Skip to main content

Advertisement

Log in

Inflammatory Responses After Ischemic Stroke

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S, Pandian J, Feigin V (2019) World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int J Stroke 14:806–817

    Article  PubMed  Google Scholar 

  2. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MS, George MG, Hamdan AD, Higashida RT, Hoh BL, Janis LS, Kase CS, Kleindorfer DO, Lee JM, Moseley ME, Peterson ED, Turan TN, Valderrama AL, Vinters HV, American Heart Association Stroke Council, CoCS, Anesthesia, Council on Cardiovascular R, Intervention, Council on C, Stroke N, Council on E, Prevention, Council on Peripheral Vascular D, Council on Nutrition, PA, Metabolism (2013) An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:2064–89

    Article  PubMed  Google Scholar 

  3. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5:70

    Article  PubMed  Google Scholar 

  4. Rochmah TN, Rahmawati IT, Dahlui M, Budiarto W, Bilqis N (2021) Economic Burden of Stroke Disease: A Systematic Review. Int J Environ Res Public Health 18:7552

  5. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. Faseb j 20:714–716

    Article  CAS  PubMed  Google Scholar 

  6. Zhou M, Yang WL, Ji Y, Qiang X, Wang P (2014) Cold-inducible RNA-binding protein mediates neuroinflammation in cerebral ischemia. Biochim Biophys Acta 1840:2253–2261. https://doi.org/10.1016/j.bbagen.2014.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ye XC, Hao Q, Ma WJ, Zhao QC, Wang WW, Yin HH, Zhang T, Wang M, Zan K, Yang XX et al (2020) Dectin-1/Syk signaling triggers neuroinflammation after ischemic stroke in mice. J Neuroinflammation 17:17. https://doi.org/10.1186/s12974-019-1693-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou Y, Yang D, Xiang R, Wang H, Wang X, Zhang H, Wang P, Zhang Z, Che X, Liu Y, Gao Y, Yu X, Gao X, Zhang W, Yang J, Wu C (2019) N2 neutrophils may participate in spontaneous recovery after transient cerebral ischemia by inhibiting ischemic neuron injury in rats. Int Immunopharmacol 77:105970

    Article  CAS  PubMed  Google Scholar 

  9. Cheon SY, Kim EJ, Kim SY, Kim JM, Kam EH, Park JK, Koo BN (2018) Apoptosis signal-regulating kinase 1 silencing on astroglial inflammasomes in an experimental model of ischemic stroke. Neuroscience 390:218–230. https://doi.org/10.1016/j.neuroscience.2018.08.020

    Article  CAS  PubMed  Google Scholar 

  10. Wesley UV, Sutton IC, Cunningham K, Jaeger JW, Phan AQ, Hatcher JF, Dempsey RJ (2021) Galectin-3 protects against ischemic stroke by promoting neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation. J Cereb Blood Flow Metab 41:857–873. https://doi.org/10.1177/0271678x20931137

    Article  CAS  PubMed  Google Scholar 

  11. Murata Y, Sugimoto K, Yang C, Harada K, Gono R, Harada T, Miyashita Y, Higashisaka K, Katada R, Tanaka J et al (2020) Activated microglia-derived macrophage-like cells exacerbate brain edema after ischemic stroke correlate with astrocytic expression of aquaporin-4 and interleukin-1 alpha release. Neurochem Int 140:104848. https://doi.org/10.1016/j.neuint.2020.104848

    Article  CAS  PubMed  Google Scholar 

  12. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G, Nawroth PP, Bierhaus A, Schwaninger M (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28:12023–12031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neumann J, Sauerzweig S, Rönicke R, Gunzer F, Dinkel K, Ullrich O, Gunzer M, Reymann KG (2008) Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 28:5965–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Q, Han X, Wang J (2016) Organotypic hippocampal slices as models for stroke and traumatic brain injury. Mol Neurobiol 53:4226–4237. https://doi.org/10.1007/s12035-015-9362-4

    Article  CAS  PubMed  Google Scholar 

  15. Zhang RL, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10. https://doi.org/10.1016/0022-510x(94)90234-8

    Article  CAS  PubMed  Google Scholar 

  16. Miró-Mur F, Pérez-de-Puig I, Ferrer-Ferrer M, Urra X, Justicia C, Chamorro A, Planas AM (2016) Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav Immun 53:18–33

    Article  PubMed  Google Scholar 

  17. Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, Saavedra JM, Zhang L, Huang Z, Pang T (2018) A Dual AMPK/Nrf2 Activator Reduces Brain Inflammation After Stroke by Enhancing Microglia M2 Polarization. Antioxid Redox Signal 28:141–163

    Article  CAS  PubMed  Google Scholar 

  18. Kolosowska N, Keuters MH, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, Goldsteins G, Koistinaho J, Dhungana H (2019) Peripheral Administration of IL-13 Induces Anti-inflammatory Microglial/Macrophage Responses and Provides Neuroprotection in Ischemic Stroke. Neurotherapeutics 16:1304–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J (2020) Animal models of cerebral ischemia: A review. Biomed Pharmacother 131:110686. https://doi.org/10.1016/j.biopha.2020.110686

    Article  CAS  PubMed  Google Scholar 

  20. Ford G, Xu Z, Gates A, Jiang J, Ford BD (2006) Expression Analysis Systematic Explorer (EASE) analysis reveals differential gene expression in permanent and transient focal stroke rat models. Brain Res 1071:226–236. https://doi.org/10.1016/j.brainres.2005.11.090

    Article  CAS  PubMed  Google Scholar 

  21. Xu H, Mu S, Qin W (2018) Microglia TREM2 is required for electroacupuncture to attenuate neuroinflammation in focal cerebral ischemia/reperfusion rats. Biochem Biophys Res Commun 503:3225–3234

    Article  CAS  PubMed  Google Scholar 

  22. Fang W, Zhai X, Han D, Xiong X, Wang T, Zeng X, He S, Liu R, Miyata M, Xu B et al (2018) CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice. Theranostics 8:3530–3543. https://doi.org/10.7150/thno.24475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uzdensky AB (2018) Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 9:437–451. https://doi.org/10.1007/s12975-017-0593-8

    Article  PubMed  Google Scholar 

  24. Sun YY, Kuo YM, Chen HR, Short-Miller JC, Smucker MR, Kuan CY (2020) A murine photothrombotic stroke model with an increased fibrin content and improved responses to tPA-lytic treatment. Blood Adv 4:1222–1231. https://doi.org/10.1182/bloodadvances.2019000782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schilling M, Strecker JK, Schäbitz WR, Ringelstein EB, Kiefer R (2009) Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 161:806–812

    Article  CAS  PubMed  Google Scholar 

  26. Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2007) Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38:1345–1353

    Article  CAS  PubMed  Google Scholar 

  27. Lv H, Li J, Che YQ (2019) CXCL8 gene silencing promotes neuroglial cells activation while inhibiting neuroinflammation through the PI3K/Akt/NF-κB-signaling pathway in mice with ischemic stroke. J Cell Physiol 234:7341–7355

    Article  CAS  PubMed  Google Scholar 

  28. Huang J, Li Y, Tang Y, Tang G, Yang GY, Wang Y (2013) CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke 44:190–197

    Article  CAS  PubMed  Google Scholar 

  29. Sorce S, Bonnefont J, Julien S, Marq-Lin N, Rodriguez I, Dubois-Dauphin M, Krause KH (2010) Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol 160:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan Y, Xiong X, Zhang Y, Yan D, Jian Z, Xu B, Zhao H (2016) MKEY, a Peptide Inhibitor of CXCL4-CCL5 Heterodimer Formation, Protects Against Stroke in Mice. J Am Heart Assoc 5:e003615

  31. Li P, Wang L, Zhou Y, Gan Y, Zhu W, Xia Y, Jiang X, Watkins S, Vazquez A, Thomson AW, Chen J, Yu W, Hu X (2017) C-C Chemokine Receptor Type 5 (CCR5)-Mediated Docking of Transferred Tregs Protects Against Early Blood-Brain Barrier Disruption After Stroke. J Am Heart Assoc 6:e006387

  32. Arunachalam P, Ludewig P, Melich P, Arumugam TV, Gerloff C, Prinz I, Magnus T, Gelderblom M (2017) CCR6 (CC Chemokine Receptor 6) Is Essential for the Migration of Detrimental Natural Interleukin-17-Producing γδ T Cells in Stroke. Stroke 48:1957–1965

    Article  CAS  PubMed  Google Scholar 

  33. Brait VH, Rivera J, Broughton BR, Lee S, Drummond GR, Sobey CG (2011) Chemokine-related gene expression in the brain following ischemic stroke: no role for CXCR2 in outcome. Brain Res 1372:169–179

