Skip to main content

Advertisement

Log in

Crosstalk Between Matrix Metalloproteinases and Their Inducer EMMPRIN/CD147: a Promising Therapeutic Target for Intracerebral Hemorrhage

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH) is characterized by the disruption of cerebrovascular integrity, resulting in hematoma enlargement, edema formation, and physical damage in the brain parenchyma. Primary ICH also leads to secondary brain injury contributed by oxidative stress, dysregulated immune responses, and proteolysis. In this context, matrix metalloproteinases (MMPs) represent a ubiquitous superfamily of structurally related zinc-dependent endopeptidases capable of degrading all components of the extracellular matrix. They disrupt the blood-brain barrier and promote neuroinflammation. Importantly, several MMP members are upregulated following ICH, and members may have different functions at specific periods in ICH. Hence, the modulation and function of MMPs are more complex than expected. Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a transmembrane glycoprotein that induces the production of MMPs. In this review, we systematically discuss the biology and functions of MMPs and EMMPRIN/CD147 in ICH and the complex crosstalk between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sheth KN. Spontaneous intracerebral hemorrhage. N Engl J Med. 2022;387(17):1589–96.

    Article  CAS  PubMed  Google Scholar 

  2. Merella P, Casu G. Spontaneous intracerebral hemorrhage. N Engl J Med. 2023;388(2):191.

    Article  PubMed  Google Scholar 

  3. Vandertop WP, Can A, Post R. Spontaneous intracerebral hemorrhage. N Engl J Med. 2023;388(2):191–2.

    Article  PubMed  Google Scholar 

  4. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71(11):1018–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Khan S, Liu Y, Siddique R, Zhang R, Yong VW, et al. Gap junctions and hemichannels composed of connexins and pannexins mediate the secondary brain injury following intracerebral hemorrhage. Biology (Basel). 2021;11(1)

  6. Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. 2002;39(3):279–91.

    Article  PubMed  Google Scholar 

  7. Yong HYF, Rawji KS, Ghorbani S, Xue M, Yong VW. The benefits of neuroinflammation for the repair of the injured central nervous system. Cell Mol Immunol. 2019;16(6):540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Teruo Miyauchi TK, Yamaoka A, Ozawa M, Miyazawa S, Muramatasu T. Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biochem. 1990;107(2):316–23.

    Article  Google Scholar 

  9. Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, et al. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res. 1995;55(2):434–9.

    CAS  PubMed  Google Scholar 

  10. Jin R, Xiao AY, Chen R, Granger DN, Li G. Inhibition of CD147 (cluster of differentiation 147) ameliorates acute ischemic stroke in mice by reducing thromboinflammation. Stroke. 2017;48(12):3356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patrizz A, Doran SJ, Chauhan A, Ahnstedt H, Roy-O'Reilly M, Lai YJ, et al. EMMPRIN/CD147 plays a detrimental role in clinical and experimental ischemic stroke. Aging (Albany NY). 2020;12(6):5121–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Y, Li Z, Khan S, Zhang RY, Wei RX, Zhang Y, et al. Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in mice. Neurosci Lett. 2021;764

  13. Liu Y, Bai Q, Yong VW, Xue M. EMMPRIN promotes the expression of MMP-9 and exacerbates neurological dysfunction in a mouse model of intracerebral hemorrhage. Neurochem Res. 2022;47(8):2383–95.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Mu Y, Li Z, Yong VW, Xue M. Extracellular matrix metalloproteinase inducer in brain ischemia and intracerebral hemorrhage. Front Immunol. 2022;13:986469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke. 2002;33(3):831–6.

    Article  CAS  PubMed  Google Scholar 

  16. Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribo M, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation. 2003;107(4):598–603.

    Article  CAS  PubMed  Google Scholar 

  17. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):1450–60.

    Article  CAS  PubMed  Google Scholar 

  18. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article  PubMed  Google Scholar 

  19. Kernan WN, Viscoli CM, Brass LM, Broderick JP, Brott T, Feldmann E, et al. Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med. 2000;343(25):1826–32.

