Skip to main content

Advertisement

Log in

Microorganisms in biological control strategies to manage microbial plant pathogens: a review

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chemical fertilizers and pesticides are an integral part of modern agriculture and are often associated with numerous environmental problems. Biological agents such as microorganisms can largely replace chemical fertilizers and pesticides. The proper use of selected microorganisms such as bacteria, fungi and viruses have several benefits for agriculture. These include a healthy soil microbiota, biological production of important compounds that promote plant health, and to be used as biocontrol agents (BCAs) that provide protection from plant pathogenic microorganisms. Scientists have found that several bacterial genera including Bacillus and Pseudomonas have antimicrobial activity against numerous pathogenic bacterial and fungal plant pathogens. Trichoderma, Aspergillus, and Penicillium are among the most common fungal genera used as BCAs against both bacterial and fungal plant pathogens. Several bacteriophages and mycoviruses are also found effective as BCAs against selective plant pathogens. Fusarium oxysporum is a commonly found microbial plant pathogen causing wilts and rots in plants. Overall, it can be concluded that the use of microbial BCAs is an effective practice against microbial plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeyratne GD, Deshappriya N (2018) The effect of pH on the biological control activities of a Trichoderma sp. against Fusarium sp. isolated from the commercial onion fields in Sri Lanka. Trop Plant Res 5(2):121–128

    Article  Google Scholar 

  • Abid M, Khan M, Mushtaq S, Afzaal S, Haider MS (2018) A comprehensive review on mycoviruses as biological control agent. World J Biol Biotechnol 3(2):187–192

    Article  Google Scholar 

  • Ahmad T, Bashir A, Farooq S, Riyaz S (2022) Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. J Appl Microbiol 132(1):495–508

    Article  CAS  PubMed  Google Scholar 

  • Anand A, Chinchilla D, Tan C, Mène-Saffrané L, L’Haridon F, Weisskopf L (2020) Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms 8(8):1144

    Article  CAS  PubMed Central  Google Scholar 

  • Asghari S, Harighi B, Ashengroph M, Clement C, Aziz A, Esmaeel Q, Barka EA (2020) Induction of systemic resistance to Agrobacterium tumefaciens by endophytic bacteria in grapevine. Plant Pathol 69(5):827–837

    Article  CAS  Google Scholar 

  • Azizoglu U, Jouzani GS, Yilmaz N, Baz E, Ozkok D (2020) Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: a review. Sci Total Environ 734:139169

    Article  CAS  PubMed  Google Scholar 

  • Baćmaga M, Wyszkowska J, Jan K (2018) The influence of chlorothalonil on the activity of soil microorganisms and enzymes. Ecotoxicology 27(9):1188–1202

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal S, Balamurugan A, Achary V, Kumar A, Reddy MK, Campos JO (2022) Editing plant genome with CRISPR/Cas: a sustainable strategy for disease management. Next-generation plant breeding approaches for stress resilience in cereal crops. Springer, Singapore, pp 369–396

    Chapter  Google Scholar 

  • Barra-Bucarei L, France Iglesias A, Gerding González M, Silva Aguayo G, Carrasco-Fernández J, Castro JF, Ortiz Campos J (2019) Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two solanaceae crops. Microorganisms 8(1):65

    Article  PubMed Central  Google Scholar 

  • Barua P, Nath PD (2018) Bacteriophages: a potential next generation biocontrol tool for plant disease management. Int J Curr Microbiol App Sci 7(9):1103–1112

    Article  CAS  Google Scholar 

  • Benhamou N, Gagné S, Le Quéré D, Dehbi L (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Brescia F, Vlassi A, Bejarano A, Seidl B, Marchetti-Deschmann M, Schuhmacher R, Puopolo G (2021) Characterisation of the antibiotic profile of Lysobacter capsici AZ78, an effective biological control agent of plant pathogenic microorganisms. Microorganisms 9(6):1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carstens AB, Djurhuus AM, Kot W, Hansen L (2019) A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions. FEMS Microbiol Lett 366(9):fnz101

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Tian Z, Luo Y, Cheng Y, Cho L (2018a) Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold. Phytopathology 108(11):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Chen PH, Chen RY, Chou JY (2018b) Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology 46(1):33–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018c) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9(1):1–4

    Google Scholar 

  • Chen C, Cao Z, Li J, Tao C, Feng Y, Yuan H (2020a) A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biol Control 148:104306