    Article  CAS  PubMed  Google Scholar 

  34. Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR (2015) Role of Neutrophils in Exacerbation of Brain Injury After Focal Cerebral Ischemia in Hyperlipidemic Mice. Stroke 46:2916–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN (2003) Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 23:748–755. https://doi.org/10.1097/01.wcb.0000071885.63724.20

    Article  PubMed  Google Scholar 

  36. Cisbani G, Le Behot A, Plante MM, Préfontaine P, Lecordier M, Rivest S (2018) Role of the chemokine receptors CCR2 and CX3CR1 in an experimental model of thrombotic stroke. Brain Behav Immun 70:280–292. https://doi.org/10.1016/j.bbi.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  37. Tang Z, Gan Y, Liu Q, Yin JX, Shi J, Shi FD (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26. https://doi.org/10.1186/1742-2094-11-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Wang Y, Yao Y, Griffiths BB, Feng L, Tao T, Wang F, Xu B, Stary CM, Zhao H (2020) Systematic Study of the Immune Components after Ischemic Stroke Using CyTOF Techniques. J Immunol Res 2020:9132410

    Article  PubMed  PubMed Central  Google Scholar 

  39. Edwards DN, Salmeron K, Lukins DE, Trout AL, Fraser JF, Bix GJ (2020) Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J Cereb Blood Flow Metab 40:1695–1708

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Tang X, Ma F, Fan Y, Sun P, Zhu T, Zhang J, Hamblin MH, Chen YE, Yin KJ (2020) Endothelium-targeted overexpression of Krüppel-like factor 11 protects the blood-brain barrier function after ischemic brain injury. Brain Pathol 30:746–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Wang L, Han Z, Dong J, Pang D, Fu Y, Li L (2020) KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation 17:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang X, Liu K, Hamblin MH, Xu Y, Yin KJ (2018) Genetic Deletion of Krüppel-Like Factor 11 Aggravates Ischemic Brain Injury. Mol Neurobiol 55:2911–2921

    Article  CAS  PubMed  Google Scholar 

  43. Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández-Cadenas I, Ribó M, Molina CA, Lo EH, Montaner J (2006) Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37:1399–1406

    Article  CAS  PubMed  Google Scholar 

  44. Rosell A, Cuadrado E, Ortega-Aznar A, Hernández-Guillamon M, Lo EH, Montaner J (2008) MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39:1121–1126

    Article  CAS  PubMed  Google Scholar 

  45. Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD, Chan PH, Park TS (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289:H558–H568

    Article  CAS  PubMed  Google Scholar 

  46. Lee S, Chu HX, Kim HA, Real NC, Sharif S, Fleming SB, Mercer AA, Wise LM, Drummond GR, Sobey CG (2015) Effect of a broad-specificity chemokine-binding protein on brain leukocyte infiltration and infarct development. Stroke 46:537–544

    Article  CAS  PubMed  Google Scholar 

  47. Kim JS, Chopp M, Chen H, Levine SR, Carey JL, Welch KM (1995) Adhesive glycoproteins CD11a and CD18 are upregulated in the leukocytes from patients with ischemic stroke and transient ischemic attacks. J Neurol Sci 128:45–50. https://doi.org/10.1016/0022-510x(94)00203-z

    Article  CAS  PubMed  Google Scholar 

  48. Fiszer U, Korczak-Kowalska G, Palasik W, Korlak J, Górski A, Członkowska A (1998) Increased expression of adhesion molecule CD18 (LFA-1beta) on the leukocytes of peripheral blood in patients with acute ischemic stroke. Acta Neurol Scand 97:221–224. https://doi.org/10.1111/j.1600-0404.1998.tb00641.x

    Article  CAS  PubMed  Google Scholar 

  49. Tsai NW, Chang WN, Shaw CF, Jan CR, Huang CR, Chen SD, Chuang YC, Lee LH, Lu CH (2009) The value of leukocyte adhesion molecules in patients after ischemic stroke. J Neurol 256:1296–1302. https://doi.org/10.1007/s00415-009-5117-3

    Article  CAS  PubMed  Google Scholar 

  50. Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR (1994) Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25:869–875; discussion 875-866. https://doi.org/10.1161/01.str.25.4.869

    Article  CAS  PubMed  Google Scholar 

  51. Yenari MA, Kunis D, Sun GH, Onley D, Watson L, Turner S, Whitaker S, Steinberg GK (1998) Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Exp Neurol 153:223–233. https://doi.org/10.1006/exnr.1998.6876

    Article  CAS  PubMed  Google Scholar 

  52. Zhang L, Zhang ZG, Zhang RL, Lu M, Krams M, Chopp M (2003) Effects of a selective CD11b/CD18 antagonist and recombinant human tissue plasminogen activator treatment alone and in combination in a rat embolic model of stroke. Stroke 34:1790–1795. https://doi.org/10.1161/01.str.0000077016.55891.2e

    Article  CAS  PubMed  Google Scholar 

  53. Prestigiacomo CJ, Kim SC, Connolly ES Jr, Liao H, Yan SF, Pinsky DJ (1999) CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke 30:1110–1117. https://doi.org/10.1161/01.str.30.5.1110

    Article  CAS  PubMed  Google Scholar 

  54. Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN (2004) Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol 287:H2555–H2560. https://doi.org/10.1152/ajpheart.00588.2004

    Article  CAS  PubMed  Google Scholar 

  55. Sladojevic N, Stamatovic SM, Keep RF, Grailer JJ, Sarma JV, Ward PA, Andjelkovic AV (2014) Inhibition of junctional adhesion molecule-A/LFA interaction attenuates leukocyte trafficking and inflammation in brain ischemia/reperfusion injury. Neurobiol Dis 67:57–70. https://doi.org/10.1016/j.nbd.2014.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Langhauser F, Kraft P, Göb E, Leinweber J, Schuhmann MK, Lorenz K, Gelderblom M, Bittner S, Meuth SG, Wiendl H, Magnus T, Kleinschnitz C (2014) Blocking of α4 integrin does not protect from acute ischemic stroke in mice. Stroke 45:1799–1806

    Article  CAS  PubMed  Google Scholar 

  57. Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, König R, Hütten H, Etemire E, Männ L, Klingberg A, Fischer T, Görtler MW, Heinze HJ, Reichardt P, Schraven B, Hermann DM, Reymann KG, Gunzer M (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129:259–277

    Article  CAS  PubMed  Google Scholar 

  58. Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C, Zanier ER, Mamrak U, Rex A, Party H et al (2015) Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Sci Transl Med 7:299ra121. https://doi.org/10.1126/scitranslmed.aaa9853

    Article  CAS  PubMed  Google Scholar 

  59. Elkins J, Veltkamp R, Montaner J, Johnston SC, Singhal AB, Becker K, Lansberg MG, Tang W, Chang I, Muralidharan K, Gheuens S, Mehta L, Elkind MSV (2017) Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol 16:217–226

    Article  CAS  PubMed  Google Scholar 

  60. Elkind MSV, Veltkamp R, Montaner J, Johnston SC, Singhal AB, Becker K, Lansberg MG, Tang W, Kasliwal R, Elkins J (2020) Natalizumab in acute ischemic stroke (ACTION II): A randomized, placebo-controlled trial. Neurology 95:e1091–e1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fang T, Zhou D, Lu L, Tong X, Wu J, Yi L (2016) LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats. Braz J Med Biol Res 49:e5287. https://doi.org/10.1590/1414-431x20165287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dhanesha N, Jain M, Tripathi AK, Doddapattar P, Chorawala M, Bathla G, Nayak MK, Ghatge M, Lentz SR, Kon S et al (2020) Targeting myeloid-specific integrin α9β1 improves short- and long-term stroke outcomes in murine models with preexisting comorbidities by limiting thrombosis and inflammation. Circ Res 126:1779–1794. https://doi.org/10.1161/circresaha.120.316659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Enzmann GU, Pavlidou S, Vaas M, Klohs J, Engelhardt B (2018) ICAM-1(null) C57BL/6 mice are not protected from experimental ischemic stroke. Transl Stroke Res 9:608–621. https://doi.org/10.1007/s12975-018-0612-4

    Article  CAS  PubMed  Google Scholar 

  64. Ludewig P, Sedlacik J, Gelderblom M, Bernreuther C, Korkusuz Y, Wagener C, Gerloff C, Fiehler J, Magnus T, Horst AK (2013) Carcinoembryonic antigen-related cell adhesion molecule 1 inhibits MMP-9-mediated blood-brain-barrier breakdown in a mouse model for ischemic stroke. Circ Res 113:1013–1022. https://doi.org/10.1161/CIRCRESAHA.113.301207

