Skip to main content
Log in

A Thermodynamic Model of Sulfur Distribution Ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags and Molten Steel during LF Refining Process Based on the Ion and Molecule Coexistence Theory

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A thermodynamic model for calculating the sulfur distribution ratio between ladle furnace (LF) refining slags and molten steel has been developed by coupling with a developed thermodynamic model for calculating the mass action concentrations of structural units in LF refining slags, i.e., CaO–SiO2–MgO–FeO–MnO–Al2O3 hexabasic slags, based on the ion and molecule coexistence theory (IMCT). The calculated mass action concentrations of structural units in CaO–SiO2–MgO–FeO–Al2O3–MnO slags equilibrated or reacted with molten steel show that the calculated equilibrium mole numbers or mass action concentrations of structural units or ion couples, rather than mass percentage of components, in the slags can represent their reaction abilities. The calculated total sulfur distribution ratio shows a reliable agreement with the measured or the calculated sulfur distribution ratio between the slags and molten steel by other models under the condition of choosing oxygen activity based on (FeO)–[O] equilibrium. Meanwhile, the developed thermodynamic model for calculating sulfur distribution ratio can quantitatively determine the respective contribution of free CaO, MgO, FeO, and MnO in the LF refining slags. A significant difference of desulfurization ability among free component as CaO, MgO, FeO, and MnO has been found with approximately 87–93 pct, 11.43–5.85 pct, 0.81–0.60 pct and 0.30–0.27 pct at both middle and final stages during LF refining process, respectively. A large difference of oxygen activity is found in molten steel at the slag–metal interface and in bulk molten steel. The oxygen activity in molten steel at the slag–metal interface is controlled by (FeO)–[O] equilibrium, whereas the oxygen activity in bulk molten steel is controlled by [Al]–[O] equilibrium. Decreasing the high-oxygen-activity boundary layer beneath the slag–metal interface can promote the desulfurization reaction rate effectively or shorten the refining period during the LF refining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

constant, (–)

a i :

activity of component i in molten steel or slags, (–)

a O,interface :

oxygen activity of molten steel at slag–metal interface, (–)

a O,bath :

oxygen activity of bulk molten steel, (–)

a O,sensor :

measured oxygen activity in molten steel by oxygen sensor, (–)

a O,[Al]–[O] :

calculated oxygen activity of bulk molten steel based on [Al]–[O] equilibrium, (–)

\( a_{{{\text{O,}}\left( {{\text{Al}}_{2} {\text{O}}_{3} } \right) - [{\text{O}}]}} \) :

calculated oxygen activity of molten steel at slag–metal interface based on (Al2O3)–[O] equilibrium, (–)

a O,(FeO)–[O] :

calculated oxygen activity of molten steel at slag–metal interface based on (FeO)–[O] equilibrium, (–)

\( a_{{{\text{O}}^{2 - } }} \) :

oxygen ion activity in slags, (–)

b i :

mole number of component i in 100-g slags, (mol)

B :

constant, (–)

\( C_{{{\text{S}}^{2 - } }} \) :

sulfide capacity of the slags, (–)

\( e_{i}^{j} \) :

activity interaction coefficient of component j on component i in molten steel based on mass percentage as concentration unit and one mass percent (1 pct) as standard state, (–)

f i :

activity coefficient of component i in molten steel, (–)

\( \Updelta_{\text{r}} G_{{{\text{m,}}i}}^{\Uptheta } \) :

standard molar Gibbs free energy change of forming component i or structural unit i in slags, (J/mol)

\( \Updelta_{\text{r}} G_{{{\text{m,}}i({\text{s}})}}^{\Uptheta } \) :

standard molar Gibbs free energy change of forming component i as solid, (J/mol)

\( \Updelta_{\text{fus}} G_{{{\text{m,}}i}}^{\Uptheta } \) :

standard molar Gibbs free energy change of melting component i or structural unit i from solid to liquid, (J/mol)

\( \Updelta_{\text{sol}} G_{{{\text{m,}}i}}^{\Uptheta } \) :

standard molar Gibbs free energy change of dissolving component i or structural unit i into slags, (J/mol)

\( K_{i}^{\Uptheta } \) :

equilibrium constant of chemical reaction for forming component i or structural unit i, (–)

L S :

sulfur distribution ratio between slags and molten steel, (–)