    Article  CAS  Google Scholar 

  • Chen DM, Yang HJ, Huang JG, Yuan H (2020b) Lysobacter enzymogenes LE16 autolysates have potential as biocontrol agents—Lysobacter sp. autolysates as biofungicide. J Appl Microbiol 129(6):1684–1692

    Article  CAS  PubMed  Google Scholar 

  • Chenniappan C, Narayanasamy M, Daniel G, Ramaraj G, Ponnusamy P, Sekar J, Ramalingam PV (2019) Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol Control 129:55–64

    Article  CAS  Google Scholar 

  • Choub V, Won SJ, Ajuna HB, Moon JH, Choi SI, Lim HI, Ahn S (2022) Antifungal activity of volatile organic compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides. Horticulturae 8(6):557

    Article  Google Scholar 

  • Cock MJ, van Lenteren JC, Brodeur J, Barratt BI, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra J (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? Biocontrol 55(2):199–218

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Baraka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daryaei A, Jones EE, Glare TR, Richard EF (2016) pH and water activity in culture media affect biological control activity of Trichoderma atroviride against Rhizoctonia solani. Biol Control 92:24–30

    Article  Google Scholar 

  • Das K, Prasanna R, Anil A (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol 62(5):425–435

    Article  CAS  Google Scholar 

  • David BV, Chandrasehar G, Selvam P (2018) Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. Crop Improvement through microbial biotechnology chapter 10. New and future developments in microbial biotechnology and bioengineering. Springer, Berlin, pp 221–243

    Google Scholar 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33(2):133–148

    Article  Google Scholar 

  • Di Francesco A, Baraldi E (2021) How siderophore production can influence the biocontrol activity of Aureobasidium pullulans against Monilinia laxa on peaches. Biol Control 152:104456

    Article  Google Scholar 

  • Dubey SC, Tripathi A, Tak R, Devi I (2020) Evaluation of bio-formulations of fungal and bacterial biological control agents in combination with fungicide in different mode of application for integrated management of tomato wilt. Indian Phytopathol 73(3):425–432

    Article  Google Scholar 

  • Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P, Choi KM, Lee JH, Oh B (2017) Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol Lett 364(23):fnx225

    Article  Google Scholar 

  • Elad Y, Freeman S (2002) Biological control of fungal plant pathogens. Agricultural applications. Springer, Berlin, pp 93–109

    Chapter  Google Scholar 

  • Evangelista-Martínez Z (2014) Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol 30(5):1639–1647

    Article  PubMed  Google Scholar 

  • Fira D, Dimkić I, Berić T, Lozo J, Slavisa S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55

    Article  CAS  PubMed  Google Scholar 

  • Fontana DC, de Paula S, Torres AG, de Souza VH, Pascholati SF, Schmidt D, Durval DN (2021) Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10(5):570

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier B, Dos Santos SP, Gustavsen JA, Imfeld G, Lamy F, Mitchell EA, Mota M, Noll D, Planchamp C, Heger TJ (2020) Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Sci Total Environ 738:139635

    Article  CAS  PubMed  Google Scholar 

  • Gawai D (2018) Role of fungi as biocontrol agents for the control of plant diseases in sustainable agriculture. Fungi and their role in sustainable development: current perspectives. Springer, Berlin, pp 283–291

    Chapter  Google Scholar 

  • Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Khalil K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157

    Article  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15(2):353–378

    Article  CAS  PubMed  Google Scholar 

  • Gillor O, Nigro LM, Margaret R (2005) Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr Pharm Des 11(8):1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83(19):e01075-e1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirpara DG, Gajera HP (2018) Molecular heterozygosity and genetic exploitations of Trichoderma inter-fusants enhancing tolerance to fungicides and mycoparasitism against Sclerotium rolfsii Sacc. Infect Genet Evol 66:26–36

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Chen ZY, Zhang C, Mala G (2020) Reduction of Phakopsora pachyrhizi infection on soybean through host-and spray-induced gene silencing. Mol Plant Pathol 21(6):794–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen FD, Lumsden RD (1999) Biological control of soilborne pathogens. Integrated pest and disease management in greenhouse crops. Springer, Berlin, pp 319–337

    Chapter  Google Scholar 

  • Jha Y (2022) Enhanced cell viability with induction of pathogenesis related proteins against Aspergillus niger in maize by endo-rhizospheric bacteria. Jordan J Biol Sci 15(1):139–147