    Article  CAS  PubMed  Google Scholar 

  65. Winneberger J, Schöls S, Lessmann K, Rández-Garbayo J, Bauer AT, Mohamud Yusuf A, Hermann DM, Gunzer M, Schneider SW, Fiehler J et al (2021) Platelet endothelial cell adhesion molecule-1 is a gatekeeper of neutrophil transendothelial migration in ischemic stroke. Brain Behav Immun 93:277–287. https://doi.org/10.1016/j.bbi.2020.12.026

    Article  CAS  PubMed  Google Scholar 

  66. Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, Krakauer JW, Boyd LA, Carmichael ST, Corbett D, Cramer SC (2017) Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int J Stroke 12:444–450

    Article  PubMed  Google Scholar 

  67. Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B (2008) Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 5:46

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clausen BH, Degn M, Sivasaravanaparan M, Fogtmann T, Andersen MG, Trojanowsky MD, Gao H, Hvidsten S, Baun C, Deierborg T, Finsen B, Kristensen BW, Bak ST, Meyer M, Lee J, Nedospasov SA, Brambilla R, Lambertsen KL (2016) Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling. Sci Rep 6:29291

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sumbria RK, Boado RJ, Pardridge WM (2012) Brain protection from stroke with intravenous TNFalpha decoy receptor-Trojan horse fusion protein. J Cereb Blood Flow Metab 32:1933–1938. https://doi.org/10.1038/jcbfm.2012.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Works MG, Koenig JB, Sapolsky RM (2013) Soluble TNF receptor 1-secreting ex vivo-derived dendritic cells reduce injury after stroke. J Cereb Blood Flow Metab 33:1376–1385. https://doi.org/10.1038/jcbfm.2013.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tobinick E (2011) Rapid improvement of chronic stroke deficits after perispinal etanercept: three consecutive cases. CNS Drugs 25:145–155. https://doi.org/10.2165/11588400-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  73. Tobinick E, Kim NM, Reyzin G, Rodriguez-Romanacce H, DePuy V (2012) Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs 26:1051–1070. https://doi.org/10.1007/s40263-012-0013-2

    Article  CAS  PubMed  Google Scholar 

  74. Umahara T, Uchihara T, Hirokawa K, Hirao K, Shimizu S, Hashimoto T, Terasi H, Hanyu H (2018) Time-dependent and lesion-dependent HMGB1-selective localization in brains of patients with cerebrovascular diseases. Histol Histopathol 33:215–222. https://doi.org/10.14670/hh-11-914

    Article  CAS  PubMed  Google Scholar 

  75. Li M, Chen S, Shi X, Lyu C, Zhang Y, Tan M, Wang C, Zang N, Liu X, Hu Y, Shen J, Zhou L, Gu Y (2018) Cell permeable HMGB1-binding heptamer peptide ameliorates neurovascular complications associated with thrombolytic therapy in rats with transient ischemic stroke. J Neuroinflammation 15:237

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kim SW, Lee H, Lee HK, Kim ID, Lee JK (2019) Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol Commun 7:94

    Article  PubMed  Google Scholar 

  77. Pradillo JM, Denes A, Greenhalgh AD, Boutin H, Drake C, McColl BW, Barton E, Proctor SD, Russell JC, Rothwell NJ et al (2012) Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J Cereb Blood Flow Metab 32:1810–1819. https://doi.org/10.1038/jcbfm.2012.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Inácio AR, Liu Y, Clausen BH, Svensson M, Kucharz K, Yang Y, Stankovich T, Khorooshi R, Lambertsen KL, Issazadeh-Navikas S et al (2015) Endogenous IFN-β signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. J Neuroinflammation 12:211. https://doi.org/10.1186/s12974-015-0427-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kuo PC, Scofield BA, Yu IC, Chang FL, Ganea D, Yen JH (2016) Interferon-β modulates inflammatory response in cerebral ischemia. J Am Heart Assoc 5. https://doi.org/10.1161/jaha.115.002610

  80. Smith CJ, Hulme S, Vail A, Heal C, Parry-Jones AR, Scarth S, Hopkins K, Hoadley M, Allan SM, Rothwell NJ et al (2018) SCIL-STROKE (Subcutaneous interleukin-1 receptor antagonist in ischemic stroke): a randomized controlled phase 2 trial. Stroke 49:1210–1216. https://doi.org/10.1161/strokeaha.118.020750

    Article  CAS  PubMed  Google Scholar 

  81. Liberale L, Bonetti NR, Puspitasari YM, Schwarz L, Akhmedov A, Montecucco F, Ruschitzka F, Beer JH, Lüscher TF, Simard J et al (2020) Postischemic administration of IL-1α neutralizing antibody reduces brain damage and neurological deficit in experimental stroke. Circulation 142:187–189. https://doi.org/10.1161/circulationaha.120.046301

    Article  CAS  PubMed  Google Scholar 

  82. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O, Thom V, Friese MA, Prinz I, Hölscher C, Glatzel M, Korn T, Gerloff C, Tolosa E, Magnus T (2012) Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120:3793–3802

    Article  CAS  PubMed  Google Scholar 

  83. Liesz A, Bauer A, Hoheisel JD, Veltkamp R (2014) Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: an experimental microarray study. Neurosci Lett 579:18–23. https://doi.org/10.1016/j.neulet.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  84. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–199. https://doi.org/10.1038/nm.1927

    Article  CAS  PubMed  Google Scholar 

  85. Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG (2011) Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42:2026–2032. https://doi.org/10.1161/strokeaha.110.593772

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J (2015) Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage. J Neurosci 35:11281–11291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luo Q, Fan Y, Lin L, Wei J, Li Z, Li Y, Nakae S, Lin W, Chen Q (2018) Interleukin-33 Protects Ischemic Brain Injury by Regulating Specific Microglial Activities. Neuroscience 385:75–89

    Article  CAS  PubMed  Google Scholar 

  88. Zhang SR, Piepke M, Chu HX, Broughton BR, Shim R, Wong CH, Lee S, Evans MA, Vinh A, Sakkal S, Arumugam TV, Magnus T, Huber S, Gelderblom M, Drummond GR, Sobey CG, Kim HA (2018) IL-33 modulates inflammatory brain injury but exacerbates systemic immunosuppression following ischemic stroke. JCI Insight  3:e121560

  89. Xiao W, Guo S, Chen L, Luo Y (2019) The role of Interleukin-33 in the modulation of splenic T-cell immune responses after experimental ischemic stroke. J Neuroimmunol 333:576970

    Article  CAS  PubMed  Google Scholar 

  90. Guo S, Luo Y (2020) Brain Foxp3(+) regulatory T cells can be expanded by Interleukin-33 in mouse ischemic stroke. Int Immunopharmacol 81:106027

    Article  CAS  PubMed  Google Scholar 

  91. Liu X, Hu R, Pei L, Si P, Wang C, Tian X, Wang X, Liu H, Wang B, Xia Z, Xu Y, Song B (2020) Regulatory T cell is critical for interleukin-33-mediated neuroprotection against stroke. Exp Neurol 328:113233

    Article  CAS  PubMed  Google Scholar 

  92. Dietel B, Cicha I, Achenbach S, Kollmar R, Garlichs C, Tauchi M (2014) Different treatment settings of granulocyte-colony stimulating factor and their impact on T cell-specific immune response in experimental stroke. Immunol Lett 158:95–100. https://doi.org/10.1016/j.imlet.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  93. Mizuma A, Yamashita T, Kono S, Nakayama T, Baba Y, Itoh S, Asakura K, Niimi Y, Asahi T, Kanemaru K et al (2016) Phase II trial of intravenous low-dose granulocyte colony-stimulating factor in acute ischemic stroke. J Stroke Cerebrovasc Dis 25:1451–1457. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.01.022

    Article  PubMed  Google Scholar 

  94. Weise G, Pösel C, Möller K, Kranz A, Didwischus N, Boltze J, Wagner DC (2017) High-dosage granulocyte colony stimulating factor treatment alters monocyte trafficking to the brain after experimental stroke. Brain Behav Immun 60:15–26. https://doi.org/10.1016/j.bbi.2016.08.008

    Article  CAS  PubMed  Google Scholar 

  95. Huang X, Liu Y, Bai S, Peng L, Zhang B, Lu H (2017) Granulocyte colony stimulating factor therapy for stroke: A pairwise meta-analysis of randomized controlled trial. PLoS One 12:e0175774. https://doi.org/10.1371/journal.pone.0175774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gliem M, Krammes K, Liaw L, van Rooijen N, Hartung HP, Jander S (2015) Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 63:2198–2207. https://doi.org/10.1002/glia.22885

    Article  PubMed  Google Scholar 

  97. Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, Dai X, Iyer K, Hitchens TK, Foley LM, Li S, Stolz DB, Chen K, Ding Y, Thomson AW, Leak RK, Chen J, Hu X (2021) Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 54:1527–42.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries HE, Schepers J, Vos IM, Dijkstra CD, Kappelle LJ, Nicolay K et al (2003) Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab 23:1029–1039. https://doi.org/10.1097/01.wcb.0000080703.47016.b6

