Skip to main content
Log in

Development and prospects of molten steel deoxidation in steelmaking process

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

In the long traditional process of steelmaking, excess oxygen is blown into the converter, and alloying elements are used for deoxidation. This inevitably results in excessive deoxidation of products remaining within the steel liquid, affecting the cleanliness of the steel. With the increasing requirements for steel performance, reducing the oxygen content in the steel liquid and ensuring its high cleanliness is necessary. After more than a hundred years of development, the total oxygen content in steel has been reduced from approximately 100 × 10−6 to approximately 10 × 10−6, and it can be controlled below 5 × 10−6 in some steel grades. A relatively stable and mature deoxidation technology has been formed, but further reducing the oxygen content in steel is no longer significant for improving steel quality. Our research team developed a deoxidation technology for bearing steel by optimizing the entire conventional process. The technology combines silicon–manganese predeoxidation, ladle furnace diffusion deoxidation, and vacuum final deoxidation. We successfully conducted industrial experiments and produced interstitial-free steel with natural decarbonization predeoxidation. Non-aluminum deoxidation was found to control the oxygen content in bearing steel to between 4 × 10−6 and 8 × 10−6, altering the type of inclusions, eliminating large particle Ds-type inclusions, improving the flowability of the steel liquid, and deriving a higher fatigue life. The natural decarbonization predeoxidation of interstitial-free steel reduced aluminum consumption and production costs and significantly improved the quality of cast billets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Y. Yin, Review on the study of metallurgical process engineering, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1253.

    Article  Google Scholar 

  2. Y.J. Wang, H.B. Zuo, and J. Zhao, Recent progress and development of ironmaking in China as of 2019: An overview, Iron-making Steelmaking, 47(2020), No. 6, p. 640.

    Article  CAS  Google Scholar 

  3. E. Mousa, Modern blast furnace ironmaking technology: Potentials to meet the demand of high hot metal production and lower energy consumption, Metall. Mater. Eng., 25(2019), No. 2, p. 69.

    Article  Google Scholar 

  4. M. Naito, K. Takeda, and Y. Matsui, Ironmaking technology for the last 100 years: Deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process, ISIJ Int., 55(2015), No. 1, p. 7.

    Article  CAS  Google Scholar 

  5. Z.D. Tang, H.X. Xiao, Y.S. Sun, P. Gao, and Y.H. Zhang, Exploration of hydrogen-based suspension magnetization roasting for refractory iron ore towards a carbon-neutral future: A pilot-scale study, Int. J. Hydrogen Energy, 47(2022), No. 33, p. 15074.

    Article  CAS  Google Scholar 

  6. M. Lv, R. Zhu, and L.Z. Yang, High efficiency dephosphorization by mixed injection during steelmaking process, Steel Res. Int., 90(2019), p. 1800454.

    Article  Google Scholar 

  7. C. Liu, L.X. Tang, J.Y. Liu, and Z.H. Tang, A dynamic analytics method based on multistage modeling for a BOF steelmaking process, IEEE Trans. Autom. Sci. Eng., 16(2019), No. 3, p. 1097.

    Article  Google Scholar 

  8. J. Guo, S.S. Cheng, and H.J. Guo, Thermodynamics and industrial trial on increasing the carbon content at the BOF endpoint to produce ultra-low carbon IF steel by BOF–RH–CSP process, High Temp. Mater. Process., 38(2019), No. 2019, p. 822.

    Article  Google Scholar 

  9. S.K. Choudhary and A. Ghosh, Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel, ISIJ Int., 49(2009), No. 12, p. 1819.

    Article  CAS  Google Scholar 

  10. P.Y. Dong, S.G. Zheng, and M.Y. Zhu, Numerical study on gas–metal–slag interaction with single-flow postcombustion oxygen lance in the steelmaking process of a top-blown converter, JOM, 74(2022), No. 4, p. 1509.

    Article  CAS  Google Scholar 

  11. L. Holappa, Historical overview on the development of converter steelmaking from Bessemer to modern practices and future outlook, Miner. Process. Extr. Metall., 128(2019), No. 1–2, p. 3.