L S,i :

calculated respective sulfur distribution ratio of free component i or ion couple i in slags, (–)

L S,measured :

measured sulfur distribution ratio, (–)

L S,calculated :

calculated total sulfur distribution ratio between slags and molten steel, (–)

L S,i, measured :

calculated respective sulfur distribution ratio of component i or ion couple i in slags from measured data, (–)

\( L_{\text{S,calculated}}^{\text{IMCT}} \) :

calculated total sulfur distribution ratio between slags and molten steel by the IMCT model, (–)

\( L_{\text{S,calculated}}^{{[{\text{Al}}] - [{\text{O}}]}} \) :

calculated total sulfur distribution ratio between slags and molten steel based on [Al]–[O] equilibrium for determining activity of oxygen at slag–metal interface a O,interface, (–)

\( L_{\text{S,calculated}}^{{\left( {{\text{Al}}_{2} {\text{O}}_{3} } \right) - [{\text{O}}]}} \) :

calculated total sulfur distribution ratio between slags and molten steel based on (Al2O3)–[O] equilibrium for determining activity of oxygen at slag–metal interface a O,interface, (–)

\( L_{\text{S,calculated}}^{{\left( {\text{FeO}} \right) - [{\text{O}}]}} \) :

calculated total sulfur distribution ratio between slags and molten steel based on (FeO)–[O] equilibrium for determining activity of oxygen at slag–metal interface a O,interface, (–)

\( L_{\text{S,calculated}}^{{\left( {\text{FeO}} \right) - [{\text{O}}],{\text{IMCT}}}} \) :

calculated total sulfur distribution ratio between slags and molten steel by the IMCT model based on (FeO)–[O] equilibrium for determining activity of oxygen at slag–metal interface a O,interface, (–)

\( L_{\text{S,calculated}}^{{\left( {\text{FeO}} \right) - [{\text{O}}],{\text{Young}}}} \) :

calculated total sulfur distribution ratio between slags and molten steel by Young’s model based on (FeO)–[O] equilibrium for determining activity of oxygen at slag–metal interface a O,interface, (–)

\( L_{\text{S,calculated}}^{{\left( {\text{FeO}} \right) - [{\text{O}}],{\text{KTH}}}} \) :

calculated total sulfur distribution ratio between slags and molten steel by the KTH model based on (FeO)–[O] equilibrium for determining activity of oxygen at slag–metal interface a O,interface, (–)

\( L_{{\text{S}},i, {\text{calculated}}}^{{\left( {\text{FeO}}\right) - [{\text{O}}],{\text{IMCT}}}} \) :

calculated respective sulfur distribution ratio of component i or ion couple i in slags by the IMCT model based on (FeO)–[O] equilibrium for determining activity of oxygen at slag–metal interface a O,interface, (–)

Me:

metal, (–)

M i :

molecular weight of element i or component i, (g/mol)

\( n_{i}^{0} \) :

mole number of components i in 100-g slags, (mol)

n i :

equilibrium mole number of structural unit i or ion couple i in 100-g slags based on IMCT, (mol)

N i :

mass action concentrations of structural unit i or ion couple i in the slags based on IMCT, (–)

Σn i :

total equilibrium mole number of all structural units in 100-g slags based on IMCT, (mol)

R :

gas constant, (8.314 J/(mol·K))

T :

absolute temperature, (K)

X i :

mole fraction of component i in the slags, (–)

(pct i):

mass percentage of component i in slags, (–)

[pct i]:

mass percentage of component i in molten steel, (–)

(pct S)CaS :

sulfur content in slags boned as CaS, (–)

(pct S)MgS :

sulfur content in slags boned as MgS, (–)

(pct S)FeS :

sulfur content in slags boned as FeS, (–)

(pct S)MnS :

sulfur content in slags boned as MnS, (–)

\( \Uplambda \) :

optical basicity of slags (–)

\( \xi_{\text{interaction}}^{i - j} \) :

interaction coefficient of component i to component j in slags defined in the KTH model, (–)

\( \mu_{i(\rm s)}^{ * } \) :

chemical potential of component i as solid, (J/mol)

\( \mu_{i(1)}^{ * } \) :

chemical potential of component i as liquid, (J/mol)

\( \mu_{i}^{\Uptheta } \) :

standard chemical potential of dissolved component i in slags, (J/mol)

ci :

complex molecule i, (–)