    Article  CAS  PubMed  Google Scholar 

  99. Lee SW, Song DJ, Ryu HS, Kim YS, Kim TS, Joo SP (2021) Systemic macrophage depletion attenuates infarct size in an experimental mouse model of stroke. J Cerebrovasc Endovasc Neurosurg 23:304–313

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, Jander S (2012) Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 71:743–752

    Article  CAS  PubMed  Google Scholar 

  101. Cai W, Liu S, Hu M, Huang F, Zhu Q, Qiu W, Hu X, Colello J, Zheng SG, Lu Z (2020) Functional Dynamics of Neutrophils After Ischemic Stroke. Transl Stroke Res 11:108–121

    Article  PubMed  Google Scholar 

  102. Wattananit S, Tornero D, Graubardt N, Memanishvili T, Monni E, Tatarishvili J, Miskinyte G, Ge R, Ahlenius H, Lindvall O, Schwartz M, Kokaia Z (2016) Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice. J Neurosci 36:4182–4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vindegaard N, Muñoz-Briones C, El Ali HH, Kristensen LK, Rasmussen RS, Johansen FF, Hasseldam H (2017) T-cells and macrophages peak weeks after experimental stroke: Spatial and temporal characteristics. Neuropathology 37:407–414

    Article  CAS  PubMed  Google Scholar 

  104. Jiang C, Kong W, Wang Y, Ziai W, Yang Q, Zuo F, Li F, Xu H, Li Q, Yang J, Lu H, Zhang J, Wang J (2017) Changes in the cellular immune system and circulating inflammatory markers of stroke patients. Oncotarget 8:3553–3567

    Article  PubMed  Google Scholar 

  105. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991

    Article  CAS  PubMed  Google Scholar 

  106. Cai W, Dai X, Chen J, Zhao J, Xu M, Zhang L, Yang B, Zhang W, Rocha M, Nakao T, Kofler J, Shi Y, Stetler RA, Hu X (2019) STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4:e131355

  107. Zhang W, Zhao J, Wang R, Jiang M, Ye Q, Smith AD, Chen J, Shi Y (2019) Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain. CNS Neurosci Ther 25:1329–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hu M, Lin Y, Men X, Wang S, Sun X, Zhu Q, Lu D, Liu S, Zhang B, Cai W, Lu Z (2021) High-salt diet downregulates TREM2 expression and blunts efferocytosis of macrophages after acute ischemic stroke. J Neuroinflammation 18:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Roh JS, Sohn DH (2018) Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw 18:e27

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shichita T, Ito M, Yoshimura A (2014) Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 8:319

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kim SW, Davaanyam D, Seol SI, Lee HK, Lee H, Lee JK (2020) Adenosine Triphosphate Accumulated Following Cerebral Ischemia Induces Neutrophil Extracellular Trap Formation. Int J Mol Sci 21:7668

  112. Li Q, Cao Y, Dang C, Han B, Han R, Ma H, Hao J, Wang L (2020) Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol Med 12:e11002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maehara N, Taniguchi K, Okuno A, Ando H, Hirota A, Li Z, Wang CT, Arai S, Miyazaki T (2021) AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Rep 36:109693

    Article  CAS  PubMed  Google Scholar 

  114. Ishibashi N, Prokopenko O, Weisbrot-Lefkowitz M, Reuhl KR, Mirochnitchenko O (2002) Glutathione peroxidase inhibits cell death and glial activation following experimental stroke. Brain Res Mol Brain Res 109:34–44

    Article  CAS  PubMed  Google Scholar 

  115. Jianrong S, Yanjun Z, Chen Y, Jianwen X (2019) DUSP14 rescues cerebral ischemia/reperfusion (IR) injury by reducing inflammation and apoptosis via the activation of Nrf-2. Biochem Biophys Res Commun 509:713–721

    Article  PubMed  Google Scholar 

  116. Clausen BH, Wirenfeldt M, Høgedal SS, Frich LH, Nielsen HH, Schrøder HD, Østergaard K, Finsen B, Kristensen BW, Lambertsen KL (2020) Characterization of the TNF and IL-1 systems in human brain and blood after ischemic stroke. Acta Neuropathol Commun 8:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, Ma RY, Liao NS (2018) Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun 73:562–570

    Article  CAS  PubMed  Google Scholar 

  118. Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28:53–63

    Article  CAS  PubMed  Google Scholar 

  119. Xu P, Zhang X, Liu Q, Xie Y, Shi X, Chen J, Li Y, Guo H, Sun R, Hong Y, Liu X, Xu G (2019) Microglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell Death Dis 10:555

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jiao Y, Wang J, Zhang H, Cao Y, Qu Y, Huang S, Kong X, Song C, Li J, Li Q, Ma H, Lu X, Wang L (2020) Inhibition of microglial receptor-interacting protein kinase 1 ameliorates neuroinflammation following cerebral ischaemic stroke. J Cell Mol Med 24:12585–12598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Song S, Wang S, Pigott VM, Jiang T, Foley LM, Mishra A, Nayak R, Zhu W, Begum G, Shi Y, Carney KE, Hitchens TK, Shull GE, Sun D (2018) Selective role of Na(+) /H(+) exchanger in Cx3cr1(+) microglial activation, white matter demyelination, and post-stroke function recovery. Glia 66:2279–2298

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lyu Q, Pang X, Zhang Z, Wei Y, Hong J, Chen H (2020) Microglial V-set and immunoglobulin domain-containing 4 protects against ischemic stroke in mice by suppressing TLR4-regulated inflammatory response. Biochem Biophys Res Commun 522:560–567

    Article  CAS  PubMed  Google Scholar 

  123. Li D, Wang C, Yao Y, Chen L, Liu G, Zhang R, Liu Q, Shi FD, Hao J (2016) mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. Faseb j 30:3388–3399

    Article  CAS  PubMed  Google Scholar 

  124. Chen YJ, Nguyen HM, Maezawa I, Grössinger EM, Garing AL, Köhler R, Jin LW, Wulff H (2016) The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. J Cereb Blood Flow Metab 36:2146–2161

    Article  CAS  PubMed  Google Scholar 

  125. Wang R, Pu H, Ye Q, Jiang M, Chen J, Zhao J, Li S, Liu Y, Hu X, Rocha M, Jadhav AP, Shi Y (2020) Transforming Growth Factor Beta-Activated Kinase 1-Dependent Microglial and Macrophage Responses Aggravate Long-Term Outcomes After Ischemic Stroke. Stroke 51:975–985

    Article  CAS  PubMed  Google Scholar 

  126. Czech B, Pfeilschifter W, Mazaheri-Omrani N, Strobel MA, Kahles T, Neumann-Haefelin T, Rami A, Huwiler A, Pfeilschifter J (2009) The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun 389:251–256

    Article  CAS  PubMed  Google Scholar 

  127. Tobin MK, Stephen TKL, Lopez KL, Pergande MR, Bartholomew AM, Cologna SM, Lazarov O (2020) Activated Mesenchymal Stem Cells Induce Recovery Following Stroke Via Regulation of Inflammation and Oligodendrogenesis. J Am Heart Assoc 9:e013583

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zheng J, Dai Q, Han K, Hong W, Jia D, Mo Y, Lv Y, Tang H, Fu H, Geng W (2020) JNK-IN-8, a c-Jun N-terminal kinase inhibitor, improves functional recovery through suppressing neuroinflammation in ischemic stroke. J Cell Physiol 235:2792–2799

    Article  CAS  PubMed  Google Scholar 

  129. Lu Y, Zhao Y, Zhang Q, Fang C, Bao A, Dong W, Peng Y, Peng H, Ju Z, He J, Zhang Y, Xu T, Zhong C (2022) Soluble TREM2 is associated with death and cardiovascular events after acute ischemic stroke: an observational study from CATIS. J Neuroinflammation 19:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Otxoa-de-Amezaga A, Miró-Mur F, Pedragosa J, Gallizioli M, Justicia C, Gaja-Capdevila N, Ruíz-Jaen F, Salas-Perdomo A, Bosch A, Calvo M, Márquez-Kisinousky L, Denes A, Gunzer M, Planas AM (2019) Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathol 137:321–341

    Article  CAS  PubMed  Google Scholar 

  131. Neumann J, Henneberg S, von Kenne S, Nolte N, Müller AJ, Schraven B, Görtler MW, Reymann KG, Gunzer M, Riek-Burchardt M (2018) Beware the intruder: Real time observation of infiltrated neutrophils and neutrophil-Microglia interaction during stroke in vivo. PLoS ONE 13:e0193970