    CAS  Google Scholar 

  12. Y.Q. Ji, C.Y. Liu, H.X. Yu, X.X. Deng, F.X. Huang, and X.H. Wang, Oxygen transfer phenomenon between slag and molten steel for production of IF steel, J. Iron Steel Res. Int., 27(2020), No. 4, p. 402.

    Article  CAS  Google Scholar 

  13. Z.Y. Deng, M.Y. Zhu, and S.C. Du, Effect of refractory on non-metallic inclusions in Al-killed steel, Metall. Mater. Trans. B, 47(2016), No. 5, p. 3158.

    Article  CAS  Google Scholar 

  14. H.B. Yin, H. Shibata, T. Emi, and M. Suzuki, “In-situ” observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts, ISIJ Int., 37(1997), No. 10, p. 936.

    Article  CAS  Google Scholar 

  15. A. Mehralizadeh, S. Reza Shabanian, and G. Bakeri, Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: A review, Therm. Sci. Eng. Prog., 15(2020), art. No. 100451.

  16. R.Y. Chen and W.Y.D. Yeun, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxid. Met., 59(2003), No. 5–6, p. 433.

    Article  CAS  Google Scholar 

  17. G.H. Zhang and K.C. Chou, Deoxidation of molten steel by aluminum, J. Iron Steel Res. Int., 22(2015), No. 10, p. 905.

    Article  Google Scholar 

  18. W. Xiao, M. Wang, and Y.P. Bao, The research of low-oxygen control and oxygen behavior during RH process in silicon-deoxidization bearing steel, Metal:, 9(2019), No. 8, art. No. 812.

  19. G.F. Huff, G.R. Bailey, and J.H. Richards, Sampling of liquid steel for dissolved oxygen, JOM, 4(1952), No. 11, p. 1162.

    Article  Google Scholar 

  20. D. Kalisz, P. Migas, M. Karbowniczek, M. Moskal, and A. Hornik, Influence of selected deoxidizers on chemical composition of molten inclusions in liquid steel, J. Mater. Eng. Perform., 29(2020), No. 3, p. 1479.

    Article  CAS  Google Scholar 

  21. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren, Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel, Steel Res. Int., 83(2012), No. 5, p. 472.

    Article  CAS  Google Scholar 

  22. E.S. Alley and R.W. Neu, Microstructure-sensitive modeling of rolling contact fatigue, Int. J. Fatigue, 32(2010), No. 5, p. 841.

    Article  CAS  Google Scholar 

  23. W. Wang, H.J. Liu, C.C. Zhu, Wei P., and W. Wu, Micromechanical analysis of gear fatigue-ratcheting damage considering the phase state and inclusion, Tribol. Int., 136(2019), p. 182.

    Article  CAS  Google Scholar 

  24. Z.M. Ma, S.Z. Dong, H. Zhu, et al., Research on the failure mechanism of the high-speed train bearing steel under static load failure, Eng. Fail. Anal., 137(2022), art. No. 106169.

  25. S.I. Gubenko, Plasticity origin of heterophase inclusions at steel forming, Steel Transi, 50(2020), No. 10, p. 730.

    Article  Google Scholar 

  26. W. Xiao, Y.P. Bao, C. Gu, et al., Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 804.

    Article  Google Scholar 

  27. C. Gu, Z.Y. Lyu, Q. Hu, and Y.P. Bao, Investigation of the structural, electronic and mechanical properties of CaO–SiO2 compound particles in steel based on density functional theory, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 744.

    Article  CAS  Google Scholar 

  28. L. Wang, B. Song, Z.B. Yang, X.K. Cui, Z. Liu, W.S. Cheng, and J.H. Mao, Effects of Mg and La on the evolution of inclusions and microstructure in Ca–Ti treated steel, Int. J. Miner. Metall Mater., 28(2021), No. 12, p. 1940.

    Article  CAS  Google Scholar 

  29. L. Cao, L.G. Zhu, and Z.H. Guo, Research status of inclusions in bearing steel and discussion on non-alloy deoxidation process, J. Iron Steel Res. Int., 30(2023), No. 1, p. 1.