    Article  CAS  Google Scholar 

  • Jing X, Cui Q, Li X, Yin J, Ravichandran V, Pan D, Fu J, Tu Q, Wang H, Bian X, Zhang Y (2020) Engineering Pseudomonas protegens Pf-5 to improve its antifungal activity and nitrogen fixation. Microb Biotechnol 13(1):118–133

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Heckel DG, Ferre J (2021) Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu Rev Entomol 66:121–140

    Article  CAS  PubMed  Google Scholar 

  • Kalia A, Gosal SK (2011) Effect of pesticide application on soil microorganisms. Arch Agron Soil Sci 57(6):569–596

    Article  CAS  Google Scholar 

  • Kanouni L, Larous L, Samia M-A (2018) Inhibitory effect of rhizobia isolated from several leguminous against phytopathogenic fungi. Annual Research & Review in Biology. https://doi.org/10.9734/ARRB/2018/38161

    Article  Google Scholar 

  • Karmakar A, Taufiqa S, Baig MJ, Molla KA (2022) Increasing disease resistance in host plants through genome editing. Proc Indian Natl Sci Acad. https://doi.org/10.1007/s43538-022-00100-6

    Article  Google Scholar 

  • Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KH, Sayyed RZ, Enshasy H (2019) Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 1–35

    Google Scholar 

  • Khabbaz SE, Ladhalakshmi D, Babu M, Kandan A, Ramamoorthy V, Saravanakumar D, Al-Mughrabi T, Kandasamy S (2019) Plant growth promoting bacteria (PGPB)—a versatile tool for plant health management. Canad J Pestic Pest Manag 1(1):1–25

    Article  Google Scholar 

  • Khan RA, Najeeb S, Mao Z, Ling J, Yang Y, Li Y, Xie B (2020) Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and Root-knot nematode. Microorganisms 8(3):401

    Article  PubMed Central  Google Scholar 

  • Köhl J, Kolnaar R, Willem R (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kredics L, Manczinger L, Antal Z, Pénzes Z, Szekeres A, Kevei F, Nagy E (2004) In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. J Appl Microbiol 96(3):491–498

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Ashraf S (2017) Role of Trichoderma spp. as a biocontrol agent of fungal plant pathogens. Probiotics and plant health. Springer, Berlin, pp 497–506

    Chapter  Google Scholar 

  • Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135:343–360

    Article  CAS  Google Scholar 

  • Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M (2021) Application of CRISPR/Cas9 in crop quality improvement. Int J Mol Sci 22(8):4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik Z, Ahmad M, Abassi GH, Dawood M, Hussain A, Jamil M (2017) Agrochemicals and soil microbes: interaction for soil health. Xenobiotics in the soil environment. Springer, Berlin, pp 139–152

    Chapter  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9(2):34

    Article  Google Scholar 

  • Mukhopadhyay R, Kumar D (2020) Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control 30(1):1–8

    Article  Google Scholar 

  • Nayak P, Solanki H (2021) Pesticides and Indian agriculture—a review. Int J Res Granthaalayah 10(5):250–263

    Article  Google Scholar 

  • Niu B, Wang W, Yuan Z, Sederoff RR, Sederoff H, Chiang VL, Borriss R (2020) Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front Microbiol 11:2452

    Article  Google Scholar 

  • Nuss D (2005) Hypovirulence: mycoviruses at the fungal–plant interface. Nat Rev Microbiol 3(8):632–642

    Article  CAS  PubMed  Google Scholar 

  • Ons L, Bylemans D, Thevissen K, Bruno C (2020) Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8(12):1930

    Article  CAS  PubMed Central  Google Scholar 

  • Pandey P, Dubey AP, Mishra S, Singh VS, Singh C, Tripathy A (2022) β-lactam resistance in Azospirillum baldaniorum Sp245 is mediated by lytic transglycosylase and β-lactamase and regulated by a cascade of RpoE7→ RpoH3 sigma factors. J Bacteriol 204(4):e00010-22

    Article  PubMed Central  Google Scholar 

  • Patibanda AK, Ranganathswamy M (2018) Effect of agrichemicals on biocontrol agents of plant disease control. Microorganisms for green revolution. Springer, Berlin, pp 1–21

    Google Scholar 

  • Prajapati S, Kumar N, Kumar S, Lakharan L (2020) Biological control a sustainable approach for plant diseases management: a review. J Pharmacogn Phytochem 9(2):1514–1523

    CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81(1):537–547

    Article  CAS  PubMed  Google Scholar 

  • Rahimi Tamandegani P, Marik T, Zafari D, Balázs D, Vágvölgyi C, Szekeres A, Kredics L (2020) Changes in peptaibol production of Trichoderma species during in vitro antagonistic interactions with fungal plant pathogens. Biomolecules 10(5):730

    Article  PubMed Central  Google Scholar 

  • Ram RM, Keswani C, Bisen K, Tripathi R, Singh SP, Singh HB (2018) Biocontrol technology: eco-friendly approaches for sustainable agriculture. Omics technologies and Bio-engineering. Academic Press, London, pp 177–190

    Chapter  Google Scholar 

  • Reddy PP (2014) Mechanisms of biocontrol. Plant growth promoting rhizobacteria for horticultural crop protection. Springer, New Delhi, pp 55–68

    Google Scholar 

  • Rooney WM, Grinter RW, Correia A, Parkhill J, Walker DC, M. J. (2020) Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae. Plant Biotechnol J 18(5):1296–1306

    Article  CAS  PubMed  Google Scholar 

  • Saechow S, Thammasittirong A, Kittakoop P, Prachya S, Ranong T (2018) Antagonistic activity against dirty panicle rice fungal pathogens and plant growth-promoting activity of Bacillus amyloliquefaciens BAS23. J Microbiol Biotechnol 28(9):1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Sallam N, Ali EF, Seleim MA, Khalil BH (2021) Endophytic fungi associated with soybean plants and their antagonistic activity against Rhizoctonia solani. Egypt J Biol Pest Control 31(1):1–9

    Article  Google Scholar 

  • Sarrocco S, Esteban P, Vicente I, Bernardi R, Plainchamp T, Domenichini S, Puntoni G, Baroncelli R, Vannacci G, D. M. (2020) Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the biocontrol of Fusarium head blight. Phytopathology 111:1129–1136

    Article  Google Scholar 

  • Savita A, Sharma A (2019) Fungi as biological control agents. Biofertilizers for sustainable agriculture and environment. Springer, Cham, pp 395–411

    Chapter  Google Scholar 

  • Sharma M, Guleria S, Singh K, Chauhan A, Saurabh K (2018) Mycovirus associated hypovirulence, a potential method for biological control of Fusarium species. Virus Dis 29:134–140

    Article  Google Scholar 

  • Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones J (2022) Future of bacterial disease management in crop production. Annu Rev Phytopathol 60:259–282

    Article  PubMed  Google Scholar 

  • Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC, Lopez-Ferber M (2015) Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci 6:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh HB (2014) Management of plant pathogens with microorganisms. Proc Indian Natl Sci Acad 80(2):443–454

    Article  Google Scholar 

  • Singh M, Singh D, Gupta A, Pandey KD, Singh PK, Kumar A (2019) Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. PGPR amelioration in sustainable agriculture. Woodhead Publishing, Sawston, pp 41–66

    Chapter  Google Scholar 

  • Singh S, Kumar V, Dhanjal DS, Singh J (2020) Biological control agents: diversity, ecological significances, and biotechnological applications. Natural bioactive products in sustainable agriculture. Springer, Berlin, pp 31–44

    Chapter  Google Scholar 

  • Singh M, Singh R, Mishra P, Sengar RS, Shahi UP (2021a) In-vitro compatibility of Trichoderma harzianum with systemic fungicides. Int J Chem Stud 9(1):2884–2888

    Article  Google Scholar 

  • Singh P, Singh RK, Guo D-J, Sharma A, Singh RN, Li D-P, Malviya MK, Song X-P, Lakshmanan P, Yang L-T (2021b) Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18—a plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Front Microbiol 12:628376

    Article  PubMed  PubMed Central  Google Scholar 

  • Stauber L, Croll D, Simone P (2022) Temporal changes in pathogen diversity in a perennial plant–pathogen–hyperparasite system. Mol Ecol 31(7):2073–2088

    Article  PubMed  PubMed Central  Google Scholar 

  • Suyal DC, Soni R, Sai S, goel R (2016) Microbial inoculants as biofertilizer. Microbial inoculants in sustainable agricultural productivity. Springer, Berlin, pp 311–318

    Chapter  Google Scholar 

  • Tariq M, Khan A, Asif M, Khan F, Ansari T, Shariq M, Siddiqui MA (2020) Biological control: a sustainable and practical approach for plant disease management. Acta Agric Scand Sect B 70(6):507–524

