Skip to main content
Log in

Unlocking the Secrets of Rhizosphere Microbes: A New Dimension for Agriculture

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Rhizospheric microbes help plants to acquire and assimilate nutrients, improve soil texture and modulate extracellular molecules. Rhizosphere bacteria regularly encounter a copious number of variables, such as temperature, pH, nutrients, pest resistance mechanisms, etc. The extracellular concentration of chemical messengers fabricated by plant growth promoting bacteria (PGPB) in a system is directly proportional to the bacterial population. To dwindle the use of chemically synthesised pesticides, plant growth-promoting rhizobacteria (PGPR) are new arsenals of imperishable agricultural practises for managing plant pathogens and resistance. This review aims to harness the rhizosphere milieu to raise climate smart crops. The PGPB mediated hormonal control of plant stress management pathway could be potentially modified for the benefit of plants. Nutrient solubilisation strengthens the rhizomicrobiome for phytoremediation and pathogen control. Quorum sensing as well as the role of enzymes and siderophores in rhizo-microbiome has been discussed. With advent of metagenomics, the understanding of soil microbiome ecology has acquired new dimensions and has enabled us to modify the microbiome for sustainable agriculture and enhanced productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References  

  • Aasfar A, Bargaz A, Yaakoubi K et al (2021) Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front Microbiol 12:1–19. https://doi.org/10.3389/fmicb.2021.628379

    Article  Google Scholar 

  • Adedeji AA, Babalola OO (2020) Secondary metabolites as plant defensive strategy: a large role for small molecules in the near root region. Planta 252:61

    Article  CAS  PubMed  Google Scholar 

  • Adeleke BS, Ayangbenro A, Babalola OO (2022) Effect of endophytic bacterium, Stenotrophomonas maltophilia JVB5 on sunflowers. Plant Prot Sci 58:185–198

    Article  CAS  Google Scholar 

  • Adingo S, Yu J-R, Xuelu L et al (2021) Variation of soil microbial carbon use efficiency (CUE) and its Influence mechanism in the context of global environmental change: a review. PeerJ 9:e12131

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Ahmed E, Holmström SJM (2014) Minireview Siderophores in Environmental Research : Roles and Applications. Microbial Biotechnol. https://doi.org/10.1111/1751-7915.12117

    Article  Google Scholar 

  • Ahmed M, Javeed A, Sajid AR et al (2022) Biopesticides: A healthy alternative of hazardous chemical pesticides, current development and status in China. Biomed Lett 8:98–108

    Article  Google Scholar 

  • Alberto M, Jose MJ (2012) Burkholderia Cepacia XXVI Siderophore with Biocontrol Capacity against Burkholderia Cepacia XXVI Siderophore with Biocontrol Capacity against Colletotrichum Gloeosporioides. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-012-1071-9

    Article  Google Scholar 

  • Ali S, Kim WC (2018) Plant growth promotion under water: Decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.01096

  • Amenyogbe E, Huang J, Chen G, Wang Z (2021) An overview of the pesticides’ impacts on fishes and humans. Int J Aquat Biol 9:55–65

    Google Scholar 

  • Amin A, Ayaz Khan M, Ehsanullah M et al (2012) Production of peptide antibiotics by Bacillus SP. GU 057 indigenously isolated from saline soil. Braz J Microbiol 43:1340–1346. https://doi.org/10.1590/S1517-83822012000400015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand U, Pal T, Yadav N et al (2023) Current scenario and future prospects of endophytic microbes: promising candidates for abiotic and biotic stress management for agricultural and environmental sustainability. Microb Ecol 86:1455–1486. https://doi.org/10.1007/s00248-023-02190-1 

  • Anfang M, Shani E (2021) Transport mechanisms of plant hormones. Curr Opin Plant Biol 63:102055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asoegwu CR, Awuchi CG, Nelson K et al (2020) A review on the role of biofertilizers in reducing soil pollution and increasing soil nutrients. Himalayan Journal of Agriculture 1:34–38

    Google Scholar 

  • Aydogan EL, Moser G, Müller C et al (2018) Long-term warming shifts the composition of bacterial communities in the phyllosphere of Galium album in a permanent grassland field-experiment. Front Microbiol 9:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Babalola OO, Emmanuel OC, Adeleke BS et al (2021) Rhizosphere microbiome cooperations: strategies for sustainable crop production. Curr Microbiol 78:1069–1085

