Skip to main content

Advertisement

Log in

Aluminothermic Reduction Process Under Nitrogen Gas Pressure for Preparing High Nitrogen Austenitic Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The aluminothermic reduction casting process under nitrogen gas pressure to make austenitic Cr-Mn-N (Ni-free) and Cr-N (Ni/Mn-free) high nitrogen stainless steels was investigated. Thermodynamic simulation of the redox reaction depending on process parameters was performed. As a result, the optimal ratio of aluminum to oxygen in the initial powder mixture to obtain the highest yield of metal product with minimal aluminum nitride contamination was predicted to be slightly greater than the stoichiometric ratio of 1.125. Microstructures of aluminothermic 26Cr1N and 23Cr9Mn1N steels, prepared taking into account the results of thermodynamic simulation, were investigated by X-ray diffraction, metallography, and transmission electron microscopy. The as-cast microstructure was a pseudo-pearlite (layered ferrite-nitride mixture) in 26Cr1N steel and a ferrite-austenite with signs of discontinuous austenite decomposition in 23Cr9Mn1N steel. After hot forging and subsequent water quenching from 1200 °C, the microstructure was fully austenitic in both steels. Tensile tests of quenched 23Cr9Mn1N steel showed a combination of high strength (ultimate strength of 1324 MPa) and ductility (elongation of 27 pct). The results illustrate that the aluminothermic casting process for producing high nitrogen steel is competitive with the commonly used methods, such as pressure electroslag remelting, both in terms of cost and mechanical properties of manufactured steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.J.T. Ellingham: J. Soc. Chem. Ind., 1944, vol. 63, pp. 125–33.

    Article  Google Scholar 

  2. P. La, F. Wei, X. Lu, T. Shi, C. Chu, Y. Wei, and H. Wang: Philos. Mag. Lett., 2014, vol. 94 (8), pp. 478–86.

    Article  Google Scholar 

  3. P. La, F. Wei, X. Lu, C. Chu, Y. Wei, and H. Wang: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5236–44.

    Article  Google Scholar 

  4. Z.N. Li, F.A. Wei, P.Q. La, and F.L. Ma: Met. Mater. Int., 2018, vol. 24, pp. 633–43.

    Article  Google Scholar 

  5. J. Feizabadi, J.V. Khaki, M.H. Sabzevar, M. Sharifitabar, and S.A. Sani: Mater. Des., 2015, vol. 84, pp. 325–30.

    Article  Google Scholar 

  6. J.M. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–69.

    Article  Google Scholar 

  7. M.O. Speidel: Materialwissenschaft Werkstofftechnik, 2006, vol. 37, pp. 875–80.

    Article  Google Scholar 

  8. V.G. Gavriljuk and H. Berns: High Nitrogen Steel: Structure, Properties, Manufacture, Applications, Springer-Verlag, Heidelberg, Germany, 1999.

    Book  Google Scholar 

  9. A. Di Schino, J.M. Kenny, M.G. Mecozzi, and M. Barteri: J. Mater. Sci., 2000, vol. 35, pp. 4803–08.

    Article  Google Scholar 

  10. Z.H. Jiang, Z.R. Zhang, H.B. Li, Z.Li, and Q.F. Ma: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 729–36.

    Article  Google Scholar 

  11. W. Uter, A. Pfahlberg, O. Gefeller, J. Geier, and A. Schnuch: Contact Dermatitis, 2003, vol. 48, pp. 33–38.

    Article  Google Scholar 

  12. K. Yang and Y. Ren: Sci. Technol. Adv. Mater., 2010, vol. 11, p. 014105.

    Article  Google Scholar 

  13. D. Kuroda, S. Hiromoto, T. Hanawa, and Y. Katada: Mater. Trans., 2002, vol. 43, pp. 3100–04.

    Article  Google Scholar 

  14. A. Akbari and R. Mohammadzadeh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1570–79.

    Article  Google Scholar 

  15. T. Rashev: High Nitrogen Steels: Metallurgy under Pressure, Academic Publishing House of Bulgarian Academy of Science, Sofia, 1995.

    Google Scholar 

  16. T.V. Rashev, L.T. Zhekova, and P.V. Bogev: Steel Transl., 2017, vol. 47 (1), pp. 26–31.

    Article  Google Scholar 

  17. A.D. Patel, J. Reitz, J.H. Magee, R. Smith, G. Maurer, and B. Friedrich: Int. Symp. Liq. Met. Process. Cast., TMS, Warrendale, PA, 2009.

