Skip to main content
Log in

Flow and penetration behavior of submerged side-blown gas

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To assess the widely used submerged side-blowing in pyrometallurgy, a high-speed camera-digital image processing-statistical approach was used to systematically investigate the effects of the gas flow rate, nozzle diameter, and inclination angle on the space-time distribution and penetration behavior of submerged side-blown gas in an air-water system. The results show that the gas motion gradually changes from a bubbling regime to a steady jetting regime and the formation of a complete jet structure as the flow rate increases. When the flow rate is low, a bubble area is formed by large bubbles in the area above the nozzle. When the flow rate and the nozzle diameter are significant, a bubble area is formed by tiny bubbles in the area above the nozzle. The increased inclination angle requires a more significant flow rate to form a complete jet structure. In the sampling time, the dimensionless horizontal and vertical penetration depths are Gaussian distributed. Decreasing the nozzle diameter and increasing the flow rate or inclination angle will increase the distribution range and discreteness. New correlations for a penetration depth with an error of ±20% were obtained through dimensional analysis. The dimensionless horizontal penetration depth of an argon-melt system in a 120 t converter calculated by the correlation proposed by the current study is close to the result calculated by a correlation in the literature and a numerical simulation result in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Gas-liquid mass transfer and flow phenomena in a Peirce-Smith converter: A numerical model study, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1092.

    Article  CAS  Google Scholar 

  2. L. Zhang, L. Zhang, and Y. He, The process and application of oxygen-enriched air side blown smelting of lead-zinc materials, [in] Proc. 9th International Symposium on Lead and Zinc Processing, San Diego, 2020, p. 291.

  3. H.L. Zhang, C.Q. Zhou, W. Bing, and Y.M. Chen, Numerical simulation of multiphase flow in a Vanyukov furnace, J. S. Afr. Inst. Min. Metall., 115(2015), No. 5, p. 457.

    Article  Google Scholar 

  4. L. Chen, W.D. Bin, T.Z. Yang, W.F. Liu, and S. Bin, Research and industrial application of oxygen-rich side-blow bath smelting technology, [in] Proc. 4th International Symposium on High-Temperature Metallurgical Processing, San Antonio, 2013, p. 49.

  5. L. Chen, W. Chen, H. Xiao, T.Z. Yang, W.F. Liu, and D.C. Zhang, Oxygen-rich side blow bath smelting technology — new developments in China, [in] Proc. 7th International Symposium on High-Temperature Metallurgical Processing, Nashville, 2016, p. 123.

  6. J.H. Wei, Y. He, and G.M. Shi, Mathematical modeling of fluid flow in bath during combined side and top blowing AOD refining process of stainless steel: Mathematical model of the fluid flow, Steel Res. Int., 82(2011), No. 6, p. 703.

    Article  CAS  Google Scholar 

  7. K.F. Feng, J.Y. Zhang, B. Wang, et al., Numerical simulation study on immersed side-blowing in C−H2 smelting reduction furnace, [in] Proc. 5th International Symposium on High-Temperature Metallurgical Processing, San Diego, 2014, p. 451.

  8. M. Iguchi, S. Kodani, and H. Tokunaga, Bubble and liquid flow characteristics during horizontal cold gas injection into a water bath, Steel Res. Int., 71(2000), No. 11, p. 435.

    Article  CAS  Google Scholar 

  9. X.L. Li, Y. Liu, D.X. Wang, and T.A. Zhang, Emulsification and flow characteristics in copper oxygen-rich side-blown bath smelting process, Metals, 10(2020), No. 11, art. No. 1520.

  10. R. Cheng, L.J. Zhang, Y.B. Yin, and J.M. Zhang, Effect of side blowing on fluid flow and mixing phenomenon in gas-stirred ladle, Metals, 11(2021), No. 2, art. No. 369.

  11. E.P. Heikkinen, T.M.J. Fabritius, T.M.T. Kokkonen, and J.J. Härkki, An experimental and computational study on the melting behaviour of AOD and chromium converter slags, Steel Res. Int., 75(2004), No. 12, p. 800.