    Article  CAS  Google Scholar 

  30. K.W. Lange, Thermodynamic and kinetic aspects of secondary steelmaking processes, Int. Mater. Rev., 33(1988), No. 1, p. 53.

    Article  CAS  Google Scholar 

  31. N. Rimbert, L. Claudotte, P. Gardin, and J. Lehmann, Modeling the dynamics of precipitation and agglomeration of oxide inclusions in liquid steel, Ind. Eng. Chem. Res., 53(2014), No. 20, p. 8630.

    Article  CAS  Google Scholar 

  32. S.G. Jansto, MicroNiobium alloy approach in medium and high carbon steel bar, plate and sheet products, Metall. Mater. Trans. B, 45(2014), No. 2, p. 438.

    Article  CAS  Google Scholar 

  33. N.A. Gokcen and J. Chipman, Silicon-oxygen equilibrium in liquid iron, JOM, 4(1952), No. 2, p. 171.

    Article  CAS  Google Scholar 

  34. N.A. Gokcen and J. Chipman, Aluminum–oxygen equilibrium in liquid iron, JOM, 5(1953), No. 2, p. 173.

    Article  CAS  Google Scholar 

  35. K. Semura and H. Matsuura, Past development and future prospects of secondary refining technology, Tetsu-to-Hagane, 100(2014), No. 4, p. 456.

    Article  CAS  Google Scholar 

  36. K. Nakanishi, J. Szekely, T. Fujii, Y. Mihara, and S. Iwaoka, Stirring and its effect on aluminum deoxidation of steel in the ASEA-SKF furnace: Part I. Plant scale measurements and preliminary analysis, Metall. Trans. B, 6(1975), No. 1, p. 111.

    Article  Google Scholar 

  37. R.V. Väinólä, L.E.K. Holappa, and P.H.J. Karvonen, Modern steelmaking technology for special steels, J. Mater. Process. Technol., 53(1995), No. 1–2, p. 453.

    Article  Google Scholar 

  38. R. Fandrich, H. Lüngen, and C. Wuppermann, Actual review on secondary metallurgy, Rev. Met. Paris, 105(2008), 7–8, p. 364.

    Article  CAS  Google Scholar 

  39. L. Holappa, On physic-chemical and technical limits in clean steel production, Steel Res. Int., 81(2010), No. 10, p. 869.

    Article  CAS  Google Scholar 

  40. Y. Wang, A. Karasev, J.H. Park, and P.G. Jónsson, Non-metallic inclusions in different ferroalloys and their effect on the steel quality: A review, Metall. Mater. Trans. B, 52(2021), No. 5, p. 2892.

    Article  CAS  Google Scholar 

  41. D. Roy, P. Pistorius, and R. Fruehan, Effect of silicon on the desulfurization of Al-killed steels: Part II. Experimental results and plant trials, Metall. Mater. Trans. B, 44(2013), p. 1095.

    Article  CAS  Google Scholar 

  42. C.Y. Chen, Z.H. Jiang, Y. Li, et al., State of the art in the control of inclusions in tire cord steels and saw wire steels–A review, Steel Res. Int., 90(2019), No. 8, art. No. 180054.

  43. B. Suler, J. Burja, and J. Medved, Modification of non-metallic inclusions with rare-earth metals in 50CrMoV13-1 steel, Mater. Tehnol., 53(2019), No. 3, p. 441.

    Article  CAS  Google Scholar 

  44. J. Le Coze, Purification of iron and steels a continuous effort from 2000 BC to AD 2000, Mater. Trans. JIM, 41(2000), 1, p. 219.

    Article  CAS  Google Scholar 

  45. J. Leach, The application of vacuum to steel making, Vacuum, 19(1969), No. 4, p. 155.

    Article  CAS  Google Scholar 

  46. A. Tix, Production-scale vacuum steel degassing, JOM, 8(1956), No. 4, p. 420.

    Article  CAS  Google Scholar 

  47. V.D. Tutarova, A.N. Shapovalov, and A.N. Kalitaev, Removal of hydrogen in the vacuum treatment of steel, Steel Transl., 47(2017), No. 3, p. 153.