  18. V.I. Yukhvid: Adv. Mater. Technol., 2016, vol. 4, pp. 23–34.

    Google Scholar 

  19. G. Liu, J. Li, and K. Chen: in Handbook of Combustion, Vol. 1, M. Lackner, F. Winter, and A.K. Agarwal, eds., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

    Google Scholar 

  20. A.G. Merzhanov: Russ. Chem. Rev., 1976, vol. 45, pp. 409–20.

    Article  Google Scholar 

  21. Z.A. Munir and U. Anselmi-Tamburini: Mater. Sci. Rep., 1989, vol. 3, pp. 279–365.

    Article  Google Scholar 

  22. C.L. Yeh and E.W. Liu: J. Alloys Compd., 2006, vol. 426, pp. 131–35.

    Article  Google Scholar 

  23. G.A. Dorofeev, V.I. Lad’janov, A.N. Lubnin, V.A. Karev, B.E. Pushkarev, and M.I. Mokrushina: Himich. Fiz. Mezosk., 2010, vol. 12, pp. 5–12 (in Russian).

  24. Nitride Ceramics: Combustion Synthesis, Properties and Applications, A.A. Gromov and L.N. Chukhlomina, eds., Wiley, Weinheim, 2014.

  25. B.S. Braverman, M.K. Ziatdinov, and Y.M. Maksimov: Combust., Explos. Shock Waves, 1999, vol. 35, pp. 501–05.

    Article  Google Scholar 

  26. Z.A. Mansurov, S.M. Fomenko, A.N. Alipbaev, R.G. Abdulkarimova, and V.E. Zarko: Combust., Explos. Shock Waves, 2016, vol. 52, pp. 184–92.

    Article  Google Scholar 

  27. J.J. Moore and H.J. Feng: Progr. Mater. Sci., 1995, vol. 39, pp. 243–73.

    Article  Google Scholar 

  28. K. Morsi: J. Mater. Sci., 2012, vol. 47, pp. 68–92.

    Article  Google Scholar 

  29. N.A. Vatolin, G.K. Moiseev, and B.G. Trusov: Thermodynamic Modeling in High Temperature Inorganic Systems, Metallurgy, Moscow, 1994 (in Russian).

    Google Scholar 

  30. O.Y. Goncharov: Inorg. Mater., 2004, vol. 40, pp. 1295–1300.

    Article  Google Scholar 

  31. O.Y. Goncharov and O.M. Kanunnikova: Industr. Lab.: Diag. Mater., 2012, vol. 78, pp. 36–41 (in Russian).

    Google Scholar 

  32. V.P. Glushko: in Termicheskie Konstanty Veshchestv (“Thermal Constants of Substances”), Handbook in 10 Issues, VINITI, Moscow, 1965–1981 (in Russian).

  33. C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Cambridge, MA, 1952.

    Google Scholar 

  34. M. Temkin: Acta Phys. Chim. U.R.S.S., 1945, vol. 20, pp. 411–20.

    Google Scholar 

  35. C.K. Gupta: Chemical Metallurgy: Principles and Practice, Wiley-VCH Verlag, Weinheim, 2003.

    Book  Google Scholar 

  36. http://www.anchem.ru/catalogs/device/index.aspx?iddevrub=82.

  37. D. Belitskus: JOM, 1972, vol. 24, pp. 30–34.

    Article  Google Scholar 

  38. N.C.S. Srinivas and V.V. Kutumbarao: Scripta Mater., 1997, vol. 37, pp. 285–91.

    Article  Google Scholar 

  39. P.A. Carvalho, I.F. Machado, G. Solorzano, and A.F. Padilha: Philos. Mag., 2008, vol. 88, pp. 229–42.

    Article  Google Scholar 

  40. Georgsmarienhütte Holding GmbH, Germany, http://www.energietechnik-essen.de/de/produkte/stickstoffstaehle/druckaufgestickte-austenite.html, accessed May 2018.

Download references

Acknowledgments

This work was funded by the Russian Federal Agency for Scientific Organizations (Project No. AAAA-A17-117022250039-4) and partially supported by the Presidium of the Ural Branch of the Russian Academy of Sciences (Project No. 18-10-2-41). The authors thank B.E. Pushkarev for performing scanning electron microscopy investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Dorofeev.

Additional information

Manuscript submitted May 29, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeev, G., Karev, V., Goncharov, O. et al. Aluminothermic Reduction Process Under Nitrogen Gas Pressure for Preparing High Nitrogen Austenitic Steels. Metall Mater Trans B 50, 632–640 (2019). https://doi.org/10.1007/s11663-018-1499-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1499-x

Navigation