    Article  CAS  Google Scholar 

  12. K.Z. Song and A. Jokilaakso, Transport phenomena in copper bath smelting and converting processes — A review of experimental and modeling studies, Miner. Process. Extr. Metall. Rev., 43(2022), No. 1, p. 107.

    Article  CAS  Google Scholar 

  13. D.K. Chibwe, G. Akdogan, G.A. Bezuidenhout, J. Kapusta, S. Bradshaw, and J.J. Eksteen, Sonic injection into a PGM Peirce-Smith converter: CFD modelling and industrial trials, J. S. Afr. Inst. Min. Metall., 115(2015), No. 5, p. 349.

    Article  Google Scholar 

  14. J.P.T. Kapusta, Submerged gas jet penetration: A study of bubbling versus jetting and side versus bottom blowing in copper bath smelting, JOM, 69(2017), No. 6, p. 970.

    Article  CAS  Google Scholar 

  15. Y.D. Xiao, T.T. Lu, Y.G. Zhou, Q.Q. Su, L.Z. Mu, T. Wei, H.L. Zhao, and F.Q. Liu, Computational fluid dynamics study on enhanced circulation flow in a side-blown copper smelting furnace, JOM, 73(2021), No. 9, p. 2724.

    Article  Google Scholar 

  16. Y.T. Liu, T.Z. Yang, Z. Chen, Z.Y. Zhu, L. Zhang, and Q. Huang, Experiment and numerical simulation of two-phase flow in oxygen enriched side-blown furnace, Trans. Nonferrous Met. Soc. China, 30(2020), No. 1, p. 249.

    Article  CAS  Google Scholar 

  17. J.L. Svantesson, M. Ersson, and P.G. Jönsson, Effect of Froude number on submerged gas blowing characteristics, Materials (Basel), 14(2021), No. 3, art. No. 627.

  18. E.O. Hoefele and J.K. Brimacombe, Flow regimes in submerged gas injection, Metall. Mater. Trans. B, 10(1979), No. 4, p. 631.

    Article  Google Scholar 

  19. K. Bölke, M. Ersson, P.Y. Ni, M. Swartling, and P.G. Jönsson, Physical modeling study on the mixing in the new IronArc process, Steel Res. Int., 89(2018), No. 7, art. No. 1700555.

  20. K. Bölke, M. Ersson, M. Imris, and P.G. Jönsson, Importance of the penetration depth and mixing in the IRONARC process, ISIJ Int., 58(2018), No. 7, p. 1210.

    Article  Google Scholar 

  21. G.S. Wei, R. Zhu, T.P. Tang, K. Dong, and X.T. Wu, Study on the impact characteristics of submerged CO2 and O2 mixed injection (S-COMI) in EAF steelmaking, Metall. Mater. Trans. B, 50(2019), No. 2, p. 1077.

    Article  CAS  Google Scholar 

  22. J. Ma, Y.P. Song, P. Zhou, W. Cheng, and S.G. Chu, A mathematical approach to submerged horizontal buoyant jet trajectory and a criterion for jet flow patterns, Exp. Therm. Fluid Sci., 92(2018), p. 409.

    Article  CAS  Google Scholar 

  23. K. Harby, S. Chiva, and J.L. Muñoz-Cobo, An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient, Exp. Therm. Fluid Sci., 53(2014), p. 26.

    Article  Google Scholar 

  24. H.H. Shi, Q. Guo, C. Wang, et al., Oscillation flow induced by underwater supersonic gas jets, Shock Waves, 20(2010), No. 4, p. 347.

    Article  Google Scholar 

  25. H.H. Shi, B.Y. Wang, and Z.Q. Dai, Research on the mechanics of underwater supersonic gas jets, Sci. China Phys. Mech. Astron., 53(2010), No. 3, p. 527.

    Article  CAS  Google Scholar 

  26. W.C. Li, Z.M. Meng, Z.N. Sun, L. Sun, and C. Wang, Investigations on the penetration length of steam-air mixture jets injected horizontally and vertically in quiescent water, Int. J. Heat Mass Transf., 122(2018), p. 89.

