Skip to main content

Advertisement

Log in

Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The most common, devastating problem in agriculture is plant (pathogenic) diseases and abiotic conditions which have a profound effect on growth and yield of the plant resulting in heavy losses. In order to prevent losses, different chemicals are used indiscriminately, which in turn lead to environmental pollution due to their persistence and toxicity yet employed to meet consumer demand. To fight ever increasing demand and indiscriminate use of chemical agents along with their devastating after effects in agriculture, we need less invasive, eco-friendly and most importantly sustainable practices. Plant growth promoting rhizobacteria (PGPR) influence different physiological activities of the plant through various mechanisms (metabolites, antibiotics, Induced Systemic Resistance and enzymes) and impart protection from pathogens as well as environmental stress factors. But, current applications are limited in this regard as mechanisms involved, field applications variance and lack of farmer awareness contributing majorly. Current review tries to provide comprehensive knowledge on the PGPR’s applications as plant protectant against pathogens & abiotic factors leading to sustainable agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PGPR:

Plant growth promoting rhizobacteria

2,4-DAPG:

2,4-Diacetylphloroglucinol

HCN:

Hydrogen cyanide

VOC:

Volatile organic compounds

ISR:

Induced systemic resistance

SA:

Salicylic acid

IAA:

Indole acetic acid

ACC:

1-Aminocyclopropane-1-carboxylate deaminase

References

  • Ahemad M, Khan MS (2012) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71

    CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Aino M, Maekawa Y, Mayama S, Kato H (1997) Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth promoting rhizobacteria: present status and future prospects. Nakanishi Printing, Sapporo, pp 120–123

    Google Scholar 

  • Alexandre G, Greer SE, Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol 182(21):6042–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bach E, dos Santos SGD, de Carvalho FG, Lisboa BB, Passaglia LM (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid over producing Sinorhizobium melilotistrain. J Exp Bot 60(11):3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  CAS  PubMed  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Steevens D, Yaver D (2002) Munumbicins, wide-spectrum antiobiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

    Article  CAS  PubMed  Google Scholar 

  • Chemin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 171–225

    Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodriguez-Kabana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Costa R, Van Aarle IM, Mendes R, Van Elsas JD (2009) Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environ Microbiol 11(1):159–175

    Article  CAS  PubMed  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5):505–512

    Article  CAS  PubMed  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15(11):1173–1180

    Article  PubMed  Google Scholar 

  • De Souza JT, De Boer M, De Waard P, Van Beek TA, Raaijmakers JM (2003) Biochemical, genetic and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed  PubMed Central  Google Scholar 

  • Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9(6):302–308

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubuis C, Keel C, Haas D (2007) Dialogues of root-colonizing biocontrol pseudomonads. Eur J Plant Pathol 119:(3):311–328

    Article  Google Scholar 

  • Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70(3):1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31(4):861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571

    Article  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 67–109

    Chapter  Google Scholar 

  • Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  Google Scholar 

  • Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G (2017) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soils Sediments 17(5):1224–1236

    Article  CAS  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM (1994) Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant Microbe Interact 7:455–463

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2010) Bacterial ACC deaminase and IAA: interactions and consequences for plant growth in polluted environments. In: Golubev IA (ed) Hand book of phytoremediation. Nova Science, New York, NY, pp 763–774

    Google Scholar 

  • Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem J 411(1):171–180

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, Waterloo

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Guerinot ML, Ying Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104(3):815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root colonizing Pseudomonas sp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80(1):23–36

    Article  CAS  Google Scholar 

  • Jin W, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 29:(5):888–897

    Article  Google Scholar 

  • Kawahara H, Iwanaka Y, Higa S (2007) A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum. Cryo-letters 28:(1):39–49

    Google Scholar 

  • Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97–132

    Article  PubMed  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Bernard RG (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plantgrowth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas sp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mazhar R, Ilyas N, Raja NI, Saeed M, Hussain M, Seerat W, Qureshi H, Shabir S (2016) Plant growth promoting rhizobacteria: biocontrol potential for pathogens. Pure Appl Biol 5(4):1

    Google Scholar 

  • Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression 1. Annu Rev Phytopathol 42:35–59

    Article  CAS  PubMed  Google Scholar 

  • Miller JB, Oldroyd GE (2012) The role of diffusible signals in the establishment of rhizobial and mycorrhizal symbioses. Signaling and communication in plant symbiosis.Springer, Berlin, pp 1–30

    Google Scholar 

  • Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microb Biotechnol 43:685–691

    Article  CAS  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molina L, Constantinescu F, Reimmann C, Duffy B, De´fago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microb Ecol 45:71–81

    Article  CAS  Google Scholar 

  • Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christeophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas sp.from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:(3):115–125

    Article  Google Scholar 

  • Pettersson M, Bååth E (2004) Effects of the properties of the bacterial community on pH adaptation during recolonisation of a humus soil. Soil Biol Biochem 36(9):1383–1388

    Article  CAS  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:(3):948–955

    Article  Google Scholar 

  • Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:(9):1571–1580

    Article  PubMed Central  Google Scholar 

  • Pieterse CM, Van Pelt JA, Van Wees SC, Ton J, Léon-Kloosterziel KM, Keurentjes JJ, Van Loon LC (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur J Plant Pathol 107:(1):51–61

    Article  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–269

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Vukanti RV, Sravani A, Kalam S, Dutta S, Durgeshwar P, Rao VP (2013) Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion. Proc Natl Acad Sci India Sect B 80:407–413

    Article  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol producing Pseudomonas sp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61(2):214–221

    Article  CAS  PubMed  Google Scholar 

  • Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173(4):861–872

    Article  CAS  PubMed  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296(1):52–59

    Article  PubMed  Google Scholar 

  • Sacherer P, De´fago G, Hass D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM., Van Peer R (1991) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. The rhizosphere and plant growth. Springer, Netherlands, pp 211–219

    Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 infuences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35(7):887–894

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650

    Article  CAS  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:473–491

    Article  CAS  PubMed  Google Scholar 

  • Stephane C, Brion D, Jerzy N, Christophe C, Essaid AB (2005) Use of plant growth bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21(7):958–966

    Article  PubMed  Google Scholar 

  • Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol 41(9):776–784

    Article  CAS  PubMed  Google Scholar 

  • Syed S (2016) Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies. Ann Microbiol 66:(3):1315–1327

    Article  Google Scholar 

  • Syed S, Chinthala P (2015) Heavy metal detoxification by different Bacillus species Isolated from solar salterns. Scientifica. https://doi.org/10.1155/2015/319760

    PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Bakker PAHM., Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • Van den Broek D, Chin-A-Woeng TF, Eijkemans K, Mulders IH, Bloemberg GV, Lugtenberg BJ (2003) Biocontrol traits of Pseudomonas sp. are regulated by phase variation. Mol Plant-Microbe Interact 16(11):1003–1012

    Article  PubMed  Google Scholar 

  • Viswanathan R, Samiyappan R (1999) Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease in sugarcane. Sugar Tech 1(3):67–76

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-SERB N-PDF division for providing the necessary financial funding under sanction order DST-SERB N-PDF/2015/000777 and Institute of Frontier Technologies, Regional Agricultural Research Station., Acharya NG Ranga Agricultural University, Tirupati for providing the necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. V. K. V. Prasad.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shameer, S., Prasad, T.N.V.K.V. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 84, 603–615 (2018). https://doi.org/10.1007/s10725-017-0365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0365-1

Keywords

Navigation