    CAS  Google Scholar 

  • Tchameni SN, Cotârleț M, Ghinea IO, Bedine MA, Sameza ML, Borda D, Bahrim G, Dinică R (2020) Involvement of lytic enzymes and secondary metabolites produced by Trichoderma spp. in the biological control of Pythium myriotylum. Int Microbiol 23(2):179–188

    Article  CAS  PubMed  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol 63(1):39–59

    Article  Google Scholar 

  • Verma AK, Chettri D, Verma AK (2022) Potential of CRISPR/Cas9-based genome editing in the fields of industrial biotechnology: strategies, challenges, and applications. Industrial microbiology and biotechnology. Springer, Berlin, pp 667–690

    Chapter  Google Scholar 

  • Viterbo A, Ramot O, Chernin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 81(1):549–556

    Article  CAS  PubMed  Google Scholar 

  • Voronina MV, Bugaeva EN, Vasiliev DM, Kabanova AP, Barannik AP, Shneider MM, Kulikov EE, Korzhenkov AA, Toschakov SV, Ignatov AN, Miroshnikov KA (2019) Characterization of Pectobacterium carotovorum subsp. carotovorum bacteriophage PP16 prospective for biocontrol of potato soft rot. Microbiology 88(4):451–460

    Article  CAS  Google Scholar 

  • Wang X, Ding T, Li Y, D. T. (2019) Effects of an arbuscular mycorrhizal fungus and a rhizobium species on Medicago sativa wilt and Fusarium oxysporum root rot. Acta Pratacul Sin 28(8):139–149

    Google Scholar 

  • Wang M, Geng L, Sun X, Shu C, Song F, Zhang J (2020) Screening of Bacillus thuringiensis strains to identify new potential biocontrol agents against Sclerotinia sclerotiorum and Plutella xylostella in Brassica campestris L. Biol Control 145:104262

    Article  CAS  Google Scholar 

  • Wilson A, Cuddy WS, Park RF, Harm GF, Priest MJ, Bailey J, Moffitt M (2020) Investigating hyperparasites as potential biological control agents of rust pathogens on cereal crops. Australas Plant Pathol 49(3):231–238

    Article  CAS  Google Scholar 

  • Yang C, Hamel C, Vujanovic V, gan Y (2011) Fungicide: modes of action and possible impact on nontarget microorganisms. Int Sch Res Not. https://doi.org/10.5402/2011/130289

    Article  Google Scholar 

  • Yang Y, Zhang SW, Li KT (2019) Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi. World J Microbiol Biotechnol 35(9):1–9

    Article  CAS  Google Scholar 

  • Yassin MT, Mostafa AA, Al-Askar A (2022) In vitro antagonistic activity of Trichoderma spp. against fungal pathogens causing black point disease of wheat. J Taibah Univ Sci 16(1):57–65

    Article  Google Scholar 

  • Yin X, Li T, Jiang X, Tang X, Zhang J, Yuan L, Wei Y (2022) Suppression of grape white rot caused by Coniella vitis using the potential biocontrol agent Bacillus Velezensis GSBZ09. Pathogens 11(2):248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Sun C (2018) Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol 84(18):e00445-e518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang W, Xue M, Liu Z, Zhang Q, Hou J, Xing M, Wang R, Lang T (2021) The Combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control fusarium wilt in cowpea. J Fungi 7(9):685

    Article  CAS  Google Scholar 

  • Zhang H, He M, Fan X, Dai L, Zhang S, Hu Z, Wang N (2022a) Isolation, identification and hyperparasitism of a novel Cladosporium cladosporioides isolate hyperparasitic to Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Biology 11(6):892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhu W, Goodwin PH, Lin Q, Xia M, Xu W, Sun R, Liang J, Wu C, Li H (2022b) Response of Fusarium pseudograminearum to biocontrol agent Bacillus velezensis YB-185 by phenotypic and transcriptome analysis. Journal of Fungi 8(8):763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zin NA, Badaluddin N (2020) Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci 65(2):168–178

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Microbiology, Sikkim University, for providing the computational infrastructure and central library facilities for procuring references and plagiarism analysis (Ouriginal: Plagiarism Detection Software).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the framework design of the manuscript. The manuscript was written by MB and SS, and the manuscript was reviewed by DC and AKV. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anil Kumar Verma.

Ethics declarations

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boro, M., Sannyasi, S., Chettri, D. et al. Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Arch Microbiol 204, 666 (2022). https://doi.org/10.1007/s00203-022-03279-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03279-w

Keywords

Navigation