    Article  Google Scholar 

  48. R.F. Bunshah, History and current status of vacuum metallurgy, J. Vac. Sci. Technol. A, 12(1994), No. 4, p. 936.

    Article  CAS  Google Scholar 

  49. J.H. Wei, N.W. Yu, Y.Y. Fan, S.L. Yang, J.C. Ma, and D.P. Zhu, Study on flow and mixing characteristics of molten steel in RH and RH-KTB refining processes, J. Shanghai Univ., 6(2002), No. 2, p. 167.

    Article  Google Scholar 

  50. T. Nishioka and K. Emoto, On the ASEA-SKF process, Tetsu-to-Hagane, 60(1974), No. 12, p. 1661.

    Article  CAS  Google Scholar 

  51. R.D. Pehlke and T. Fuwa, Control of sulphur in liquid iron and steel, Int. Met. Rev., 30(1985), No. 1, p. 125.

    Article  CAS  Google Scholar 

  52. T. Emi, Steelmaking technology for the last 100 years: Toward highly efficient mass production systems for high quality steels, ISIJ Int., 55(2015), No. 1, p. 36.

    Article  CAS  Google Scholar 

  53. H.G. Huang, M. Yan, J.N. Sun, and F.S. Du, Heat transfer of calcium cored wires and CFD simulation on flow and mixing efficiency in the argon-stirred ladle, Ironmaking Steelmaking, 45(2018), No. 7, p. 626.

    Article  CAS  Google Scholar 

  54. Y. Hu, W.Q. Chen, C.J. Wan, F.J. Wang, and H.B. Han, Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension, Metall. Mater. Trans. B, 49(2018), No. 2, p. 569.

    Article  CAS  Google Scholar 

  55. C. Gu, Y.P. Bao, P. Gan, J.H. Lian, and S. Münstermann, An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels, Steel Res. Int., 89(2018), p. 1800129.

    Article  Google Scholar 

  56. Z.Y. Deng and M.Y. Zhu, Deoxidation mechanism of Al-killed steel during industrial refining process, ISIJ Int., 54(2014), No. 7, p. 1498.

    Article  CAS  Google Scholar 

  57. D.L. You, C. Bernhard, A. Viertauer, and B. Linzer, Simulation of the refining process of ultra-low carbon (ULC) steel, Crystals, 11(2021), No. 8, art. No. 893.

  58. L.D. Way, Cleanness, castability, and surface quality of form-able sheet steels, Mater. Sci. Technol., 17(2001), No. 10, p. 1175.

    Article  CAS  Google Scholar 

  59. S.K. Choudhary, S. Chandra, and A. Ghosh, Prediction of deoxidation and inclusion precipitation in semikilled steel, Metall. Mater. Trans. B, 36(2005), No. 1, p. 59.

    Article  Google Scholar 

  60. H. Goto and K.I. Miyazawa, Reoxidation behavior of molten steel in non-killed and Al-killed steels, ISIJ Int., 38(1998), No. 3, p. 256.

    Article  CAS  Google Scholar 

  61. H. Ohta and H. Suito, Activities in CaO-MgO-Al2O3 slags and deoxidation equilibria of Al, Mg, and Ca, ISIJ Int., 36(1996), No. 8, p. 983.

    Article  CAS  Google Scholar 

  62. T. Furukawa, N. Saito, and K. Nakashima, Evaluation of interfacial energy between molten Fe and Fe–18%Cr–9%Ni alloy and non-metallic inclusion-type oxides, ISIJ Int., 61(2021), No. 9, p. 2381.

    Article  CAS  Google Scholar 

  63. Y.Y. Xiao, G.C. Wang, H. Lei, and S. Sridhar, Formation pathways for MgO·Al2O3 inclusions in iron melt, J. Alloys Compd., 813(2020), art. No. 152243.

  64. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang, A thermodynamic model of sulfur distribution ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 slags and molten steel during LF refining process based on the ion and molecule coexistence theory, Metall. Mater. Trans. B, 42(2011), No. 6, p. 1150.