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wu R, Li X, Xu P, Huang L, Cheng J, Huang X, Jiang J, Wu LJ, Tang Y (2017) TREM2 protects against cerebral ischemia/reperfusion injury. Mol Brain 10:20

    Article  PubMed  PubMed Central  Google Scholar 

  133. Woo MS, Yang J, Beltran C, Cho S (2016) Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice. J Biol Chem 291:23654–23661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li Q, Dai Z, Cao Y, Wang L (2019) Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation. Biochem Biophys Res Commun 513:479–485

    Article  CAS  PubMed  Google Scholar 

  135. Rajan WD, Wojtas B, Gielniewski B, Miró-Mur F, Pedragosa J, Zawadzka M, Pilanc P, Planas AM, Kaminska B (2020) Defining molecular identity and fates of CNS-border associated macrophages after ischemic stroke in rodents and humans. Neurobiol Dis 137:104722

    Article  CAS  PubMed  Google Scholar 

  136. Pedragosa J, Salas-Perdomo A, Gallizioli M, Cugota R, Miró-Mur F, Briansó F, Justicia C, Pérez-Asensio F, Marquez-Kisinousky L, Urra X, Gieryng A, Kaminska B, Chamorro A, Planas AM (2018) CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage. Acta Neuropathol Commun 6:76

    Article  PubMed  PubMed Central  Google Scholar 

  137. Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ (2006) Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 26:605–612

    Article  PubMed  Google Scholar 

  138. Strbian D, Karjalainen-Lindsberg ML, Kovanen PT, Tatlisumak T, Lindsberg PJ (2007) Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke. Circulation 116:411–418

    Article  CAS  PubMed  Google Scholar 

  139. Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, Shi FD, Hao J (2017) Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 114:E396-e405

    CAS  PubMed  Google Scholar 

  140. Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129:239–257

    Article  CAS  PubMed  Google Scholar 

  141. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, Cao Y, Xu H, Luo H, Lu L, Shi MJ, Tian Y, Fan W, Zhao BQ (2020) Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun 11:2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Essig F, Kollikowski AM, Pham M, Solymosi L, Stoll G, Haeusler KG, Kraft P, Schuhmann MK (2020) Immunohistological Analysis of Neutrophils and Neutrophil Extracellular Traps in Human Thrombemboli Causing Acute Ischemic Stroke. Int J Mol Sci 21:7387

  143. Kim HJ, Wei Y, Wojtkiewicz GR, Lee JY, Moskowitz MA, Chen JW (2019) Reducing myeloperoxidase activity decreases inflammation and increases cellular protection in ischemic stroke. J Cereb Blood Flow Metab 39:1864–1877

    Article  CAS  PubMed  Google Scholar 

  144. Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, Anrather J (2014) Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol 193:2531–2537

    Article  CAS  PubMed  Google Scholar 

  145. Harris AK, Ergul A, Kozak A, Machado LS, Johnson MH, Fagan SC (2005) Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke. BMC Neurosci 6:49

    Article  PubMed  PubMed Central  Google Scholar 

  146. Frieler RA, Chung Y, Ahlers CG, Gheordunescu G, Song J, Vigil TM, Shah YM, Mortensen RM (2017) Genetic neutrophil deficiency ameliorates cerebral ischemia-reperfusion injury. Exp Neurol 298:104–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kawano T, Shimamura M, Nakagami H, Kanki H, Sasaki T, Mochizuki H (2019) Temporal and spatial profile of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in ischemic stroke in mice. PLoS ONE 14:e0215482

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zarruk JG, Greenhalgh AD, David S (2018) Microglia and macrophages differ in their inflammatory profile after permanent brain ischemia. Exp Neurol 301:120–132

    Article  CAS  PubMed  Google Scholar 

  149. Schmidt A, Strecker JK, Hucke S, Bruckmann NM, Herold M, Mack M, Diederich K, Schäbitz WR, Wiendl H, Klotz L, Minnerup J (2017) Targeting Different Monocyte/Macrophage Subsets Has No Impact on Outcome in Experimental Stroke. Stroke 48:1061–1069

    Article  CAS  PubMed  Google Scholar 

  150. Chu HX, Broughton BR, Kim HA, Lee S, Drummond GR, Sobey CG (2015) Evidence That Ly6C(hi) Monocytes are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization. Stroke 46:1929–1937

    Article  CAS  PubMed  Google Scholar 

  151. Chernykh ER, Shevela EY, Starostina NM, Morozov SA, Davydova MN, Menyaeva EV, Ostanin AA (2016) Safety and Therapeutic Potential of M2 Macrophages in Stroke Treatment. Cell Transplant 25:1461–1471

    Article  PubMed  Google Scholar 

  152. Desestret V, Riou A, Chauveau F, Cho TH, Devillard E, Marinescu M, Ferrera R, Rey C, Chanal M, Angoulvant D, Honnorat J, Nighoghossian N, Berthezène Y, Nataf S, Wiart M (2013) In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages. PLoS ONE 8:e67063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schulze J, Gellrich J, Kirsch M, Dressel A, Vogelgesang A (2021) Central Nervous System-Infiltrating T Lymphocytes in Stroke Are Activated via Their TCR (T-Cell Receptor) but Lack CD25 Expression. Stroke 52:2939–2947

    Article  CAS  PubMed  Google Scholar 

  154. Xie L, Li W, Hersh J, Liu R, Yang SH (2019) Experimental ischemic stroke induces long-term T cell activation in the brain. J Cereb Blood Flow Metab 39:2268–2276

    Article  CAS  PubMed  Google Scholar 

  155. Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV, Broughton BR, Drummond GR, Sobey CG (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 34:450–459

    Article  CAS  PubMed  Google Scholar 

  156. Zhao H, Wan L, Chen Y, Zhang H, Xu Y, Qiu S (2018) FasL incapacitation alleviates CD4(+) T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke. J Neuroimmunol 318:36–44

    Article  CAS  PubMed  Google Scholar 

  157. Mracsko E, Liesz A, Stojanovic A, Lou WP, Osswald M, Zhou W, Karcher S, Winkler F, Martin-Villalba A, Cerwenka A, Veltkamp R (2014) Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J Neurosci 34:16784–16795

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115:3835–3842

    Article  CAS  PubMed  Google Scholar 

  159. Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H (2012) Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke 43:1941–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113:2105–2112

    Article  PubMed  Google Scholar 

  161. Selvaraj UM, Ujas TA, Kong X, Kumar A, Plautz EJ, Zhang S, Xing C, Sudduth TL, Wilcock DM, Turchan-Cholewo J, Goldberg MP, Stowe AM (2021) Delayed diapedesis of CD8 T cells contributes to long-term pathology after ischemic stroke in male mice. Brain Behav Immun 95:502–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhou YX, Wang X, Tang D, Li Y, Jiao YF, Gan Y, Hu XM, Yang LQ, Yu WF, Stetler RA, Li PY, Wen DX (2019) IL-2mAb reduces demyelination after focal cerebral ischemia by suppressing CD8(+) T cells. CNS Neurosci Ther 25:532–543

    Article  CAS  PubMed  Google Scholar 

  163. Heindl S, Ricci A, Carofiglio O, Zhou Q, Arzberger T, Lenart N, Franzmeier N, Hortobagyi T, Nelson PT, Stowe AM, Denes A, Edbauer D, Liesz A (2021) Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. J Exp Med 218:e20202411

  164. Liesz A, Sun L, Zhou W, Schwarting S, Mracsko E, Zorn M, Bauer H, Sommer C, Veltkamp R (2011) FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS ONE 6:e21312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Crosby CM, Kronenberg M (2018) Tissue-specific functions of invariant natural killer T cells. Nat Rev Immunol 18:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang ZK, Xue L, Wang T, Wang XJ, Su ZQ (2016) Infiltration of invariant natural killer T cells occur and accelerate brain infarction in permanent ischemic stroke in mice. Neurosci Lett 633:62–68

    Article  CAS  PubMed  Google Scholar 

  167. Wong CH, Jenne CN, Tam PP, Léger C, Venegas A, Ryckborst K, Hill MD, Kubes P (2017) Prolonged Activation of Invariant Natural Killer T Cells and T(H)2-Skewed Immunity in Stroke Patients. Front Neurol 8:6

    Article  PubMed  PubMed Central  Google Scholar 

  168. Meng H, Zhao H, Cao X, Hao J, Zhang H, Liu Y, Zhu MS, Fan L, Weng L, Qian L, Wang X, Xu Y (2019) Double-negative T cells remarkably promote neuroinflammation after ischemic stroke. Proc Natl Acad Sci U S A 116:5558–5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kim M, Kim SD, Kim KI, Jeon EH, Kim MG, Lim YR, Lkhagva-Yondon E, Oh Y, Na K, Chung YC, Jin BK, Song YS, Jeon MS (2021) Dynamics of T Lymphocyte between the Periphery and the Brain from the Acute to the Chronic Phase Following Ischemic Stroke in Mice. Exp Neurobiol 30:155–169