    Article  CAS  PubMed  Google Scholar 

  • Babenko LM, Kosakivska IV, Romanenko КO (2022) Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biol Int 46:523–534

    Article  CAS  PubMed  Google Scholar 

  • Baltenneck J, Reverchon S, Hommais F (2021) Quorum sensing regulation in phytopathogenic bacteria. Microorganisms 9:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangera MG, Thomashow LS (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from pseudomonas fluorescens q2–87. J Bacteriol 181:3155–3163. https://doi.org/10.1128/jb.181.10.3155-3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321

    Article  CAS  Google Scholar 

  • Basu A, Prasad P, Das SN et al (2021) Plant growth promoting rhizobacteria (Pgpr) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability (switzerland) 13:1–20. https://doi.org/10.3390/su13031140

    Article  CAS  Google Scholar 

  • Behera B, Das TK, Raj R et al (2021) Microbial consortia for sustaining productivity of non-legume crops: prospects and challenges. Agricultural Research 10:1–14

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI et al (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91. https://doi.org/10.1016/j.plaphy.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) <Sziderofórpgpr.Pdf>. Genet Mol Biol 4:1044–1051

    Article  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: A gaseous signal molecule in plant. Annu Rev Cell Dev Biol 16:1–18. https://doi.org/10.1146/annurev.cellbio.16.1.1

    Article  CAS  PubMed  Google Scholar 

  • Boro M, Sannyasi S, Chettri D, Verma AK (2022) Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Arch Microbiol 204:666

    Article  CAS  PubMed  Google Scholar 

  • Burman E, Bengtsson-Palme J (2021) Microbial community interactions are sensitive to small changes in temperature. Front Microbiol 12:672910. https://doi.org/10.3389/fmicb.2021.6729101326

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871. https://doi.org/10.1128/aem.62.3.865-871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadot S, Guan H, Bigalke M et al (2021) Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome 9:1–19

    Article  Google Scholar 

  • Canarini A, Kaiser C, Merchant A et al (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Carballo-Sánchez MP, Alarcón A, Pérez-Moreno J, Ferrera-Cerrato R (2022) Agricultural and Forestry Importance of Microorganism-plant Symbioses: A Microbial Source for Biotechnological Innovations. Reviews in Agricultural Science 10:344–355

    Article  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  Google Scholar 

  • Chai YN, Schachtman DP (2022) Root exudates impact plant performance under abiotic stress. Trends Plant Sci 27:80–91

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Christenhusz MJM, Fay MF et al (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  • Chaudhary P, Khati P, Chaudhary A et al (2021) Cultivable and metagenomic approach to study the combined impact of nanogypsum and Pseudomonas taiwanensis on maize plant health and its rhizospheric microbiome. PLoS ONE 16:e0250574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Liu M, Xu Z, Wei H (2021) Influences of temperature and moisture on abiotic and biotic soil CO2 emission from a subtropical forest. Carbon Balance Manag 16:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Guo Y, Wu Q et al (2023) Discovery of New Siderophores from a Marine Streptomycetes sp. via Combined Metabolomics and Analysis of Iron-Chelating Activity. J Agric Food Chem 71:6584–6593

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q (2008) Perspectives in Biological Nitrogen Fixation. Research 50:784–796. https://doi.org/10.1111/j.1744-7909.2008.00700.x

    Article  CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. https://doi.org/10.1139/B09-023

    Article  CAS  Google Scholar 

  • Colombo C, Palumbo G, He J, et al (2014) Review on iron availability in soil : interaction of Fe minerals , plants , and microbes. 1:538–548. https://doi.org/10.1007/s11368-013-0814-z

  • Crowley DE (2006) Chapter 8 Microbial siderophores in the plant rhizosphere. 169– 198

  • Cruz-Hernández MA, Mendoza-Herrera A, Bocanegra-García V, Rivera G (2022) Azospirillum spp. from plant growth-promoting bacteria to their use in bioremediation. Microorganisms 10:1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel AI, Fadaka AO, Gokul A et al (2022) Biofertilizer: the future of food security and food safety. Microorganisms 10:1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424. https://doi.org/10.1104/pp.122.2.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon R, Kahn D (2004). Reviews. https://doi.org/10.1038/nrmicro954