    Article  CAS  PubMed  Google Scholar 

  20. Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, et al. Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res. 2022;130(8):1204–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cole FM, Yates P. Intracerebral microaneurysms and small cerebrovascular lesions. Brain. 1967;90(4):759–68.

    Article  CAS  PubMed  Google Scholar 

  22. Malcolm JG. Book Review: Youmans and Winn neurological surgery. Neurosurgery. 2022;91(3):e95–e6.

    Article  Google Scholar 

  23. Shao A, Zhu Z, Li L, Zhang S, Zhang J. Emerging therapeutic targets associated with the immune system in patients with intracerebral haemorrhage (ICH): from mechanisms to translation. EBioMedicine. 2019;45:615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bai Q, Xue MZ, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain. 2020;143:1297–314.

    Article  PubMed  Google Scholar 

  25. Zhang R, Yong VW, Xue M. Revisiting minocycline in intracerebral hemorrhage: mechanisms and clinical translation. Front Immunol. 2022;13:844163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen S, Li L, Peng C, Bian C, Ocak PE, Zhang JH, et al. Targeting oxidative stress and inflammatory response for blood-brain barrier protection in intracerebral hemorrhage. Antioxid Redox Signal. 2022;37(1-3):115–34.

    Article  CAS  PubMed  Google Scholar 

  27. Xue MZ, Yong VW. Matrix metalloproteinases in intracerebral hemorrhage. Neurol Res. 2008;30(8):775–82.

    Article  PubMed  Google Scholar 

  28. Agrawal SM, Yong VW. The many faces of EMMPRIN - roles in neuroinflammation. Biochim Biophys Acta. 2011;1812(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  29. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.

    Article  CAS  PubMed  Google Scholar 

  30. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2(7):502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Puente XS, Sanchez LM, Overall CM, Lopez-Otin C. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet. 2003;4(7):544–58.

    Article  CAS  PubMed  Google Scholar 

  33. Bode W, Gomis-Ruth FX, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 1993;331(1-2):134–40.

    Article  CAS  PubMed  Google Scholar 

  34. Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005;6(12):931–44.

    Article  CAS  PubMed  Google Scholar 

  35. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73.

    Article  CAS  PubMed  Google Scholar 

  36. Lattanzi S, Di Napoli M, Ricci S, Divani AA. Matrix metalloproteinases in acute intracerebral hemorrhage. Neurotherapeutics. 2020;17(2):484–96.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T. Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update. Cerebrovasc Dis. 2012;34(4):249–62.

    Article  CAS  PubMed  Google Scholar 

  38. Carey P, Low E, Harper E, Stack MS. Metalloproteinases in ovarian cancer. Int J Mol Sci. 2021;22(7)

  39. Rosenberg GA. Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist. 2002;8(6):586–95.

    Article  CAS  PubMed  Google Scholar 

  40. Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci. 2006;26(40):10281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yong VW. The potential use of MMP inhibitors to treat CNS diseases. Expert Opin Investig Drugs. 1999;8(3):255–68.

    Article  CAS  PubMed  Google Scholar 

  42. Madzharova E, Kastl P, Sabino F, Auf dem Keller U. Post-translational modification-dependent activity of matrix metalloproteinases. Int J Mol Sci. 2019;20(12)

  43. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol. 2013;48(3):222–72.

    Article  CAS  PubMed  Google Scholar 

  44. Zucker S, Drews M, Conner C, Foda HD, DeClerck YA, Langley KE, et al. Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J Biol Chem. 1998;273(2):1216–22.

    Article  CAS  PubMed  Google Scholar 

  45. Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities. Biochem J. 2016;473(11):1471–82.

    Article  CAS  PubMed  Google Scholar 

  46. Sariahmetoglu M, Crawford BD, Leon H, Sawicka J, Li L, Ballermann BJ, et al. Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB J. 2007;21(10):2486–95.