References

  1. D. Takahashi, M. Kamo, Y. Kurose, and H. Nomura: Ironmaking Steelmaking, 2003, vol. 30, no. 2, pp. 116-19.

    Article  CAS  Google Scholar 

  2. J. Diao, B. Xie, and S.S. Wang: Ironmaking Steelmaking, 2009, vol. 36, no.7, pp. 543-47.

    Article  CAS  Google Scholar 

  3. P.K. Iwamasa and R.J. Fruehan: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 47-57.

    Article  CAS  Google Scholar 

  4. D.S. Vinoo, D. Mazumdar, and S.S. Gupta:. Ironmaking Steelmaking, 2007, vol. 34, no. 6, pp. 471-76.

    Article  CAS  Google Scholar 

  5. G. Yuasa, T. Yajima, A. Ukai, and M. Ozawa: Trans. ISIJ, 1984, vol. 24, no. 5, pp. 412-18.

    Article  CAS  Google Scholar 

  6. H.X. Tian, Z.Z. Mao, and Y. Wang:. ISIJ Int., 2008, vol. 48, no.1, pp. 58-62.

    Article  CAS  Google Scholar 

  7. H.X. Tian, Z.Z. Mao, and A.N. Wang: ISIJ Int., 2009, vol. 49, no. 1, pp. 58-63.

    Article  CAS  Google Scholar 

  8. A. Margareta T. Andersson, L.T.I. Jonsson, and P.G. Jönsson: Scand. J. Metall., 2003, vol. 32, no. 3, pp. 123-36.

    Article  Google Scholar 

  9. M.A.T. Andersson, L.T.I. Jonsson, and P.G. Jönsson: ISIJ Int., 2000, vol. 40, no. 11, pp. 1080-88.

    Article  CAS  Google Scholar 

  10. F.D. Richardson and C.J.B. Fincham: J. Iron Steel Inst., 1954, vol. 178, no. 9, pp. 4-15.

    CAS  Google Scholar 

  11. C.J.B. Fincham and F.D. Richardson: Proc. Roy. Soc., London, 1954, vol. 223A, pp. 40–62.

  12. X.M. Yang, T.Z. Liu, and Z.C. Guo, X.P. YU, and D.G. Wang: J. Iron Steel Res., 1995, vol. 7, no. 6, pp. 1-8.

    Google Scholar 

  13. R.W. Young, J.A. Duffy, G.J. Hassall, and Z. Xu: Ironmaking Steelmaking, 1992, vol. 19, no. 3, pp. 201-19.

    CAS  Google Scholar 

  14. D. Sichen, R. Nilsson, and S. Seetharaman: Steel Res., 1995, vol. 66, no. 11, pp. 458-62.

    CAS  Google Scholar 

  15. M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1998, vol. 38, no. 11, pp. 1170-79.

    Article  CAS  Google Scholar 

  16. M.A.T. Andersson, P.G. Jönsson, and M.M. Nzotta, ISIJ Int., 1999, vol. 39, no. 11, pp. 1140-49.

    Article  CAS  Google Scholar 

  17. M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1999, vol. 39, no. 7, pp. 657-63.

    Article  CAS  Google Scholar 

  18. M. Andersson: Ph.D. Dissertation, Royal Institute of Technology, Stockholm, Sweden, 2000.

  19. M.A.T. Andersson, P.G. Jönsson, and M. Hallberg: Ironmaking Steelmaking, 2000, vol. 27, no. 4, pp. 286-92.

    Article  CAS  Google Scholar 

  20. M.M. Nzotta, D. Sichen, and S. Seetharaman: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 909-20.

    Article  CAS  Google Scholar 

  21. D.J. Sosinsky and I.D. Sommerville: Metall. Trans. B, 1986, vol. 17B, pp. 331-37.

    Article  CAS  Google Scholar 

  22. R.G. Reddy and M. Blander: Metall. Trans. B, 1987, vol. 18B, pp. 591-96.

    Article  CAS  Google Scholar 

  23. M. Hino, S. Kitagawa, and S. Ban-ya: ISIJ Int., 1993, vol. 33, no. 1, pp. 36-42.

    Article  CAS  Google Scholar 

  24. R. Nilsson, S. Seetharaman, and K.T. Jacob: ISIJ Int., 1994, vol. 34, no. 11, pp. 876-82.

    Article  CAS  Google Scholar 