    Article  Google Scholar 

  • Dwibedi V, Rath SK, Joshi M et al (2022) Microbial endophytes: Application towards sustainable agriculture and food security. Appl Microbiol Biotechnol 106:5359–5384

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Kucharova Z (2008) Cropping effects on microbial population and nitrogenase activity in saline arid soil. Turk J Biol 32:85–90

    CAS  Google Scholar 

  • Eichmann R, Richards L, Schäfer P (2021) Hormones as go-betweens in plant microbiome assembly. Plant J 105:518–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazeli-Nasab B, Shahraki-Mojahed L, Piri R, Sobhanizadeh A (2022) Trichoderma: improving growth and tolerance to biotic and abiotic stresses in plants. In: Trends of applied microbiology for sustainable economy. Academic Press, pp 525–564. https://doi.org/10.1016/B978-0-323-91595-3.00004-5 

  • Fernando WGD, Nakkeeran S, Zhang Y (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. PGPR: Biocontrol and Biofertilization 67–109. https://doi.org/10.1007/1-4020-4152-7_3

  • Figueiredo M do VB, Seldin L, de Araujo FF, Mariano R de LR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Plant growth and health promoting bacteria. 18:21–43. https://doi.org/10.1007/978-3-642-13612-2_2  

  • Finkelstein R (2013) Abscisic Acid Synthesis and Response. Arabidopsis Book 11:e0166. https://doi.org/10.1199/tab.0166

    Article  PubMed  PubMed Central  Google Scholar 

  • Finlay RD, Mahmood S, Rosenstock N et al (2020) Reviews and syntheses: Biological weathering and its consequences at different spatial levels–from nanoscale to global scale. Biogeosciences 17:1507–1533

    Article  CAS  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22. https://doi.org/10.1104/pp.15.00284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghadamgahi F, Tarighi S, Taheri P et al (2022) Plant growth-promoting activity of Pseudomonas aeruginosa FG106 and its ability to act as a biocontrol agent against potato, tomato and taro pathogens. Biology (basel) 11:140

    CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. 2012. https://doi.org/10.6064/2012/963401

  • Glick B, Glick B, Cheng L, et al Promotion of plant growth by ACC deaminase-producing 808 soil bacteria soil bacteria. https://doi.org/10.1007/s10658-007-9162-4

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria ( PGPR ): A review Portraying mechanics of plant growth promoting rhizobacteria ( PGPR ): A review. Cogent Food Agric 19. https://doi.org/10.1080/23311932.2015.1127500

  • Gull M, Hafeez FY (2012) Characterization of siderophore producing bacterial strain Pseudomonas fluorescens Mst 8. 2 as plant growth promoting and biocontrol agent in wheat. African J Microbiol Res 6:6308–6318. https://doi.org/10.5897/AJMR12.1285

    Article  CAS  Google Scholar 

  • Gusain P, Ahemad M, Nguyen D (2015) Plant growth promoting Rhizobacteria ( PGPR ): a review RESEARCH · JUNE 2015 Plant growth promoting Rhizobacteria ( PGPR ): a review. https://doi.org/10.13140/RG.2.1.5171.2164

  • Gusmiaty, Restu M, Bachtiar B, Larekeng SH (2019) Gibberellin and IAA Production by Rhizobacteria from Various Private Forest. IOP Conf Ser Earth Environ Sci 270. https://doi.org/10.1088/1755-1315/270/1/012018

  • Hayat R, Ali S, Amara U (2010) Soil beneficial bacteria and their role in plant growth promotion : a review. 579–598. https://doi.org/10.1007/s13213-010-0117-1

  • Hewage KAH, Yang J, Wang D et al (2020) Chemical manipulation of abscisic acid signaling: a new approach to abiotic and biotic stress management in agriculture. Advanced Science 7:2001265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooker JE, Jaizme-Vega M, Atkinson D (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. 191–200