    Article  CAS  PubMed  Google Scholar 

  47. Bordoli MR, Yum J, Breitkopf SB, Thon JN, Italiano JE Jr, Xiao J, et al. A secreted tyrosine kinase acts in the extracellular environment. Cell. 2014;158(5):1033–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koyama Y, Naruo H, Yoshitomi Y, Munesue S, Kiyono S, Kusano Y, et al. Matrix metalloproteinase-9 associated with heparan sulphate chains of GPI-anchored cell surface proteoglycans mediates motility of murine colon adenocarcinoma cells. J Biochem. 2008;143(5):581–92.

    Article  CAS  PubMed  Google Scholar 

  49. Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53(6):731–42.

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Tsirka SE. Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care. 2005;3(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  51. Wells JEA, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D. Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci. 2005;21(1):187–96.

    Article  PubMed  Google Scholar 

  52. Lu A, Tang Y, Ran R, Ardizzone TL, Wagner KR, Sharp FR. Brain genomics of intracerebral hemorrhage. J Cereb Blood Flow Metab. 2006;26(2):230–52.

    Article  PubMed  Google Scholar 

  53. Wu H, Zhang Z, Li Y, Zhao R, Li H, Song Y, et al. Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema. Neurochem Int. 2010;57(3):248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2010;45(5):351–423.

    Article  CAS  PubMed  Google Scholar 

  56. Anthony DC, Miller KM, Fearn S, Townsend MJ, Opdenakker G, Wells GM, et al. Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS. J Neuroimmunol. 1998;87(1-2):62–72.

    Article  CAS  PubMed  Google Scholar 

  57. Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8(2):205–16.

    Article  CAS  PubMed  Google Scholar 

  58. Giancotti FG, Ruoslahti E. Transduction - integrin signaling. Science. 1999;285(5430):1028–32.

    Article  CAS  PubMed  Google Scholar 

  59. Xue M, Fan Y, Liu S, Zygun DA, Demchuk A, Yong VW. Contributions of multiple proteases to neurotoxicity in a mouse model of intracerebral haemorrhage. Brain. 2009;132(Pt 1):26–36.

    Article  PubMed  Google Scholar 

  60. Mannello F, Luchetti F, Falcieri E, Papa S. Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis. 2005;10(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  61. Wetzel M, Rosenberg GA, Cunningham LA. Tissue inhibitor of metalloproteinases-3 and matrix metalloproteinase-3 regulate neuronal sensitivity to doxorubicin-induced apoptosis. Eur J Neurosci. 2003;18(5):1050–60.

    Article  CAS  PubMed  Google Scholar 

  62. Fowlkes JL, Winkler MK. Exploring the interface between metallo-proteinase activity and growth factor and cytokine bioavailability. Cytokine Growth Factor Rev. 2002;13(3):277–87.

    Article  CAS  PubMed  Google Scholar 

  63. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294(5548):1945–8.

    Article  CAS  PubMed  Google Scholar 

  64. Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci. 2002;3(9):705–14.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang R, Xue M, Yong VW. Central nervous system tissue regeneration after intracerebral hemorrhage: the next frontier. Cells. 2021;10(10)

  66. Larsen PH, Yong VW. The expression of matrix metalloproteinase-12 by oligodendrocytes regulates their maturation and morphological differentiation. J Neurosci. 2004;24(35):7597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Larsen PH, Wells JE, Stallcup WB, Opdenakker G, Yong VW. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J Neurosci. 2003;23(35):11127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci. 2007;30:209–33.

    Article  PubMed  Google Scholar 

  69. Walmsley AR, McCombie G, Neumann U, Marcellin D, Hillenbrand R, Mir AK, et al. Zinc metalloproteinase-mediated cleavage of the human Nogo-66 receptor. J Cell Sci. 2004;117(Pt 19):4591–602.