    Article  Google Scholar 

  27. J.H. Wei, J.C. Ma, Y.Y. Fan, N.W. Yu, S.L. Yang, S.H. Xiang, and D.P. Zhu, Water modelling study of fluid flow and mixing characteristics in bath during AOD process, Ironmaking Steelmaking, 26(1999), No. 5, p. 363.

    Article  CAS  Google Scholar 

  28. J.H. Wei, H.L. Zhu, H.B. Chi, and H.J. Wang, Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Fluid mixing characteristics in bath, ISIJ Int., 50(2010), No. 1, p. 26.

    Article  CAS  Google Scholar 

  29. J.H. Wei, H.L. Zhu, H.B. Chi, and H.J. Wang, Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Gas stirring and fluid flow characteristics in bath, ISIJ Int., 50(2010), No. 1, p. 17.

    Article  CAS  Google Scholar 

  30. T. Fabritius, P. Kupari, and J. Härkki, Physical modelling of a sidewall-blowing converter, Scand. J. Metall., 30(2001), No. 2, p. 57.

    Article  CAS  Google Scholar 

  31. T.M.J. Fabritius, P.T. Mure, and J.J. Härkki, The determination of the minimum and operational gas flow rates for sidewall blowing in the AOD-converter, ISIJ Int., 43(2003), No. 8, p. 1177.

    Article  CAS  Google Scholar 

  32. M. Bjurström, A. Tilliander, M. Iguchi, and P. Jönsson, Physical-modeling study of fluid flow and gas penetration in a side-blown AOD converter, ISIJ Int., 46(2006), No. 4, p. 523.

    Article  Google Scholar 

  33. H.J. Odenthal, U. Thiedemann, U. Falkenreck, and J. Schlueter, Simulation of fluid flow and oscillation of the argon oxygen decarburization (AOD) process, Metall. Mater. Trans. B, 41(2010), No. 2, p. 396.

    Article  Google Scholar 

  34. T. Hass, V.V. Visuri, A. Kärnä, E. Isohookana, P. Sulasalmi, R.H. Eriç, H. Pfeifer, and T. Fabritius, Physical modelling of the effect of slag and top-blowing on mixing in the AOD process, [in] Proc. 10th International Conference on Molten Slags, Fluxes and Salts, Seattle, 2016, p. 999.

  35. P. Ternstedt, P.Y. Ni, N. Lundqvist, A. Tilliander, and P.G. Jönsson, A physical modelling study to determine the influence of slag on the fluid flow in the AOD converter process, Ironmaking Steelmaking, 45(2018), No. 10, p. 944.

    Article  CAS  Google Scholar 

  36. S. Chanouian, B. Ahlin, A. Tilliander, and M. Ersson, Inclination effect on mixing time in a gas-stirred side-blown converter, Steel Res. Int., 92(2021), No. 10, art. No. 2100044.

  37. Y.G. Xu, M. Ersson, and P.G. Jönsson, Numerical investigations on bubble behavior at a steel-slag interface, Steel Res. Int., 91(2020), No. 6, art. No. 1900611.

  38. P. Dong, B.J. Lu, S.F. Gong, and D. Cheng, Experimental study of submerged gas jets in liquid cross flow, Exp. Therm. Fluid Sci., 112(2020), art. No. 109998.

  39. C.J. Su, J.M. Chou, and S.H. Liu, Effect of gas bottom blowing conditions on fluid flow phenomena and mixing time of molten iron inside an ironmaking smelter, Mater. Trans., 51(2010), No. 9, p. 1602.

    Article  CAS  Google Scholar 

  40. A.N. Conejo, Fundamentals of Dimensional Analysis: Theory and Applications in Metallurgy, Springer Singapore, Singapore, 2021, p. 305.

    Book  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. U1702253 and 52174332) and the National Key R&D Program of China (No. 2019YFC1907301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting’an Zhang.

Additional information

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhao, Q., Li, X. et al. Flow and penetration behavior of submerged side-blown gas. Int J Miner Metall Mater 30, 1067–1077 (2023). https://doi.org/10.1007/s12613-022-2585-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2585-2

Keywords

Navigation