  • Huang S, Zhang X, Fernando WGD (2020) Directing trophic divergence in plant-pathogen interactions: antagonistic phytohormones with NO doubt? Front Plant Sci 11:600063

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria : its impact on cell division in cucumber cotyledons. Afr Microbiol Res 3:704–712

    CAS  Google Scholar 

  • Hyder S, Rizvi ZF, los Santos-Villalobos S de et al (2022) Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. J Plant Nutr 1–30

  • Islam W, Noman A, Naveed H et al (2020) Role of environmental factors in shaping the soil microbiome. Environ Sci Pollut Res 27:41225–41247

    Article  CAS  Google Scholar 

  • Jaiswal SK, Mohammed M, Dakora FD (2019) Microbial community structure in the rhizosphere of the orphan legume Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. Mol Biol Rep 46:4471–4481. https://doi.org/10.1007/s11033-019-04902-8

    Article  CAS  PubMed  Google Scholar 

  • Jamil F, Mukhtar H, Fouillaud M, Dufossé L (2022) Rhizosphere signaling: Insights into plant–rhizomicrobiome interactions for sustainable agronomy. Microorganisms 10:899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan AT, Azam M, Ali A, Rizwanul Haq QM (2011) Novel approaches of beneficial Pseudomonas in mitigation of plant diseases - an appraisal. J Plant Interact 6:195–205. https://doi.org/10.1080/17429145.2010.541944

    Article  Google Scholar 

  • Jan R, Asaf S, Numan M, Kim K-M (2021) Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11:968

    Article  CAS  Google Scholar 

  • Jiang G, Zhang Y, Gan G et al (2022) Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME Communications 2:1–10. https://doi.org/10.1038/s43705-022-00094-8

    Article  Google Scholar 

  • Kang Y, Kim M, Shim C et al (2021) Potential of algae–bacteria synergistic effects on vegetable production. Front Plant Sci 12:656662

    Article  PubMed  PubMed Central  Google Scholar 

  • Katiyar P, Pandey N, Sahu KK (2020) Biological approaches of fluoride remediation: potential for environmental clean-up. Environ Sci Pollut Res 27:13044–13055

    Article  CAS  Google Scholar 

  • Kaur H, Gera R (2016) Plant Growth Promoting Rhizobacteria: A Boon to Agriculture. Int J Cell Sci Biotechnol E-ISSN Int J Cell Sci Biotechnol 5:2320–7574

    Google Scholar 

  •  Khan S, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Phosphate solubilizing microorganisms: principles and application of microphos technology, pp 31–62

  • Khatoon Z, Huang S, Rafique M et al (2020) Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J Environ Manage 273:111118. https://doi.org/10.1016/j.jenvman.2020.111118

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins Arabidopsis Book 12:e0168. https://doi.org/10.1199/tab.0168

    Article  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schrotht MN (1980) Pseudomonas Siderophores : A Mechanism Explaining Disease-Suppressive Soils. Current Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Ko D, Kang J, Kiba T et al (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci U S A 111:7150–7155. https://doi.org/10.1073/pnas.1321519111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kour D, Rana KL, Yadav AN et al (2020) Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR et al (2015) Does a plant growth promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar S, Sindhu SS, Kumar R (2022) Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci 3:100094

    CAS  PubMed  Google Scholar 

  • Ladha JK, Peoples MB, Reddy PM et al (2022) Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Res 283:108541. https://doi.org/10.1016/j.fcr.2022.108541

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahlali R, Ezrari S, Radouane N et al (2022) Biological control of plant pathogens: A global perspective. Microorganisms 10:596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lankford ICE (1994) Copyright © 1994 by Academic Press, Inc., All fights of reproduction in any form reserved. Methods In Enzymology 235:329–344

    Google Scholar 

  • Li J, Wang Y, Du Y et al (2021) mRNA-Seq reveals the quorum sensing system luxS gene contributes to the environmental fitness of Streptococcus suis type 2. BMC Microbiol 21:1–10

    Article  Google Scholar 

  • Liu S, Tang M, Cheng J (2023) Fermentation optimization of surfactin production of Bacillus amyloliquefaciens HM618. Biotechnol Appl Biochem 70:38–50

    Article  CAS  PubMed  Google Scholar 

  • Luo S, He B, Zeng Q et al (2020) Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. J Mt Sci 17:1398–1409

