Skip to main content

Advertisement

Log in

Function of CD147 in Atherosclerosis and Atherothrombosis

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

CD147, a member of the immunoglobulin super family, is a well-known potent inducer of extracellular matrix metalloproteinases. Studies show that CD147 is upregulated in inflammatory diseases. Atherosclerosis is a chronic inflammatory disease of the artery wall. Further understanding of the functions of CD147 in atherosclerosis and atherothrombosis may provide a new strategy for preventing and treating cardiovascular disease. In this review, we discuss how CD147 contributes to atherosclerosis and atherothrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iacono, K. T., Brown, A. L., Greene, M. I., & Saouaf, S. J. (2007). CD147 immunoglobulin superfamily receptor function and role in pathology. Experimental and Molecular Pathology, 83(3), 283–295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Fossum, S., Mallett, S., & Barclay, A. N. (1991). The MRC OX-47 antigen is a member of the immunoglobulin superfamily with an unusual transmembrane sequence. European Journal of Immunology, 21(3), 671–679.

    Article  CAS  PubMed  Google Scholar 

  3. DeCastro, R., Zhang, Y., Guo, H., Kataoka, H., Gordon, M. K., Toole, B., et al. (1996). Human keratinocytes express EMMPRIN, an extracellular matrix metalloproteinase inducer. Journal of Investigative Dermatology, 106(6), 1260–1265.

    Article  CAS  PubMed  Google Scholar 

  4. Nehme, C. L., Fayos, B. E., & Bartles, J. R. (1995). Distribution of the integral plasma membrane glycoprotein CE9 (MRC OX-47) among rat tissues and its induction by diverse stimuli of metabolic activation. Biochemistry Journal, 310(Pt 2), 693–698.

    CAS  Google Scholar 

  5. Biswas, C. (1982). Tumor cell stimulation of collagenase production by fibroblasts. Biochemical and Biophysical Research Communications, 109(3), 1026–1034.

    Article  CAS  PubMed  Google Scholar 

  6. Sameshima, T., Nabeshima, K., Toole, B. P., Yokogami, K., Okada, Y., Goya, T., et al. (2000). Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Letters, 157(2), 177–184.

    Article  CAS  PubMed  Google Scholar 

  7. Hasaneen, N. A., Zucker, S., Cao, J., Chiarelli, C., Panettieri, R. A., & Foda, H. D. (2005). Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs. FASEB Journal, 19(11), 1507–1509.

    CAS  PubMed  Google Scholar 

  8. Foda, H. D., Rollo, E. E., Drews, M., Conner, C., Appelt, K., Shalinsky, D. R., et al. (2001). Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340). American Journal of Respiratory Cell and Molecular Biology, 25(6), 717–724.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Y., Lu, N., Zhou, J., Chen, Z. N., & Zhu, P. (2008). Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology (Oxf), 47(9), 1299–1310.

    Article  CAS  Google Scholar 

  10. Damsker, J. M., Okwumabua, I., Pushkarsky, T., Arora, K., & BukrinskyMI, C. S. L. (2009). Targeting the chemotactic function of CD147 reduces collagen-induced arthritis. Immunology, 126(1), 55–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhu, P., Lu, N., Shi, Z. G., Zhou, J., Wu, Z. B., Yang, Y., et al. (2006). CD147 overexpression on synoviocytes in rheumatoid arthritis enhances matrix metalloproteinase production and invasiveness of synoviocytes. Arthritis Research and Therapy, 8(2), R44.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Tomita, T., Nakase, T., Kaneko, M., Shi, K., Takahi, K., Ochi, T., et al. (2002). Expression of extracellular matrix metalloproteinase inducer and enhancement of the production of matrix metalloproteinases in rheumatoid arthritis. Arthritis and Rheumatism, 46(2), 373–378.

    Article  CAS  PubMed  Google Scholar 

  13. Konttinen, Y. T., Li, T. F., Mandelin, J., Liljeström, M., Sorsa, T., Santavirta, S., et al. (2000). Increased expression of extracellular matrix metalloproteinase inducer in rheumatoid synovium. Arthritis and Rheumatism, 43(2), 275–280.

    Article  CAS  PubMed  Google Scholar 

  14. Pistol, G., Matache, C., Calugaru, A., Stavaru, C., Tanaseanu, S., Ionescu, R., et al. (2007). Roles of CD147 on T lymphocytes activation and MMP-9 secretion in systemic lupus erythematosus. Journal of Cellular and Molecular Medicine, 11(2), 339–348.