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hu Y, Zheng Y, Wu Y, Ni B, Shi S (2014) Imbalance between IL-17A-producing cells and regulatory T cells during ischemic stroke. Mediators Inflamm 2014:813045

    Article  PubMed  PubMed Central  Google Scholar 

  171. Dolati S, Ahmadi M, Khalili M, Taheraghdam AA, Siahmansouri H, Babaloo Z, Aghebati-Maleki L, Jadidi-Niaragh F, Younesi V, Yousefi M (2018) Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke. Neurol Sci 39:647–654

    Article  PubMed  Google Scholar 

  172. Konoeda F, Shichita T, Yoshida H, Sugiyama Y, Muto G, Hasegawa E, Morita R, Suzuki N, Yoshimura A (2010) Therapeutic effect of IL-12/23 and their signaling pathway blockade on brain ischemia model. Biochem Biophys Res Commun 402:500–506

    Article  CAS  PubMed  Google Scholar 

  173. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950

    Article  CAS  PubMed  Google Scholar 

  174. Derkow K, Krüger C, Dembny P, Lehnardt S (2015) Microglia Induce Neurotoxic IL-17+ γδ T Cells Dependent on TLR2, TLR4, and TLR9 Activation. PLoS ONE 10:e0135898

    Article  PubMed  PubMed Central  Google Scholar 

  175. Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, Rissiek B, Bernreuther C, Glatzel M, Korn T, Arumugam TV, Sedlacik J, Gerloff C, Tolosa E, Planas AM, Magnus T (2018) IL-23 (Interleukin-23)-Producing Conventional Dendritic Cells Control the Detrimental IL-17 (Interleukin-17) Response in Stroke. Stroke 49:155–164

    Article  CAS  PubMed  Google Scholar 

  176. Zheng Y, Zhong D, Chen H, Ma S, Sun Y, Wang M, Liu Q, Li G (2015) Pivotal role of cerebral interleukin-23 during immunologic injury in delayed cerebral ischemia in mice. Neuroscience 290:321–331

    Article  CAS  PubMed  Google Scholar 

  177. Yan J, Read SJ, Henderson RD, Hull R, O’Sullivan JD, McCombe PA, Greer JM (2012) Frequency and function of regulatory T cells after ischaemic stroke in humans. J Neuroimmunol 243:89–94

    Article  CAS  PubMed  Google Scholar 

  178. Ruhnau J, Schulze J, von Sarnowski B, Heinrich M, Langner S, Pötschke C, Wilden A, Kessler C, Bröker BM, Vogelgesang A, Dressel A (2016) Reduced Numbers and Impaired Function of Regulatory T Cells in Peripheral Blood of Ischemic Stroke Patients. Mediators Inflamm 2016:2974605

    Article  PubMed  PubMed Central  Google Scholar 

  179. Yan J, Greer JM, Etherington K, Cadigan GP, Cavanagh H, Henderson RD, O’Sullivan JD, Pandian JD, Read SJ, McCombe PA (2009) Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol 206:112–117

    Article  CAS  PubMed  Google Scholar 

  180. Santamaría-Cadavid M, Rodríguez-Castro E, Rodríguez-Yáñez M, Arias-Rivas S, López-Dequidt I, Pérez-Mato M, Rodríguez-Pérez M, López-Loureiro I, Hervella P, Campos F, Castillo J, Iglesias-Rey R, Sobrino T (2020) Regulatory T cells participate in the recovery of ischemic stroke patients. BMC Neurol 20:68

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, Sakai R, Matsuo K, Nakayama T, Yoshie O, Nakatsukasa H, Chikuma S, Shichita T, Yoshimura A (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565:246–250

    Article  CAS  PubMed  Google Scholar 

  182. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H (2011) CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis 26:87–90

    Article  PubMed  Google Scholar 

  183. Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Göbel K, Schuhmann MK, Langhauser F, Helluy X, Schwarz T, Bittner S, Mayer CT, Brede M, Varallyay C, Pham M, Bendszus M, Jakob P, Magnus T, Meuth SG, Iwakura Y, Zernecke A, Sparwasser T, Nieswandt B, Stoll G, Wiendl H (2013) Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121:679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–199

    Article  CAS  PubMed  Google Scholar 

  185. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, Liang W, Thomson AW, Chen J, Hu X (2013) Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 74:458–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Li P, Mao L, Zhou G, Leak RK, Sun BL, Chen J, Hu X (2013) Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia. Stroke 44:3509–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Li P, Mao L, Liu X, Gan Y, Zheng J, Thomson AW, Gao Y, Chen J, Hu X (2014) Essential role of program death 1-ligand 1 in regulatory T-cell-afforded protection against blood-brain barrier damage after stroke. Stroke 45:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liesz A, Zhou W, Na SY, Hämmerling GJ, Garbi N, Karcher S, Mracsko E, Backs J, Rivest S, Veltkamp R (2013) Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci 33:17350–17362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang H, Xia Y, Ye Q, Yu F, Zhu W, Li P, Wei Z, Yang Y, Shi Y, Thomson AW, Chen J, Hu X (2018) In Vivo Expansion of Regulatory T Cells with IL-2/IL-2 Antibody Complex Protects against Transient Ischemic Stroke. J Neurosci 38:10168–10179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Felger JC, Abe T, Kaunzner UW, Gottfried-Blackmore A, Gal-Toth J, McEwen BS, Iadecola C, Bulloch K (2010) Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun 24:724–737

    Article  CAS  PubMed  Google Scholar 

  191. Klehmet J, Hoffmann S, Walter G, Meisel C, Meisel A (2016) Stroke induces specific alteration of T memory compartment controlling auto-reactive CNS antigen-specific T cell responses. J Neurol Sci 368:77–83

    Article  CAS  PubMed  Google Scholar 

  192. Jin WN, Gonzales R, Feng Y, Wood K, Chai Z, Dong JF, La Cava A, Shi FD, Liu Q (2018) Brain Ischemia Induces Diversified Neuroantigen-Specific T-Cell Responses That Exacerbate Brain Injury. Stroke 49:1471–1478

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zierath D, Kunze A, Fecteau L, Becker K (2015) Promiscuity of autoimmune responses to MBP after stroke. J Neuroimmunol 285:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gee JM, Kalil A, Thullbery M, Becker KJ (2008) Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke 39:1575–1582

    Article  PubMed  PubMed Central  Google Scholar 

  195. Ortega SB, Noorbhai I, Poinsatte K, Kong X, Anderson A, Monson NL, Stowe AM (2015) Stroke induces a rapid adaptive autoimmune response to novel neuronal antigens. Discov Med 19:381–392

    PubMed  PubMed Central  Google Scholar 

  196. Becker KJ, Kalil AJ, Tanzi P, Zierath DK, Savos AV, Gee JM, Hadwin J, Carter KT, Shibata D, Cain KC (2011) Autoimmune responses to the brain after stroke are associated with worse outcome. Stroke 42:2763–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zierath D, Thullbery M, Hadwin J, Gee JM, Savos A, Kalil A, Becker KJ (2010) CNS immune responses following experimental stroke. Neurocrit Care 12:274–284

    Article  PubMed  Google Scholar 

  198. Becker K, Kindrick D, McCarron R, Hallenbeck J, Winn R (2003) Adoptive transfer of myelin basic protein-tolerized splenocytes to naive animals reduces infarct size: a role for lymphocytes in ischemic brain injury? Stroke 34:1809–1815

    Article  CAS  PubMed  Google Scholar 

  199. Frenkel D, Huang Z, Maron R, Koldzic DN, Hancock WW, Moskowitz MA, Weiner HL (2003) Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J Immunol 171:6549–6555

    Article  CAS  PubMed  Google Scholar 

  200. Frenkel D, Huang Z, Maron R, Koldzic DN, Moskowitz MA, Weiner HL (2005) Neuroprotection by IL-10-producing MOG CD4+ T cells following ischemic stroke. J Neurol Sci 233:125–132

    Article  CAS  PubMed  Google Scholar 

  201. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, Offner H (2011) Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 31:8556–8563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Doyle KP, Quach LN, Solé M, Axtell RC, Nguyen TV, Soler-Llavina GJ, Jurado S, Han J, Steinman L, Longo FM, Schneider JA, Malenka RC, Buckwalter MS (2015) B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 35:2133–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Schuhmann MK, Langhauser F, Kraft P, Kleinschnitz C (2017) B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J Neuroinflammation 14:112

    Article  PubMed  PubMed Central  Google Scholar 

  204. Pruss H, Iggena D, Baldinger T, Prinz V, Meisel A, Endres M, Dirnagl U, Schwab JM (2012) Evidence of intrathecal immunoglobulin synthesis in stroke: a cohort study. Arch Neurol 69:714–717