    Article  Google Scholar 

  • Ma K-W, Niu Y, Jia Y et al (2021) Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. Nat Plants 7:814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macabuhay A, Arsova B, Watt M et al (2022) Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform. Plants 11:2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mącik M, Gryta A, Frąc M (2020) Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv Agron 162:31–87

    Article  Google Scholar 

  • Madhi QH, Jumaah AM (2020) Affectivity evaluation of Bacillus subtilis in controlling eggplant root rot caused by Rhizoctonia solani and Fusarium solani. In: IOP conference series: earth and environmental science. IOP Publishing, 553:012026. https://doi.org/10.1088/1755-1315/553/1/012026

  • Maksimov IV, Abizgil RR, Pusenkova LI (2011) Plant Growth Promoting Rhizobacteria as Alternative to Chemical Crop Protectors from Pathogens ( Review ). Appl Biochem Microbiol 47:373–385. https://doi.org/10.1134/S0003683811040090

    Article  CAS  Google Scholar 

  • Marastoni L, Pii Y, Maver M et al (2019) Role of Azospirillum brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both nutrient deficiency and toxicity. Plant Physiol Biochem 136:118–126

    Article  CAS  PubMed  Google Scholar 

  • Martins MR, Jantalia CP, Reis VM et al (2018) Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15 N recovery by maize in a Cerrado Oxisol. Plant Soil 422:239–250

    Article  CAS  Google Scholar 

  • Maurer D, Malique F, Alfarraj S et al (2021) Interactive regulation of root exudation and rhizosphere denitrification by plant metabolite content and soil properties. Plant Soil 467:107–127

    Article  CAS  Google Scholar 

  • Mazrou YSA, Makhlouf AH, Elseehy MM et al (2020) Antagonistic activity and molecular characterization of biological control agent Trichoderma harzianum from Saudi Arabia. Egypt J Biol Pest Control 30:1–8

    Article  Google Scholar 

  • Medfu Tarekegn M, Zewdu Salilih F, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6:1783174

    Article  Google Scholar 

  • Meena M, Swapnil P, Divyanshu K et al (2020) PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 60:828–861

    Article  CAS  PubMed  Google Scholar 

  • Meena M, Yadav G, Sonigra P, et al (2022) Multifarious responses of forest soil microbial community toward climate change. Microb Ecol 86:49–74. https://doi.org/10.1007/s00248-022-02051-3

  • Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45. https://doi.org/10.1016/j.apsoil.2017.12.004

    Article  Google Scholar 

  • Mitra D, Mondal R, Khoshru B et al (2022) Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere 32:149–170

    Article  CAS  Google Scholar 

  • Mohapatra PK, Panigrahi R, Turner NC (2011) Physiology of spikelet development on the rice panicle: is manipulation of apical dominance crucial for grain yield improvement? Adv Agron 110:333–359. https://doi.org/10.1016/B978-0-12-385531-2.00005-0

  • Morales-Cedeño LR, del Carmen O-M, Loeza-Lara PD et al (2021) Plant growth-promoting bacterial endophytes as biocontrol agents of pre-and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol Res 242:126612

    Article  PubMed  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic Nitrogen Fixation 7:869–885

    CAS  Google Scholar 

  • Nag P, Shriti S, Das S (2020) Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes. J Appl Microbiol 129:186–198

    Article  CAS  PubMed  Google Scholar 

  • Naylor D, Sadler N, Bhattacharjee A et al (2020) Soil microbiomes under climate change and implications for carbon cycling. Annu Rev Environ Resour 45:29–59

    Article  Google Scholar 

  • Ngalimat MS, Mohd Hata E, Zulperi D et al (2021) Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms 9:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu B, Wang W, Yuan Z et al (2020) Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front Microbiol 11:585404

    Article  PubMed  PubMed Central  Google Scholar 

  • Nosheen S, Ajmal I, Song Y (2021) Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 13:1868

    Article  Google Scholar 

  • Nottingham AT, Gloor E, Bååth E, Meir P (2022) Soil carbon and microbes in the warming tropics. Funct Ecol 36:1338–1354