    Article  CAS  PubMed  Google Scholar 

  15. Waldow, T., Witt, W., Buzin, A., Ulmer, A., & Matschke, K. (2009). Prevention of ischemia/reperfusion-induced accumulation of matrix metalloproteinases in rat lung by preconditioning with nitric oxide. Journal of Surgical Research, 152(2), 198–208.

    Article  CAS  PubMed  Google Scholar 

  16. Boulos, S., Meloni, B. P., Arthur, P. G., Majda, B., Bojarski, C., & Knuckey, N. W. (2007). Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiology of Disease, 25(1), 54–64.

    Article  CAS  PubMed  Google Scholar 

  17. Yoon, Y. W., Kwon, H. M., Hwang, K. C., Choi, E. Y., Hong, B. K., Kim, D., et al. (2005). Upstream regulation of matrix metalloproteinase by EMMPRIN; extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque. Atherosclerosis, 180(1), 37–44.

    Article  CAS  PubMed  Google Scholar 

  18. Siwik, D. A., Kuster, G. M., Brahmbhatt, J. V., Zaidi, Z., Malik, J., Ooi, H., et al. (2008). EMMPRIN mediates beta-adrenergic receptor-stimulated matrix metalloproteinase activity in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 44(1), 210–217.

    Article  CAS  PubMed  Google Scholar 

  19. Spinale, F. G., Coker, M. L., Heung, L. J., Bond, B. R., Gunasinghe, H. R., Etoh, T., et al. (2000). A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation, 102(16), 1944–1949.

    Article  CAS  PubMed  Google Scholar 

  20. Choi, E. Y., Kim, D., Hong, B. K., Kwon, H. M., Song, Y. G., Byun, K. H., et al. (2002). Upregulation of extracellular matrix metalloproteinase inducer (EMMPRIN) and gelatinases in human atherosclerosis infected with Chlamydia pneumoniae: the potential role of Chlamydia pneumoniae infection in the progression of atherosclerosis. Experimental and Molecular Medicine, 34(6), 391–400.

    Article  CAS  PubMed  Google Scholar 

  21. Yue, H. H., Leng, N., Wu, Z. B., Li, H. M., Li, X. Y., & Zhu, P. (2009). Expression of CD147 on phorbol-12-myristate-13-acetate (PMA)-treated U937 cells differentiating into foam cells. Archives of Biochemistry and Biophysics, 485(1), 30–34.

    Article  CAS  PubMed  Google Scholar 

  22. Bao, W., Min, D., Twigg, S. M., Shackel, N. A., Warner, F. J., Yue, D. K., et al. (2010). Monocyte CD147 is induced by advanced glycation end products and high glucose concentration: possible role in diabetic complications. American Journal of Physiology. Cell Physiology, 299(5), C1212–C1219.

    Article  CAS  PubMed  Google Scholar 

  23. Abe, N., Osanai, T., Fujiwara, T., Kameda, K., Matsunaga, T., & Okumura, K. (2006). C-reactive protein-induced upregulation of extracellular matrix metalloproteinase inducer in macrophages: inhibitory effect of fluvastatin. Life Sciences, 78(9), 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  24. Haug, C., Lenz, C., Díaz, F., & Bachem, M. G. (2004). Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase inducer (EMMPRIN) release by coronary smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(10), 1823–1829.

    Article  CAS  PubMed  Google Scholar 

  25. Kasinrerk, W., Fiebiger, E., Stefanova, I., Baumruker, T., Knapp, W., & Stockinger, H. (1992). Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. Journal of Immunology, 149(3), 847–854.

    CAS  Google Scholar 

  26. Kirsch, A. H., Diaz, L. A., Jr., Bonish, B., Antony, P. A., & Fox, D. A. (1997). The pattern of expression of CD147/neurothelin during human T-cell ontogeny as defined by the monoclonal antibody 8D6. Tissue Antigens, 50(2), 147–152.

    Article  CAS  PubMed  Google Scholar 

  27. Kasinrerk, W., Tokrasinwit, N., & Phunpae, P. (1999). CD147 monoclonal antibodies induce homotypic cell aggregation of monocytic cell line U937 via LFA-1/ICAM-1 pathway. Immunology, 96(2), 184–192.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Biswas, C., Zhang, Y., DeCastro, R., Guo, H., Nakamura, T., Kataoka, H., et al. (1995). The human tumor cell derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Research, 55(2), 434–439.

    CAS  PubMed  Google Scholar 

  29. Miyauchi, T., Masuzawa, Y., & Muramatsu, T. (1991). The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. Journal of Biochemistry (Tokyo), 110(5), 770–774.