    Article  CAS  PubMed  Google Scholar 

  70. Walmsley AR, Mir AK, Frentzel S. Ectodomain shedding of human Nogo-66 receptor homologue-1 by zinc metalloproteinases. Biochem Biophys Res Commun. 2005;327(1):112–6.

    Article  CAS  PubMed  Google Scholar 

  71. Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, Alvarez-Sabin J. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg. 2003;99(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128:1622–33.

    Article  PubMed  Google Scholar 

  73. Mun-Bryce S, Wilkerson A, Pacheco B, Zhang TS, Rai S, Wang YZ, et al. Depressed cortical excitability and elevated matrix metalloproteinases in remote brain regions following intracerebral hemorrhage. Brain Res. 2004;1026(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  74. Kawakita K, Kawai N, Kuroda Y, Yasashita S, Nagao S. Expression of matrix metalloproteinase-9 in thrombin-induced brain edema formation in rats. J Stroke Cerebrovasc Dis. 2006;15(3):88–95.

    Article  PubMed  Google Scholar 

  75. Castellazzi M, Tamborino C, De Santis G, Garofano F, Lupato A, Ramponi V, et al. Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. In: Brain Edema XIV. Vienna: Springer; 2010. p. 137–40.

    Chapter  Google Scholar 

  76. Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology. 1997;48(4):921–6.

    Article  CAS  PubMed  Google Scholar 

  77. Ji Y, Gao Q, Ma Y, Wang F, Tan X, Song D, et al. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol Res. 2023;190:106720.

    Article  CAS  PubMed  Google Scholar 

  78. Rodriguez JA, Sobrino T, Lopez-Arias E, Ugarte A, Sanchez-Arias JA, Vieites-Prado A, et al. CM352 reduces brain damage and improves functional recovery in a rat model of intracerebral hemorrhage. J Am Heart Assoc. 2017;6(6)

  79. Wasserman JK, Schlichter LC. Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol. 2007;207(2):227–37.

    Article  CAS  PubMed  Google Scholar 

  80. Cui JJ, Wang D, Gao F, Li YR. Effects of atorvastatin on pathological changes in brain tissue and plasma MMP-9 in rats with intracerebral hemorrhage. Cell Biochem Biophys. 2012;62(1):87–90.

    Article  CAS  PubMed  Google Scholar 

  81. Gu C, Wu Y, Fan Z, Han W. Simvastatin improves intracerebral hemorrhage through NF-kappaB-mediated apoptosis via the MyD88/TRIF signaling pathway. Exp Ther Med. 2018;15(1):377–82.

    CAS  PubMed  Google Scholar 

  82. Wu G, Wu J, Jiao Y, Wang L, Wang F, Zhang Y. Rosiglitazone infusion therapy following minimally invasive surgery for intracerebral hemorrhage evacuation decreases matrix metalloproteinase-9 and blood-brain barrier disruption in rabbits. BMC Neurol. 2015;15:37.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jiang B, Li L, Chen Q, Tao Y, Yang L, Zhang B, et al. Role of glibenclamide in brain injury after intracerebral hemorrhage. Transl Stroke Res. 2017;8(2):183–93.

    Article  CAS  PubMed  Google Scholar 

  84. Li Y, Ogle ME, Wallace GC, Lu ZY, Yu SP, Wei L. Erythropoietin attenuates intracerebral hemorrhage by diminishing matrix metalloproteinases and maintaining blood-brain barrier integrity in mice. Acta Neurochir Suppl. 2008;105:105–12.

    Article  CAS  PubMed  Google Scholar 

  85. Yang JT, Lee TH, Lee IN, Chung CY, Kuo CH, Weng HH. Dexamethasone inhibits ICAM-1 and MMP-9 expression and reduces brain edema in intracerebral hemorrhagic rats. Acta Neurochir (Wien). 2011;153(11):2197–203.