    Article  PubMed  Google Scholar 

  205. Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA (2003) Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem 49:1752–1762

    Article  CAS  PubMed  Google Scholar 

  206. Weissman JD, Khunteev GA, Heath R, Dambinova SA (2011) NR2 antibodies: risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J Neurol Sci 300:97–102

    Article  CAS  PubMed  Google Scholar 

  207. Kalev-Zylinska ML, Symes W, Little KC, Sun P, Wen D, Qiao L, Young D, During MJ, Barber PA (2013) Stroke patients develop antibodies that react with components of N-methyl-D-aspartate receptor subunit 1 in proportion to lesion size. Stroke 44:2212–2219

    Article  CAS  PubMed  Google Scholar 

  208. Shibata D, Cain K, Tanzi P, Zierath D, Becker K (2012) Myelin basic protein autoantibodies, white matter disease and stroke outcome. J Neuroimmunol 252:106–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Doss S, Wandinger KP, Hyman BT, Panzer JA, Synofzik M, Dickerson B, Mollenhauer B, Scherzer CR, Ivinson AJ, Finke C, Schöls L, Müller Vom Hagen J, Trenkwalder C, Jahn H, Höltje M, Biswal BB, Harms L, Ruprecht K, Buchert R, Höglinger GU, Oertel WH, Unger MM, Körtvélyessy P, Bittner D, Priller J, Spruth EJ, Paul F, Meisel A, Lynch DR, Dirnagl U, Endres M, Teegen B, Probst C, Komorowski L, Stöcker W, Dalmau J, Prüss H (2014) High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types. Ann Clin Transl Neurol 1:822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Deutsch NR, Worthmann H, Steixner-Kumar AA, Schuppner R, Grosse GM, Pan H, Gabriel MM, Hasse I, van Gemmeren T, Lichtinghagen R, Ehrenreich H, Weissenborn K (2021) Autoantibodies against the NMDAR subunit NR1 are associated with neuropsychiatric outcome after ischemic stroke. Brain Behav Immun 96:73–79

    Article  CAS  PubMed  Google Scholar 

  211. Sperber PS, Siegerink B, Huo S, Rohmann JL, Piper SK, Prüss H, Heuschmann PU, Endres M, Liman TG (2019) Serum Anti-NMDA (N-Methyl-D-Aspartate)-Receptor Antibodies and Long-Term Clinical Outcome After Stroke (PROSCIS-B). Stroke 50:3213–3219

    Article  CAS  PubMed  Google Scholar 

  212. Becker KJ, Tanzi P, Zierath D, Buckwalter MS (2016) Antibodies to myelin basic protein are associated with cognitive decline after stroke. J Neuroimmunol 295–296:9–11

    Article  PubMed  PubMed Central  Google Scholar 

  213. Savva GM, Stephan BC, Alzheimer’s Society Vascular Dementia Systematic Review G (2010) Epidemiological studies of the effect of stroke on incident dementia: a systematic review. Stroke 41:e41–e46

    Article  PubMed  Google Scholar 

  214. Dahm L, Ott C, Steiner J, Stepniak B, Teegen B, Saschenbrecker S, Hammer C, Borowski K, Begemann M, Lemke S, Rentzsch K, Probst C, Martens H, Wienands J, Spalletta G, Weissenborn K, Stöcker W, Ehrenreich H (2014) Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 76:82–94

    Article  CAS  PubMed  Google Scholar 

  215. Royl G, Fokou TJ, Chunder R, Isa R, Münte TF, Wandinger KP, Schwaninger M, Herrmann O, Valdueza JM, Brocke J, Willkomm M, Willemsen D, Auffarth GU, Mindorf S, Brix B, Chamorro A, Planas A, Urra X (2019) Antibodies against neural antigens in patients with acute stroke: joint results of three independent cohort studies. J Neurol 266:2772–2779

    Article  CAS  PubMed  Google Scholar 

  216. Hara M, Martinez-Hernandez E, Ariño H, Armangué T, Spatola M, Petit-Pedrol M, Saiz A, Rosenfeld MR, Graus F, Dalmau J (2018) Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 90:e1386–e1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H (2013) IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis 28:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Bodhankar S, Chen Y, Lapato A, Vandenbark AA, Murphy SJ, Saugstad JA, Offner H (2015) Regulatory CD8(+)CD122 (+) T-cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B-cells. Metab Brain Dis 30:911–924

    Article  CAS  PubMed  Google Scholar 

  219. Ortega SB, Torres VO, Latchney SE, Whoolery CW, Noorbhai IZ, Poinsatte K, Selvaraj UM, Benson MA, Meeuwissen AJM, Plautz EJ, Kong X, Ramirez DM, Ajay AD, Meeks JP, Goldberg MP, Monson NL, Eisch AJ, Stowe AM (2020) B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc Natl Acad Sci USA 117:4983–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Nous A, Peeters I, Nieboer K, Vanbinst AM, De Keyser J, De Raedt S (2020) Post-stroke infections associated with spleen volume reduction: A pilot study. PLoS ONE 15:e0232497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Peterfalvi A, Molnar T, Banati M, Pusch G, Miko E, Bogar L, Pal J, Szereday L, Illes Z (2009) Impaired function of innate T lymphocytes and NK cells in the acute phase of ischemic stroke. Cerebrovasc Dis 28:490–498

    Article  CAS  PubMed  Google Scholar 

  222. Gu L, Xiong X, Wei D, Gao X, Krams S, Zhao H (2013) T cells contribute to stroke-induced lymphopenia in rats. PLoS ONE 8:e59602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198:725–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Roth S, Cao J, Singh V, Tiedt S, Hundeshagen G, Li T, Boehme JD, Chauhan D, Zhu J, Ricci A, Gorka O, Asare Y, Yang J, Lopez MS, Rehberg M, Bruder D, Zhang S, Groß O, Dichgans M, Hornung V, Liesz A (2021) Post-injury immunosuppression and secondary infections are caused by an AIM2 inflammasome-driven signaling cascade. Immunity 54:648–59.e8

    Article  CAS  PubMed  Google Scholar 

  225. O’Connell GC, Tennant CS, Lucke-Wold N, Kabbani Y, Tarabishy AR, Chantler PD, Barr TL (2017) Monocyte-lymphocyte cross-communication via soluble CD163 directly links innate immune system activation and adaptive immune system suppression following ischemic stroke. Sci Rep 7:12940

    Article  PubMed  PubMed Central  Google Scholar 

  226. Sardari M, Skuljec J, Yin D, Zec K, de Carvalho TS, Albers D, Wang C, Pul R, Popa-Wagner A, Doeppner TR, Kleinschnitz C, Dzyubenko E, Hermann DM (2021) Lipopolysaccharide-induced sepsis-like state compromises post-ischemic neurological recovery, brain tissue survival and remodeling via mechanisms involving microvascular thrombosis and brain T cell infiltration. Brain Behav Immun 91:627–638

    Article  CAS  PubMed  Google Scholar 

  227. Chamorro A, Urra X, Planas AM (2007) Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 38:1097–1103

    Article  PubMed  Google Scholar 

  228. Becker KJ, Kindrick DL, Lester MP, Shea C, Ye ZC (2005) Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J Cereb Blood Flow Metab 25:1634–1644

    Article  CAS  PubMed  Google Scholar 

  229. Patrizz A, Doran SJ, Chauhan A, Ahnstedt H, Roy-O’Reilly M, Lai YJ, Weston G, Tarabishy S, Patel AR, Verma R, Staff I, Kofler JK, Li J, Liu F, Ritzel RM, McCullough LD (2020) EMMPRIN/CD147 plays a detrimental role in clinical and experimental ischemic stroke. Aging (Albany NY) 12:5121–5139

    Article  CAS  Google Scholar 

  230. Guo Z, Yu S, Chen X, Zheng P, Hu T, Duan Z, Liu X, Liu Q, Ye R, Zhu W (2018) Suppression of NLRP3 attenuates hemorrhagic transformation after delayed rtPA treatment in thromboembolic stroke rats: Involvement of neutrophil recruitment. Brain Res Bull 137:229–240

    Article  CAS  PubMed  Google Scholar 

  231. Liu Y, Luo S, Kou L, Tang C, Huang R, Pei Z, Li Z (2017) Ischemic stroke damages the intestinal mucosa and induces alteration of the intestinal lymphocytes and CCL19 mRNA in rats. Neurosci Lett 658:165–170