    CAS  Google Scholar 

  30. Muramatsu, T., & Miyauchi, T. (2003). Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histology and Histopathology, 18(3), 981–987.

    CAS  PubMed  Google Scholar 

  31. Hanna, S. M., Kirk, P., Holt, O. J., Puklavec, M. J., Brown, M. H., & Barclay, A. N. (2003). A novel form of the membrane protein CD147 that contains an extra Ig-like domain and interacts homophilically. BMC Biochemistry, 4, 17.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Berditchevski, F., Chang, S., Bodorova, J., & Hemler, M. E. (1997). Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/ OX47/M6. Journal of Biological Chemistry, 272(46), 29174–29180.

    Article  CAS  PubMed  Google Scholar 

  33. Cho, J. Y., Fox, D. A., Horejsi, V., Sagawa, K., Skubitz, K. M., Katz, D. R., et al. (2001). The functional interactions between CD98, beta1-integrins, and CD147 in the induction of U937 homotypic aggregation. Blood, 98(2), 374–382.

    Article  CAS  PubMed  Google Scholar 

  34. Yurchenko, V., Zybarth, G., O'Connor, M., Dai, W. W., Franchin, G., Hao, T., et al. (2002). Active site residues of cyclophilin A are crucial for its signaling activity via CD147. Journal of Biological Chemistry, 277(25), 22959–22965.

    Article  CAS  PubMed  Google Scholar 

  35. Allain, F., Vanpouille, C., Carpentier, M., Slomianny, M. C., Durieux, S., & Spik, G. (2002). Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2714–2719.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Pushkarsky, T., Yurchenko, V., Vanpouille, C., Brichacek, B., Vaisman, I., Hatakeyama, S., et al. (2005). Cell surface expression of CD147/emmprin is regulated by cyclophilin 60. Journal of Biological Chemistry, 280(30), 27866–27871.

    Article  CAS  PubMed  Google Scholar 

  37. Tang, W., & Hemler, M. E. (2004). Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. Journal of Biological Chemistry, 279(12), 11112–11118.

    Article  CAS  PubMed  Google Scholar 

  38. Guo, H., Li, R., Zucker, S., & Toole, B. P. (2000). EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Research, 60(4), 888–891.

    CAS  PubMed  Google Scholar 

  39. Kirk, P., Wilson, M. C., Heddle, C., Brown, M. H., Barclay, A. N., & Halestrap, A. P. (2000). CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO Journal, 19(15), 3896–3904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Koch, C., Staffler, G., Hüttinger, R., Hilgert, I., Prager, E., Cerný, J., et al. (1999). T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. International Immunology, 11(5), 777–786.

    Article  CAS  PubMed  Google Scholar 

  41. Major, T. C., Liang, L., Lu, X., Rosebury, W., & Bocan, T. M. (2002). Extracellular matrix metalloproteinase inducer (EMMPRIN) is induced upon monocyte differentiation and is expressed in human atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(7), 1200–1207.

    Article  CAS  PubMed  Google Scholar 

  42. Kim, J. Y., Kim, W. J., Kim, H., Suk, K., & Lee, W. H. (2009). The stimulation of CD147 induces MMP-9 expression through ERK and NF-kappaB in macrophages: implication for atherosclerosis. Immune Network, 9(3), 90–97.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Pennings, G. J., Yong, A. S., & Kritharides, L. (2010). Expression of EMMPRIN (CD147) on circulating platelets in vivo. Journal of Thrombosis and Haemostasis, 8(3), 472–481.

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt, R., Bültmann, A., Fischel, S., Gillitzer, A., Cullen, P., Walch, A., et al. (2008). Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes. Circulation Research, 102(3), 302–309.

    Article  CAS  PubMed  Google Scholar 

  45. Yang, S. H., Li, Y. T., & Du, D. Y. (2013). Oxidized low-density lipoprotein-induced CD147 expression and its inhibition by high-density lipoprotein on platelets in vitro. Thrombosis Research, 132(6), 702–711.

    Article  CAS  PubMed  Google Scholar 

  46. Seizer, P., Borst, O., Langer, H. F., Bültmann, A., Münch, G., Herouy, Y., et al. (2009). EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction. Thrombosis and Haemostasis, 101(4), 682–686.

    CAS  PubMed  Google Scholar 

  47. Schulz, C., von Brühl, M. L., Barocke, V., Cullen, P., Mayer, K., Okrojek, R., et al. (2011). EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall. Journal of Thrombosis and Haemostasis, 9(5), 1007–1019.