    Article  CAS  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS et al (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174. https://doi.org/10.1128/jb.181.7.2166-2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676. https://doi.org/10.1128/mmbr.56.4.662-676

    Article  PubMed  PubMed Central  Google Scholar 

  • Oladoye PO, Olowe OM, Asemoloye MD (2022) Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 288:132555

    Article  CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:0. https://doi.org/10.1007/s11274-017-2364-9

  • Ortiz A, Sansinenea E (2021) Recent advancements for microorganisms and their natural compounds useful in agriculture. Appl Microbiol Biotechnol 105:891–897

    Article  CAS  PubMed  Google Scholar 

  • Paasch BC, He SY (2021) Toward understanding microbiota homeostasis in the plant kingdom. PLoS Pathog 17:e1009472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandita D (2022) Plant growth promoting bacteria (PGPB): applications and challenges in bioremediation of metal and metalloid contaminated soils. In: Metals metalloids soil plant water systems. pp 485–500. https://doi.org/10.1016/B978-0-323-91675-2.00002-0

  • Poonam Pandurang K (2021) Plant Growth Promoting Rhizobacteria (PGPR): A Review. Int J Curr Microbiol Appl Sci 10:882–886. https://doi.org/10.20546/ijcmas.2021.1004.093

    Article  CAS  Google Scholar 

  • Primo ED, Ruiz F, Masciarelli O, Giordano W (2015) Biofilm formation and biosurfactant activity in plant-associated bacteria. In: Bacterial metabolites in sustainable agroecosystem. pp 337–349

  • Rani V, Prasanna R, Kaushik R (2022) Prospecting the significance of methane-utilizing bacteria in agriculture. World J Microbiol Biotechnol 38:176

    Article  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. https://doi.org/10.1007/s11104-006-9056-9

    Article  CAS  Google Scholar 

  • Rosier A, Medeiros FH V, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428:35–55. https://doi.org/10.1007/s11104-018-3679-5 

  • Rub M, Cass F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. 497–503. https://doi.org/10.1007/s00253-004-1696-1

  • Rudgers JA, Kivlin SN, Whitney KD et al (2014) Responses of high-altitude graminoids and soil fungi to 20 years of experimental warming. Ecology 95:1918–1928

    Article  PubMed  Google Scholar 

  • Rüger L, Feng K, Dumack K et al (2021) Assembly patterns of the rhizosphere microbiome along the longitudinal root axis of maize (Zea mays L.). Front Microbiol 12:614501

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed Q, Xiukang W, Haider FU, et al (2021) Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Int J Mol Sci 22. https://doi.org/10.3390/ijms221910529

  • Sagar A, Dhusiya K, Shukla PK et al (2018) Comparative analysis of production of hydrogen cyanide with production of siderophore and phosphate solubilization activity in plant growth promoting bacteria. Vegetos 31:130–135. https://doi.org/10.5958/2229-4473.2018.00064.2

    Article  Google Scholar 

  • Samada LH, Tambunan USF (2020) Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online J Biol Sci 20:66–76

    Article  CAS  Google Scholar 

  • Sandrini M, Nerva L, Sillo F et al (2022) Abiotic stress and belowground microbiome: The potential of omics approaches. Int J Mol Sci 23:1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos SN, Kavamura VN, De MIS, Andreote FD (2011) Plant Growth and Health Promoting Bacteria 18:251–272. https://doi.org/10.1007/978-3-642-13612-2

    Article  Google Scholar 

  • Santoyo G, Urtis-Flores CA, Loeza-Lara PD et al (2021) Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (Pgpr). Biology (basel) 10:1–18. https://doi.org/10.3390/biology10060475

    Article  CAS  Google Scholar 

  • Sarbani NMM, Yahaya N (2022) Advanced Development of Bio-fertilizer Formulations Using Microorganisms as Inoculant for Sustainable Agriculture and Environment – A Review. Malaysian Journal of Science Health & Technology 8:92–101

    Article  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172:261–269. https://doi.org/10.1007/BF00011328

    Article  CAS  Google Scholar 

  • Schindlbacher A, Rodler A, Kuffner M et al (2011) Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem 43:1417–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz-Bohm K, Gerards S, Hundscheid M et al (2018) Calling from distance: Attraction of soil bacteria by plant root volatiles. ISME J 12:1252–1262. https://doi.org/10.1038/s41396-017-0035-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Science C, Conservation R (2016) A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. 23–39. https://doi.org/10.1111/ejss.12306