    Article  PubMed  Google Scholar 

  86. Zheng Y, Hu Q, Manaenko A, Zhang Y, Peng Y, Xu L, et al. 17beta-Estradiol attenuates hematoma expansion through estrogen receptor alpha/silent information regulator 1/nuclear factor-kappa b pathway in hyperglycemic intracerebral hemorrhage mice. Stroke. 2015;46(2):485–91.

    Article  CAS  PubMed  Google Scholar 

  87. Sinn DI, Kim SJ, Chu K, Jung KH, Lee ST, Song EC, et al. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol Dis. 2007;26(2):464–72.

    Article  CAS  PubMed  Google Scholar 

  88. Kaushik DK, Hahn JN, Yong VW. EMMPRIN, an upstream regulator of MMPs, in CNS biology. Matrix Biol. 2015;44-46:138–46.

    Article  CAS  PubMed  Google Scholar 

  89. Von Ungern-Sternberg SNI, Zernecke A, Seizer P. Extracellular Matrix Metalloproteinase inducer EMMPRIN (CD147) in cardiovascular disease. Int J Mol Sci. 2018;19(2)

  90. Biswas C, Nugent MA. Membrane association of collagenase stimulatory factor(s) from B-16 melanoma cells. J Cell Biochem. 1987;35(3):247–58.

    Article  CAS  PubMed  Google Scholar 

  91. Iacono KT, Brown AL, Greene MI, Saouaf SJ. CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol. 2007;83(3):283–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Biswas C. Collagenase stimulation in cocultures of human fibroblasts and human tumor cells. Cancer Lett. 1984;24(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  93. Kasinrerk W, Fiebiger E, Stefanova I, Baumruker T, Knapp W, Stockinger H. Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J Immunol. 1992;149(3):847–54.

    Article  CAS  PubMed  Google Scholar 

  94. Liao CG, Kong LM, Song F, Xing JL, Wang LX, Sun ZJ, et al. Characterization of basigin isoforms and the inhibitory function of basigin-3 in human hepatocellular carcinoma proliferation and invasion. Mol Cell Biol. 2011;31(13):2591–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Seulberger H, Unger CM, Risau W. HT7, Neurothelin, basigin, gp42 and OX-47--many names for one developmentally regulated immuno-globulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers and neurons. Neurosci Lett. 1992;140(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  96. Yu XL, Hu T, Du JM, Ding JP, Yang XM, Zhang J, et al. Crystal structure of HAb18G/CD147: implications for immunoglobulin superfamily homophilic adhesion. J Biol Chem. 2008;283(26):18056–65.

    Article  CAS  PubMed  Google Scholar 

  97. Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, et al. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab. 2004;24(10):1133–45.

    Article  PubMed  Google Scholar 

  98. Boulos S, Meloni BP, Arthur PG, Majda B, Bojarski C, Knuckey NW. Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis. 2007;25(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  99. Pakula R, Melchior A, Denys A, Vanpouille C, Mazurier J, Allain F. Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis. Glycobiology. 2007;17(5):492–503.

    Article  CAS  PubMed  Google Scholar 

  100. Wei YA, Heng G, Ben H. Pro-inflammatory activities induced by CyPA-EMMPRIN interaction in monocytes. Atherosclerosis. 2010;213(2):415–21.

    Article  Google Scholar 

  101. Yurchenko V, O'Connor M, Dai WW, Guo HM, Toole B, Sherry B, et al. CD147 is a signaling receptor for cyclophilin B. Biochem Biophys Res Commun. 2001;288(4):786–8.

    Article  CAS  PubMed  Google Scholar 

  102. Pushkarsky T, Yurchenko V, Vanpouille C, Brichacek B, Vaisman I, Hatakeyama S, et al. Cell surface expression of CD147/EMMPRIN is regulated by cyclophilin 60. J Biol Chem. 2005;280(30):27866–71.

    Article  CAS  PubMed  Google Scholar 

  103. Yurchenko V, Pushkarsky T, Li JH, Dai WW, Sherry B, Bukrinsky M. Regulation of CD147 cell surface expression - involvement of the proline residue in the CD147 transmembrane domain. J Biol Chem. 2005;280(17):17013–9.