    Article  CAS  PubMed  Google Scholar 

  48. Weber, C., & Noels, H. (2011). Atherosclerosis: current pathogenesis and therapeutic options. Nature Medicine, 17(11), 1410–1422.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, C. H., Dai, J. Y., Wang, L., Jia, J. F., Zheng, Z. H., Ding, J., et al. (2011). Expression of CD147 (EMMPRIN) on neutrophils in rheumatoid arthritis enhances chemotaxis, matrix metalloproteinase production and invasiveness of synoviocytes. Journal of Cellular and Molecular Medicine, 15(4), 850–860.

    Article  CAS  PubMed  Google Scholar 

  50. Lu, H., Kuang, Y. H., Su, J., Chang, J., Wu, L. S., Kanekura, T., et al. (2010). CD147 is highly expressed on peripheral blood neutrophils from patients with psoriasis and induces neutrophil chemotaxis. Journal of Dermatology, 37(12), 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  51. Kato, N., Yuzawa, Y., Kosugi, T., Hobo, A., Sato, W., Miwa, Y., et al. (2009). The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. Journal of the American Society of Nephrology, 20(7), 1565–1576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Arora, K., Gwinn, W. M., Bower, M. A., Watson, A., Okwumabua, I., MacDonald, H. R., et al. (2005). Extracellular cyclophilins contribute to the regulation of inflammatory responses. Journal of Immunology, 175(1), 517–522.

    Article  CAS  Google Scholar 

  53. Seizer, P., Ochmann, C., Schönberger, T., Zach, S., Rose, M., Borst, O., et al. (2011). Disrupting the EMMPRIN-cyclophilin A interaction reduces infarct size and preserves systolic function after myocardial ischemia and reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(6), 1377–1386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Matías-Román, S., Gálvez, B. G., Genís, L., Yáñez-Mó, M., de la Rosa, G., Sánchez-Mateos, P., et al. (2005). Membrane type 1-matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium. Blood, 105(10), 3956–3964.

    Article  PubMed  Google Scholar 

  55. Seizer, P., Schönberger, T., Schött, M., Lang, M. R., Langer, H. F., Bigalke, B., et al. (2010). EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis, 209(1), 51–57.

    Article  CAS  PubMed  Google Scholar 

  56. Shimada, K. (2009). Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circulation Journal, 73(6), 994–1001.

    Article  CAS  PubMed  Google Scholar 

  57. Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145(3), 341–355.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hu, J., Dang, N., Yao, H., Li, Y., Zhang, H., Yang, X., et al. (2010). Involvement of HAb18G/CD147 in T cell activation and immunological synapse formation. Journal of Cellular and Molecular Medicine, 14(8), 2132–2143.

    Article  CAS  PubMed  Google Scholar 

  59. Stonehouse, T. J., Woodhead, V. E., Herridge, P. S., Ashrafian, H., George, M., Chain, B. M., et al. (1999). Molecular characterization of U937-dependent T-cell co-stimulation. Immunology, 96(1), 35–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Woodhead, V. E., Stonehouse, T. J., Binks, M. H., Speidel, K., Fox, D. A., Gaya, A., et al. (2000). Novel molecular mechanisms of dendritic cell-induced T cell activation. International Immunology, 12(7), 1051–1061.

    Article  CAS  PubMed  Google Scholar 

  61. Chiampanichayakul, S., Peng-in, P., Khunkaewla, P., Stockinger, H., & Kasinrerk, W. (2006). CD147 contains different bioactive epitopes involving the regulation of cell adhesion and lymphocyte activation. Immunobiology, 211(3), 167–178.

    Article  CAS  PubMed  Google Scholar 

  62. Agrawal, S. M., Silva, C., Wang, J., Tong, J. P., & Yong, V. W. (2012). A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis. Journal of Neuroinflammation, 9, 64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ruiz, S., Castro-Castro, A., & Bustelo, X. R. (2008). CD147 inhibits the nuclear factor of activated T-cells by impairing Vav1 and Rac1 downstream signaling. Journal of Biological Chemistry, 283(9), 5554–5566.

    Article  CAS  PubMed  Google Scholar 

  64. Tse, K., Tse, H., Sidney, J., Sette, A., & Ley, K. (2013). T cells in atherosclerosis. International Immunology, 25(11), 615–622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Huang, Z., Wang, C., Wei, L., Wang, J., Fan, Y., Wang, L., et al. (2008). Resveratrol inhibits EMMPRIN expression via P38 and ERK1/2 pathways in PMA-induced THP-1 cells. Biochemical and Biophysical Research Communications, 374(3), 517–521.