  • Senn S, Pangell K, Bowerman AL (2022) Metagenomic Insights into the Composition and Function of Microbes Associated with the Rootzone of Datura inoxia. Biotech 11:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah S, Chand K, Rekadwad B et al (2021) A prospectus of plant growth promoting endophytic bacterium from orchid (Vanda cristata). BMC Biotechnol 21:1–9

    Article  Google Scholar 

  • Shameer S, Prasad TNVKV (2018) Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 84:603–615. https://doi.org/10.1007/s10725-017-0365-1

    Article  CAS  Google Scholar 

  • Shrestha A, Grimm M, Ojiro I et al (2020) Impact of quorum sensing molecules on plant growth and immune system. Front Microbiol 11:1545

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla KP, Sharma S, Singh NK et al (2011) Nature and role of root exudates: Efficacy in bioremediation. Afr J Biotechnol 10:9717–9724. https://doi.org/10.5897/ajb10.2552

    Article  Google Scholar 

  • Sindhu SS, Rakshiya YS, Sahu G (2009) Biological control of soilborne plant pathogens with rhizosphere bacteria. Pest Technol 3:10–2112 

  • Singh RP, Jha PN (2017) The PGPR stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:. https://doi.org/10.3389/fmicb.2017.01945

  • Singha LP, Pandey P (2021) Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. Crit Rev Biotechnol 41:749–766

    Article  CAS  PubMed  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis: A review. Afr J Agric Res 9:1265–1277. https://doi.org/10.5897/AJAR2013.7914

    Article  Google Scholar 

  • Sorouri B, Allison SD (2022) Microbial extracellular enzyme activity with simulated climate change. Elem Sci Anth 10:76

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and Plant-Microbe Interactions. Cold Spring Harb perspect biol 3(4):p.a001438 

  • Stephens K, Bentley WE (2020) Synthetic biology for manipulating quorum sensing in microbial consortia. Trends Microbiol 28:633–643

    Article  CAS  PubMed  Google Scholar 

  • Suresh P, Vellasamy S, Almaary KS et al (2021) Fluorescent pseudomonads (FPs) as a potential biocontrol and plant growth promoting agent associated with tomato rhizosphere. J King Saud Univ Sci 33:101423. https://doi.org/10.1016/j.jksus.2021.101423

    Article  Google Scholar 

  • Suseela V, Tharayil N, Xing B, Dukes JS (2014) Warming alters potential enzyme activity but precipitation regulates chemical transformations in grass litter exposed to simulated climatic changes. Soil Biol Biochem 75:102–112

    Article  CAS  Google Scholar 

  • Swarnalakshmi K, Yadav V, Tyagi D et al (2020) Significance of plant growth promoting rhizobacteria in grain legumes: Growth promotion and crop production. Plants 9:1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq M (2017) Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR) A Review. J Plant Sci Phytopathol 1:038–043. https://doi.org/10.29328/journal.jpsp.1001004

    Article  Google Scholar 

  • Thakur M, Khushboo, Kumar Y, Yadav V, Pramanik A, Dubey KK (2023) Understanding resistance acquisition by Pseudomonas aeruginosa and possible pharmacological approaches in palliating its pathogenesis. Biochem Pharmacol 215:115689. https://doi.org/10.1016/j.bcp.2023.11568

  • Thoms D, Liang Y, Haney CH (2021) Maintaining symbiotic homeostasis: how do plants engage with beneficial microorganisms while at the same time restricting pathogens? Mol Plant Microbe Interact 34:462–469

    Article  CAS  PubMed  Google Scholar 

  • Tiedje JM, Bruns MA, Casadevall A et al (2022) Microbes and climate change: a research prospectus for the future. Mbio 13:e00800-22. https://doi.org/10.1128/mbio.00800-22

  • Trapet P, Avoscan L, Klinguer A et al (2016) The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol 171:675–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo-López JA, Rangel-Vargas E, Gómez-Aldapa CA et al (2022) Isolation and molecular identification of Serratia strains producing chitinases, glucanases, cellulases, and prodigiosin and determination of their antifungal effect against Colletotrichum siamense and Alternaria alternata in vitro and on mango fruit. Int J Plant Biol 13:281–297