    Article  CAS  Google Scholar 

  65. M. Swinnerton, The Influence of Slag Evolution on BOF De-phosphorization [Dissertation], University of Wollongong, New South Wales, 2005, p. 107.

    Google Scholar 

  66. Y.H. Li, Y.P. Bao, M. Wang, R. Wang, and D.C. Tang, Influence of process conditions during Ruhrstahl–Hereaeus refining process and effect of vacuum degassing on carbon removal to ultra-low levels, Ironmaking Steelmaking, 42(2015), No. 5, p. 366.

    Article  CAS  Google Scholar 

  67. H.B. Li, P.C. Lu, H. Feng, P.F. Zhang, S.C. Zhang, and Z.H. Jiang, Influence mechanism of crucible materials on cleanliness and inclusion characteristics of high-nitrogen stainless bearing steel during vacuum carbon deoxidation, Metall. Mater. Trans. B, 54(2023), No. 3, p. 1099.

    Article  CAS  Google Scholar 

  68. L. Zhu, A. Al-Sakeeri, F. Lenrick, et al., Surface chemistry and diffusion of trace and alloying elements during in vacuum thermal deoxidation of stainless steel, Surf. Interface Anal., 54(2022), No. 2, p. 99.

    Article  CAS  Google Scholar 

  69. S. Yuan, U.B. Pal, and K.C. Chou, Modeling and scaleup of galvanic deoxidation of molten metals using solid electrolyte cells, J. Am. Ceram. Soc., 79(1996), No. 3, p. 641.

    Article  CAS  Google Scholar 

  70. K.E. Oberg, L.M. Friedman, W.M. Boorstein, and R.A. Rapp, Electrochemical deoxidation of induction-stirred copper melts, Metall. Trans., 4(1973), No. 1, p. 75.

    Article  CAS  Google Scholar 

  71. M. Iwase, M. Tanida, A. McLean, and T. Mori, Electronically driven transport of oxygen from liquid iron to CO + CO2 gas mixtures through stabilized zirconia, Metall. Trans. B, 12(1981), No. 3, p. 517.

    Article  Google Scholar 

  72. S. Yuan, U. Pal, and K.C. Chou, Deoxidation of molten metals by short circuiting yttria-stabilized zirconia electrolyte cell, J. Electrochem. Soc., 141(1994), No. 2, p. 467.

    Article  CAS  Google Scholar 

  73. L. Kong, T. Ouchi, C.Y. Zheng, and T. Okabe, Electrochemical deoxidation of titanium scrap in MgCl2–HoCl3 system, J. Electrochem. Soc., 166(2019), p. E429.

    Article  CAS  Google Scholar 

  74. J.J. Li and Y. Kobayashi, A new design of oxygen sensor for electromotive force measurement and electrochemical deoxidation by using oxygen pump, ISIJ Int., 60(2020), No. 6, p. 1135.

    Article  CAS  Google Scholar 

  75. M.A. Makarov, A.A. Aleksandrov, and V.Y. Dashevskii, Deep decarburization of iron-based melts, Russ. Metall. Met., 2007(2007), No. 2, p. 91.

    Article  Google Scholar 

  76. M.N. Dastur and J. Chipman, Equilibrium in the reaction of hydrogen with oxygen in liquid iron, JOM, 1(1949), No. 8, p. 441.

    Article  CAS  Google Scholar 

  77. W. Xing, Study on Deoxidation by Hydrogen and Natural Gas in Molten Steel [Dissertation], Wuhan University of Science and Technology, Wuhan, 2009, p. 39.

    Google Scholar 

  78. S.C. Tung and M.L. McMillan, Automotive tribology overview of current advances and challenges for the future, Tribol. Int., 37(2004), No. 7, p. 517.

    Article  CAS  Google Scholar 

  79. J.P. Birat, Impact of steelmaking and casting technologies on processing and properties of steel, Ironmaking Steelmaking, 28(2001), No. 2, p. 152.

    Article  CAS  Google Scholar 

  80. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos, Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions, Mater. Des., 32(2011), No. 3, p. 1605.

    Article  CAS  Google Scholar 

  81. A. Melander and A. Gustavsson, An FEM study of driving forces of short cracks at inclusions in hard steels, Int. J. Fatigue, 18(1996), No. 6, p. 389.