    Article  CAS  PubMed  Google Scholar 

  104. Tang W, Chang SB, Hemler ME. Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell. 2004;15(9):4043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Galat A. Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem. 1993;216(3):689–707.

    Article  CAS  PubMed  Google Scholar 

  106. Yurchenko V, Constant S, Bukrinsky M. Dealing with the family: CD147 interactions with cyclophilins. Immunology. 2006;117(3):301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999;343(Pt 2):281–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kirkman MA, Allan SM, Parry-Jones AR. Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab. 2011;31(11):2135–51.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem. 2005;280(29):27213–21.

    Article  CAS  PubMed  Google Scholar 

  110. Miyauchi T, Masuzawa Y, Muramatsu T. The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. J Biochem. 1991;110(5):770–4.

    Article  CAS  PubMed  Google Scholar 

  111. Patrizz A, Doran SJ, Chauhan A, Ahnstedt H, Roy-O’Reilly M, Lai YJ, Weston G, Tarabishy S, Patel AR, Verma R, Staff I. EMMPRIN/CD147 plays a detrimental role in clinical and experimental ischemic stroke. Aging. 2020;12(6):5152–39.

    Article  Google Scholar 

  112. Biswas C. Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun. 1982;109(3):1026–34.

    Article  CAS  PubMed  Google Scholar 

  113. Kataoka H, DeCastro R, Zucker S, Biswas C. Tumor cell-derived collagenase-stimulatory factor increases expression of interstitial collagenase, stromelysin, and 72-kDa gelatinase. Cancer Res. 1993;53(13):3154–8.

    CAS  PubMed  Google Scholar 

  114. Guo H, Zucker S, Gordon MK, Toole BP, Biswas C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem. 1997;272(1):24–7.

    Article  CAS  PubMed  Google Scholar 

  115. Yan L, Zucker S, Toole BP. Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb Haemost. 2005;93(2):199–204.

    Article  CAS  PubMed  Google Scholar 

  116. Kanekura T, Chen X. CD147/basigin promotes progression of malignant melanoma and other cancers. J Dermatol Sci. 2010;57(3):149–54.

    Article  CAS  PubMed  Google Scholar 

  117. Grass GD, Toole BP. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep. 2015;36(1):e00283.

    Article  PubMed  Google Scholar 

  118. Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016;159(5):481–90.

    Article  CAS  PubMed  Google Scholar 

  119. Taylor PM, Woodfield RJ, Hodgkin MN, Pettitt TR, Martin A, Kerr DJ, et al. Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene. 2002;21(37):5765–72.

    Article  CAS  PubMed  Google Scholar 

  120. Sidhu SS, Mengistab AT, Tauscher AN, LaVail J, Basbaum C. The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene. 2004;23(4):956–63.

    Article  CAS  PubMed  Google Scholar 

  121. Haug C, Lenz C, Diaz F, Bachem MG. Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase Inducer (EMMPRIN) release by coronary smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24(10):1823–9.

    Article  CAS  PubMed  Google Scholar 

  122. Egawa N, Koshikawa N, Tomari T, Nabeshima K, Isobe T, Seiki M. Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. J Biol Chem. 2006;281(49):37576–85.

    Article  CAS  PubMed  Google Scholar 

  123. Maatta M, Tervahartiala T, Kaarniranta K, Tang Y, Yan L, Tuukkanen J, et al. Immunolocalization of EMMPRIN (CD147) in the human eye and detection of soluble form of EMMPRIN in ocular fluids. Curr Eye Res. 2006;31(11):917–24.

    Article  CAS  PubMed  Google Scholar 

  124. Du ZM, Hu CF, Shao Q, Huang MY, Kou CW, Zhu XF, et al. Upregulation of caveolin-1 and CD147 expression in nasopharyngeal carcinoma enhanced tumor cell migration and correlated with poor prognosis of the patients. Int J Cancer. 2009;125(8):1832–41.

