., Moore, D., BenZion, I., and Siesky, B. (2008). The circadian variations in systemic blood pressure, ocular perfusion pressure, and ocular blood flow: risk factors for glaucoma? Surv Ophthalmol 53, 559–567.

    Article  Google Scholar 

  • Winsvold, B.S., Hagen, K., Aamodt, A.H., Stovner, L.J., Holmen, J., and Zwart, J.A. (2011). Headache, migraine and cardiovascular risk factors: the HUNT study. Eur J Neurol 18, 504–511.

    Article  CAS  Google Scholar 

  • Yarmohammadi, A., Zangwill, L.M., Diniz-Filho, A., Saunders, L.J., Suh, M.H., Wu, Z., Manalastas, P.I.C., Akagi, T., Medeiros, F.A., and Weinreb, R.N. (2017). Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124, 709–719.

    Article  Google Scholar 

  • Zhang, Z., Wang, X., Jonas, J.B., Wang, H., Zhang, X., Peng, X., Ritch, R., Tian, G., Yang, D., Li, L., et al. (2014). Valsalva manoeuver, intraocular pressure, cerebrospinal fluid pressure, optic disc topography: Beijing intracranial and intra-ocular pressure study. Acta Ophthalmol 92, e475–e480.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the participants of the present study for their contribution: Jing Wang, Zhangfang Ma, and the Beijing iCOP study group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningli Wang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Khodeiry, M.M., Lin, D. et al. The association of cerebrospinal fluid pressure with optic nerve head and macular vessel density. Sci. China Life Sci. 65, 1171–1180 (2022). https://doi.org/10.1007/s11427-021-1984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1984-5

Keywords

Navigation