    Article  CAS  Google Scholar 

  82. P.F.F. Walker, Improving the reliability of highly loaded rolling bearings: The effect of upstream processing on inclusions, Mater. Sci. Technol., 30(2014), No. 4, p. 385.

    Article  CAS  Google Scholar 

  83. B.H. Yoon, K.H. Heo, J.S. Kim, and H.S. Sohn, Improvement of steel cleanliness by controlling slag composition, Ironmaking Steelmaking, 29(2002), No. 3, p. 214.

    Article  Google Scholar 

  84. Y. Kato, T. Masuda, K. Kawakami, and K. Hashizume, Recent improvements in cleanliness in high carbon chromium bearing steel, ISIJ Int., 36(1996), p. S89.

    Article  Google Scholar 

  85. K. Matsuoka, T. Terabarake and K. Kameyarna, Improvement of quality of steel for bearing at JFE West Japan Works, [in] The 4th International Congress on the Science and Technology of Steelmaking, Gifu, 2008, p. 457.

  86. C.Y. Liu, F.X. Huang, and X.H. Wang, The effect of refining slag and refractory on inclusion transformation in extra low oxygen steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 999.

    Article  CAS  Google Scholar 

  87. K. Sorimachi, S. Yamada, J. Hasunuma, and H. Nomura, Kawasaki Steel’s steelmaking technologies for mass production of high quality slabs, Rev. Met. Paris, 96(1999), No. 4, p. 465.

    Article  CAS  Google Scholar 

  88. S. Xu, J.R. Brown, and W.R. Tyson, Influence of residual elements on mechanical properties of two carbon steel grades, Steel Res. Int., 77(2006), No. 11, p. 825.

    Article  CAS  Google Scholar 

  89. S.F. Chen, H. Lei, M. Wang, B. Yang, L.J. Dai, and Y. Zhao, Two-way coupling calculation for multiphase flow and decar-burization during RH refining, Vacuum, 167(2019), p. 255.

    Article  CAS  Google Scholar 

  90. S. Zhu, Q.Y. Zhao, X.L. Li, Y. Liu, T.C. Li, and T.A. Zhang, Flow and penetration behavior of submerged side-blown gas, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1067.

    Article  Google Scholar 

  91. H. Takechi, Metallurgical aspects on interstitial free sheet steel from industrial viewpoints, ISIJ Int., 34(1994), No. 1, p. 1.

    Article  CAS  Google Scholar 

  92. S. Hoile, Processing and properties of mild interstitial free steels, Mater. Sci. Technol., 16(2000), No. 10, p. 1079.

    Article  CAS  Google Scholar 

  93. L. Yang and G.G. Cheng, Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 869.

    Article  CAS  Google Scholar 

  94. Z.L. Wang, Y.P. Bao, C. Gu, W. Xiao, Y. Liu, and Y.S. Huang, Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process, Chin. J. Eng., 44(2022), No. 9, p. 1607.

    CAS  Google Scholar 

  95. H.P. Sun and K. Mori, Oxidation rate of aluminum in molten iron by CaO–SiO2–Al2O3–FeO-MnO slag, ISIJ Int., 36(1996), p. S34.

    Article  Google Scholar 

  96. H.T. Ling and L.F. Zhang, A mathematical model for prediction of carbon concentration during RH refining process, Metall. Mater. Trans. B, 49(2018), No. 6, p. 2963.

    Article  CAS  Google Scholar 

  97. J.L. Guo, L.H. Zhao, Y.P. Bao, S. Gao, and M. Wang, Carbon and oxygen behavior in the RH degasser with carbon powder addition, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 681.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52174297). The authors wish to express their gratitude to the foundation for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Bao.

Ethics declarations

Yanping Bao is an editorial board member for this journal and was not involved in the editorial review or the decision to publish this article. The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Bao, Y. Development and prospects of molten steel deoxidation in steelmaking process. Int J Miner Metall Mater 31, 18–32 (2024). https://doi.org/10.1007/s12613-023-2740-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2740-4

Keywords

Navigation