    Article  CAS  PubMed  Google Scholar 

  125. Zhu X, Zhang S, Nanda A, Li G. CD147: a novel modulator of inflammatory and immune disorders. Curr Med Chem. 2014;21:2138–45.

    Article  CAS  PubMed  Google Scholar 

  126. Yuan W, Ge H, He B. Pro-inflammatory activities induced by CyPA-EMMPRIN interaction in monocytes. Atherosclerosis. 2010;213(2):415–21.

    Article  CAS  PubMed  Google Scholar 

  127. Jia L, Wang S, Zhou H, Cao J, Hu Y, Zhang J. Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int J Biochem Cell Biol. 2006;38(9):1584–93.

    Article  CAS  PubMed  Google Scholar 

  128. Kim JY, Kim WJ, Kim H, Suk K, Lee WH. The stimulation of CD147 induces MMP-9 expression through ERK and NF-kappaB in macrophages: implication for atherosclerosis. Immune Netw. 2009;9(3):90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kumar D, Vetrivel U, Parameswaran S, Subramanian KK. Structural insights on druggable hotspots in CD147: a bull’s eye view. Life Sci. 2019;224:76–87.

    Article  CAS  PubMed  Google Scholar 

  130. Wang C, Jin R, Zhu X, Yan J, Li G. Function of CD147 in atherosclerosis and atherothrombosis. J Cardiovasc Transl Res. 2015;8(1):59–66.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cheng C-Y, Hsieh H-L, Hsiao L-D, Yang C-M. PI3-K/Akt/JNK/NF-κB is essential for MMP-9 expression and outgrowth in human limbal epithelial cells on intact amniotic membrane. Stem Cell Research. 2012;9(1):9–23.

    Article  CAS  PubMed  Google Scholar 

  132. Dana P, Kariya R, Lert-itthiporn W, Seubwai W, Saisomboon S, Wongkham C, et al. Homophilic interaction of CD147 promotes IL-6-mediated cholangiocarcinoma invasion via the NF-κB-dependent pathway. Int J Mol Sci. 2021;22(24)

  133. Zhang Z, Dong T, Fu Y, Zhou W, Tian X, Chen G, et al. MMP-11 promotes papillary thyroid cell proliferation and invasion via the NF-κB pathway. J Cell Biochem. 2018;120(2):1860–8.

    Article  PubMed  Google Scholar 

  134. Liu Y, Wang F, Li Z, Mu Y, Yong VW, Xue M. Neuroprotective effects of chlorogenic acid in a mouse model of intracerebral hemorrhage associated with reduced extracellular matrix metalloproteinase inducer. Biomolecules. 2022;12(8)

Download references

Acknowledgements

We appreciate the coworkers who participated in this study.

Funding

The authors acknowledge operating grant support from the National Natural Science Foundation of China (grant nos.: 82071331 and 81870942), Henan Provincial Key Research and Development and Promotion Special (grant no.: 232102311086), Henan Province Youth and Middle-aged Health Science and Technology Innovation Excellent Youth Talent Cultivation Project (grant no.: YQRC2023012), Henan Province Medical Science and Technology Research Plan Joint Construction Project (grant no.: LHGJ20230327), National Key Research and Development Program of China (grant no.: 2018YFC1312200), and from the Canadian Institutes of Health Research (Foundation grant 1049959).

Author information

Authors and Affiliations

Authors

Contributions

YL searched the literature and drafted the manuscript. LXQ and ZL evaluated the literature. VWY and MX critically revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to V. Wee Yong or Mengzhou Xue.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Qi, L., Li, Z. et al. Crosstalk Between Matrix Metalloproteinases and Their Inducer EMMPRIN/CD147: a Promising Therapeutic Target for Intracerebral Hemorrhage. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01225-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01225-6

Keywords

Navigation