    Article  CAS  PubMed  Google Scholar 

  66. Solstad, T., Bains, S. J., Landskron, J., Aandahl, E. M., Thiede, B., Taskén, K., et al. (2011). CD147 (Basigin/Emmprin) identifies FoxP3 + CD45RO + CTLA4 + −activated human regulatory T cells. Blood, 118(19), 5141–5151.

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Y., Zhang, H., Gou, X., Horikawa, Y., Xing, J., & Chen, Z. (2009). Upregulation of HAb18G/CD147 in activated human umbilical vein endothelial cells enhances the angiogenesis. Cancer Letters, 278(1), 113–121.

    Article  CAS  PubMed  Google Scholar 

  68. Le Guelte, A., & Gavard, J. (2011). Role of endothelial cell-cell junctions in endothelial permeability. Methods in Molecular Biology, 763, 265–279.

    Article  PubMed  Google Scholar 

  69. Voigt, H., Vetter-Kauczok, C. S., Schrama, D., Hofmann, U. B., Becker, J. C., & Houben, R. (2009). CD147 impacts angiogenesis and metastasis formation. Cancer Investigation, 27(3), 329–333.

    Article  CAS  PubMed  Google Scholar 

  70. Joghetaei, N., Stein, A., Byrne, R. A., Schulz, C., King, L., May, A. E., et al. (2013). The Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, CD147)—a potential novel target in atherothrombosis prevention? Thrombosis Research, 131(6), 474–480.

    Article  CAS  PubMed  Google Scholar 

  71. Venkatesan, B., Valente, A. J., Reddy, V. S., Siwik, D. A., & Chandrasekar, B. (2009). Resveratrol blocks interleukin-18-EMMPRIN cross-regulation and smooth muscle cell migration. American Journal of Physiology. Heart and Circulatory Physiology, 297(2), H874–H886.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Yuan, W., Ge, H., & He, B. (2010). Pro-inflammatory activities induced by CyPA-EMMPRIN interaction in monocytes. Atherosclerosis, 213(2), 415–421.

    Article  CAS  PubMed  Google Scholar 

  73. Muslin, A. J. (2008). MAPK signaling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clinical Science (London), 115(7), 203–218.

    Article  CAS  Google Scholar 

  74. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773(8), 1263–1284.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Kim, E. K., & Choi, E. J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta, 1802(4), 396–405.

    Article  CAS  PubMed  Google Scholar 

  76. Motoshima, H., Goldstein, B. J., Igata, M., & Araki, E. (2006). AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. Journal of Physiology, 574(Pt 1), 63–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Klawitter, J., Klawitter, J., Schmitz, V., Brunner, N., Crunk, A., Corby, K., et al. (2012). Low-salt diet and cyclosporine nephrotoxicity: changes in kidney cell metabolism. Journal of Proteome Research, 11(11), 5135–5144.

    Article  CAS  PubMed  Google Scholar 

  78. Ortiz-Muñoz, G., Martin-Ventura, J. L., Hernandez-Vargas, P., Mallavia, B., Lopez-Parra, V., Lopez-Franco, O., et al. (2009). Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(4), 525–531.

    Article  PubMed  Google Scholar 

  79. Yong, A., Pennings, G., Wong, C., Javadzadegan, A., Brieger, D., Lowe, H., et al. (2013). Intracoronary upregulation of platelet extracellular matrix metalloproteinase inducer (CD147) in coronary disease. International Journal of Cardiology, 166(3), 716–721.

    Article  PubMed  Google Scholar 

  80. Schmidt, R., Bültmann, A., Ungerer, M., Joghetaei, N., Bülbül, O., Thieme, S., et al. (2006). Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation, 113(6), 834–841.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Development Health Engineering of Jiangsu Province (No. LJ201116), the National Natural Science Foundation of China (Nos. 81400269 and 81370409), the Key Laboratory of Cardiovascular Disease of Zhenjiang (No. SS2012002), and the National Institutes of Health (Grant No. R01NS088719; GL).

Conflict of interest

None.

No human studies were carried out by the authors for this article.

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinchuan Yan or Guohong Li.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Jin, R., Zhu, X. et al. Function of CD147 in Atherosclerosis and Atherothrombosis. J. of Cardiovasc. Trans. Res. 8, 59–66 (2015). https://doi.org/10.1007/s12265-015-9608-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9608-6

Keywords

Navigation