    Article  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Klimova SY et al (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch Microbiol 188:655–664. https://doi.org/10.1007/s00203-007-0286-x

    Article  CAS  PubMed  Google Scholar 

  • Tsotetsi T, Nephali L, Malebe M, Tugizimana F (2022) Bacillus for plant growth promotion and stress resilience: What have we learned? Plants 11:2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: Genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611. https://doi.org/10.1007/s00253-004-1805-1

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK (2016) Mechanism and understanding of PGPR: an approach for sustainable agriculture under abiotic stresses. Plant Sci 134(2):24–75

  • Vassileva M, Azcon R, Barea JM, Vassilev N (2000) Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Process Biochem 35:693–697. https://doi.org/10.1016/S0032-9592(99)00132-6

    Article  CAS  Google Scholar 

  • Volkov V, Schwenke H (2020) A quest for mechanisms of plant root exudation brings new results and models, 300 years after Hales. Plants 10:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Volynchikova E, Kim KD (2022) Biological control of oomycete soilborne diseases caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in solanaceous crops. Mycobiology 50:269–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Gao J, Liu Y et al (2021) Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: A review. Chemosphere 274:129970

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV et al (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20. https://doi.org/10.1055/s-2006-924473

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511. https://doi.org/10.1093/jxb/52.suppl_1.487

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Lin L, Shen D et al (2021) Clp is a “busy” transcription factor in the bacterial warrior, Lysobacter enzymogenes. Comput Struct Biotechnol J 19:3564–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  •  Yadav V, Thakur M (2021) Environmental risk monitoring assessment and management. In: Basic concepts in environmental biotechnology. CRC Press, pp 213–222

  • Yuzikhin OS, Gogoleva NE, Shaposhnikov AI et al (2021) Rhizosphere bacterium rhodococcus sp. P1y metabolizes ab-scisic acid to form dehydrovomifoliol. Biomolecules 11:1–16. https://doi.org/10.3390/biom11030345

    Article  CAS  Google Scholar 

  • Zhang P, Wang WQ, Zhang GL et al (2010) Senescence-Inducible Expression of Isopentenyl Transferase Extends Leaf Life, Increases Drought Stress Resistance and Alters Cytokinin Metabolism in Cassava. J Integr Plant Biol 52:653–669. https://doi.org/10.1111/j.1744-7909.2010.00956.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Han L, Wang Q et al (2018) The host actin cytoskeleton channels rhizobia release and facilitates symbiosome accommodation during nodulation in medicago truncatula. New Phytologist. https://doi.org/10.1111/nph.15423

    Article  PubMed  Google Scholar 

  • Zhang L, Zhang M, Huang S et al (2022) A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nat Commun 13:1–13

    Google Scholar 

Download references

Acknowledgements

Dr. Deepak Kumar is thankful to Institution of Eminence Seed Grant (Dev. No. 6031 (B), Banaras Hindu University, Varanasi for providing the financial support to the laboratory. DK also acknowledges Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, for providing necessary facilities and infrastructural support. The DK laboratory is funded by the Science and Engineering Research Board (SERB)-EMEQ grant (EEQ/2021/000593). VG extends his appreciation for the financial assistance granted to his research laboratory via the Institution of Eminence Seed Grant at Banaras Hindu University in Varanasi, India. Khushboo acknowledges DBT-RA program (fellowship) of Department of Biotechnology, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

The work presented here was carried out in collaboration among all authors. Conceived and designed the article: DK; wrote the draft manuscript: MT, Khushboo, SS, PK, MY, RKV, AP, VY; and reviewed, edited and provided valuable input in the manuscript: SS, VY, NPN, VG and DK. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Deepak Kumar.

Ethics declarations

Conflict of interest

Authors declare that they have not any known conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Khushboo, Shah, S. et al. Unlocking the Secrets of Rhizosphere Microbes: A New Dimension for Agriculture. Symbiosis 92, 305–322 (2024). https://doi.org/10.1007/s13199-024-00980-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-024-00980-w

Keywords

Navigation