    Article  CAS  PubMed  Google Scholar 

  232. Liu Q, Johnson EM, Lam RK, Wang Q, Bo Ye H, Wilson EN, Minhas PS, Liu L, Swarovski MS, Tran S, Wang J, Mehta SS, Yang X, Rabinowitz JD, Yang SS, Shamloo M, Mueller C, James ML, Andreasson KI (2019) Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat Immunol 20:1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 22:516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Singh V, Sadler R, Heindl S, Llovera G, Roth S, Benakis C, Liesz A (2018) The gut microbiome primes a cerebroprotective immune response after stroke. J Cereb Blood Flow Metab 38:1293–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Xia GH, You C, Gao XX, Zeng XL, Zhu JJ, Xu KY, Tan CH, Xu RT, Wu QH, Zhou HW, He Y, Yin J (2019) Stroke Dysbiosis Index (SDI) in Gut Microbiome Are Associated With Brain Injury and Prognosis of Stroke. Front Neurol 10:397

    Article  PubMed  PubMed Central  Google Scholar 

  236. Dou Z, Rong X, Zhao E, Zhang L, Lv Y (2019) Neuroprotection of Resveratrol Against Focal Cerebral Ischemia/Reperfusion Injury in Mice Through a Mechanism Targeting Gut-Brain Axis. Cell Mol Neurobiol 39:883–898

    Article  CAS  PubMed  Google Scholar 

  237. Lee J, d’Aigle J, Atadja L, Quaicoe V, Honarpisheh P, Ganesh BP, Hassan A, Graf J, Petrosino J, Putluri N, Zhu L, Durgan DJ, Bryan RM Jr, McCullough LD, Venna VR (2020) Gut Microbiota-Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circ Res 127:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yan T, Chen Z, Chopp M, Venkat P, Zacharek A, Li W, Shen Y, Wu R, Li L, Landschoot-Ward J, Lu M, Hank KH, Zhang J, Chen J (2020) Inflammatory responses mediate brain-heart interaction after ischemic stroke in adult mice. J Cereb Blood Flow Metab 40:1213–1229

    Article  CAS  PubMed  Google Scholar 

  239. Austin V, Ku JM, Miller AA, Vlahos R (2019) Ischaemic stroke in mice induces lung inflammation but not acute lung injury. Sci Rep 9:3622

    Article  PubMed  PubMed Central  Google Scholar 

  240. Roy-O’Reilly MA, Ahnstedt H, Spychala MS, Munshi Y, Aronowski J, Sansing LH, McCullough LD (2020) Aging exacerbates neutrophil pathogenicity in ischemic stroke. Aging (Albany NY) 12:436–461

    Article  CAS  Google Scholar 

  241. Manwani B, Liu F, Scranton V, Hammond MD, Sansing LH, McCullough LD (2013) Differential effects of aging and sex on stroke induced inflammation across the lifespan. Exp Neurol 249:120–131

    Article  PubMed  Google Scholar 

  242. Ritzel RM, Crapser J, Patel AR, Verma R, Grenier JM, Chauhan A, Jellison ER, McCullough LD (2016) Age-Associated Resident Memory CD8 T Cells in the Central Nervous System Are Primed To Potentiate Inflammation after Ischemic Brain Injury. J Immunol 196:3318–3330

    Article  CAS  PubMed  Google Scholar 

  243. Liberale L, Bonetti NR, Puspitasari YM, Vukolic A, Akhmedov A, Diaz-Cañestro C, Keller S, Montecucco F, Merlini M, Semerano A, Giacalone G, Bacigaluppi M, Sessa M, Ruschitzka F, Lüscher TF, Libby P, Beer JH, Camici GG (2021) TNF-α antagonism rescues the effect of ageing on stroke: Perspectives for targeting inflamm-ageing. Eur J Clin Invest 51:e13600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ritzel RM, Lai YJ, Crapser JD, Patel AR, Schrecengost A, Grenier JM, Mancini NS, Patrizz A, Jellison ER, Morales-Scheihing D, Venna VR, Kofler JK, Liu F, Verma R, McCullough LD (2018) Aging alters the immunological response to ischemic stroke. Acta Neuropathol 136:89–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Harris NM, Roy-O’Reilly M, Ritzel RM, Holmes A, Sansing LH, O’Keefe LM, McCullough LD, Chauhan A (2020) Depletion of CD4 T cells provides therapeutic benefits in aged mice after ischemic stroke. Exp Neurol 326:113202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Conway SE, Roy-O’Reilly M, Friedler B, Staff I, Fortunato G, McCullough LD (2015) Sex differences and the role of IL-10 in ischemic stroke recovery. Biol Sex Differ 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  247. Ahnstedt H, Patrizz A, Chauhan A, Roy-O’Reilly M, Furr JW, Spychala MS, D’Aigle J, Blixt FW, Zhu L, Bravo Alegria J, McCullough LD (2020) Sex differences in T cell immune responses, gut permeability and outcome after ischemic stroke in aged mice. Brain Behav Immun 87:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BR, Drummond GR, Sobey CG (2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 30:1306–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Seifert HA, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark AA, Saugstad JA, Offner H (2017) Sex differences in regulatory cells in experimental stroke. Cell Immunol 318:49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Dotson AL, Wang J, Saugstad J, Murphy SJ, Offner H (2015) Splenectomy reduces infarct volume and neuroinflammation in male but not female mice in experimental stroke. J Neuroimmunol 278:289–298

    Article  CAS  PubMed  Google Scholar 

  251. Zhang T, Fang S, Wan C, Kong Q, Wang G, Wang S, Zhang H, Zou H, Sun B, Sun W, Zhang Y, Mu L, Wang J, Wang D, Li H (2015) Excess salt exacerbates blood-brain barrier disruption via a p38/MAPK/SGK1-dependent pathway in permanent cerebral ischemia. Sci Rep 5:16548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Zhang T, Wang D, Li X, Jiang Y, Wang C, Zhang Y, Kong Q, Tian C, Dai Y, Zhao W, Jiang M, Chang Y, Wang G (2020) Excess salt intake promotes M1 microglia polarization via a p38/MAPK/AR-dependent pathway after cerebral ischemia in mice. Int Immunopharmacol 81:106176

    Article  CAS  PubMed  Google Scholar 

  253. Zhang F, Zhao Q, Jiang Y, Liu N, Liu Q, Shi FD, Hao J, Xu Y, Lo EH, Wang X (2019) Augmented Brain Infiltration and Activation of Leukocytes After Cerebral Ischemia in Type 2 Diabetic Mice. Front Immunol 10:2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kumari R, Bettermann K, Willing L, Sinha K, Simpson IA (2020) The role of neutrophils in mediating stroke injury in the diabetic db/db mouse brain following hypoxia-ischemia. Neurochem Int 139:104790

    Article  CAS  PubMed  Google Scholar 

  255. Deng J, Zhao F, Zhang Y, Zhou Y, Xu X, Zhang X, Zhao Y (2020) Neutrophil extracellular traps increased by hyperglycemia exacerbate ischemic brain damage. Neurosci Lett 738:135383

    Article  CAS  PubMed  Google Scholar 

  256. Lin HB, Wei GS, Li FX, Guo WJ, Hong P, Weng YQ, Zhang QQ, Xu SY, Liang WB, You ZJ, Zhang HF (2020) Macrophage-NLRP3 Inflammasome Activation Exacerbates Cardiac Dysfunction after Ischemic Stroke in a Mouse Model of Diabetes. Neurosci Bull 36:1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Alves de Lima K, Rustenhoven J, Kipnis J (2020) Meningeal Immunity and Its Function in Maintenance of the Central Nervous System in Health and Disease. Annu Rev Immunol 38:597–620

    Article  CAS  PubMed  Google Scholar 

  258. Bogie JF, Timmermans S, Huynh-Thu VA, Irrthum A, Smeets HJ, Gustafsson JA, Steffensen KR, Mulder M, Stinissen P, Hellings N, Hendriks JJ (2012) Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS ONE 7:e44998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O, Lassmann H (2018) Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol 28:791–805

    Article  CAS  PubMed  Google Scholar 

  260. Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, Vandoorne K, WojtkiewiczGR Masson GS, Vinegoni C, Kim J, Kim DE, Weissleder R, Swirski FK, MoskowitzMA Nahrendorf M (2018) Direct vascular channels connect skull bone marrow andthe brain surface enabling myeloid cell migration. Nat Neurosci 21:1209–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier KR, Berndt M, Plautz EJ, Dellinger MT, Stowe AM (2020) Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab 40:263–275

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Hachmann Sansing.

Ethics declarations

Competing interests

The authors have no financial or non-financial interests that are directly or indirectly related to this work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Neuroimmune Interactions in Health and Disease - Guest Editors: David Hafler & Lauren Sansing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeLong, J.H., Ohashi, S.N., O’Connor, K.C. et al. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 44, 625–648 (2022). https://doi.org/10.1007/s00281-022-00943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00943-7

Keywords

Navigation