  25. S. Ban-ya, M. Hobo T. Kaji, T. Itoh, and M. Hino: ISIJ Int., 2004, vol. 44, no. 11, pp. 1810-16.

    Article  CAS  Google Scholar 

  26. A. Shankar: Ironmaking Steelmaking, 2006, vol. 33, no. 5, pp. 413-18.

    Article  CAS  Google Scholar 

  27. A. Shankar, M. Gornerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 941-47.

    Article  CAS  Google Scholar 

  28. Y. Taniguchi, N. Sano, and S. Seetharaman: ISIJ Int., 2009, vol. 49, no. 2, pp. 156-63.

    Article  CAS  Google Scholar 

  29. X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol. 49, no. 12, pp. 1828-37.

    Article  CAS  Google Scholar 

  30. J. Zhang: Acta Metall. Sin. (English Lett.), 2001, vol. 14, no. 3, pp. 177-90.

    CAS  Google Scholar 

  31. J. Zhang: J. Univ. Sci. Technol. Beijing, 2002, vol. 9, no. 2, pp. 90-98.

    CAS  Google Scholar 

  32. J. Zhang: Rare Metals, 2004, vol. 23, no. 3, pp. 209-13.

    CAS  Google Scholar 

  33. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  34. Verein Deutscher Eisenhüttenleute, Slag Atlas, 2nd ed., Woodhead Publishing Limited, Abington, Cambridge, UK, 1995.

  35. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press Inc., New York, NY, 1980, pp. 8-12.

    Google Scholar 

  36. R.H. Rein and J. Chipman: Trans. TMS-AIME, 1965, vol. 233, no. 2, pp. 415-25.

    CAS  Google Scholar 

  37. H. Gaye and J. Welfringer: Proc. 2nd Int Symp. Metalll Slags and Fluxes, TMS-AIME, Lake Tahoe, NV, 1984, pp. 357–75.

  38. K. Narita and K. Shinji: Kobe Steel Engineering Reports, 1969, vol. 19, pp. 25-42.

    Google Scholar 

  39. The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.

    Google Scholar 

  40. S. Ban-ya, A. Chiba, and A. Hirosaka: TetsutoHagané, 1980, vol. 66, no. 10, pp. 1484-93.

    CAS  Google Scholar 

  41. M. Timucin and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, no. 6, pp. 1399-406.

    Article  CAS  Google Scholar 

  42. J. Zhang: J. Beijing Univ. Iron Steel Technol., 1986, vol. 8, pp. 1-6.

    CAS  Google Scholar 

  43. J. Zhang: J. Beijing Univ. Iron Steel Technol., 1988, vol. 10, pp. 1-6.

    CAS  Google Scholar 

  44. P. Wang, T.W. Ma, and J. Zhang: Iron Steel, 1996, vol. 31, pp. 27-31.

    CAS  Google Scholar 

  45. J. Zhang and C. Wang: J. Univ. Sci. Technol. Beijing, 1991, vol. 13, pp. 214-21.

    CAS  Google Scholar 

  46. J. Zhang and W.X. Yuan: J. Univ. Sci. Technol. Beijing, 1995, vol. 17, pp. 418-23.

    CAS  Google Scholar 

  47. J. Zhang: Acta Metall. Sin., 1998, vol. 34, pp. 742-52.

    CAS  Google Scholar 

  48. J. Zhang and P. Wang: CALPHAD, 2001, vol. 25, pp. 343-54.

    Article  CAS  Google Scholar 

  49. H. Guo, Y.T. Hu, and D.Q. Cang, Y. Jin, L.X. Wang, X.L. Cheng, H. Bai, and Y.B. Zong: Chinese Chem. Lett., 2010, vol. 21, pp. 229-33.

    Article  CAS  Google Scholar 

  50. S.K. Wei: Thermodynamics of Metallurgical Processes (series book of modern metallurgy), Shanghai Scientific & Technical Publishers, Shanghai, China, 1980, pp. 52, 292, 396–98.

  51. J.Y. Zhang: Metallurgical Physicochemistry, Metallurgical Industry Press, Beijing, China, 1980, p. 42.

    Google Scholar 

  52. R. Tsujino, J. Nakashima, M. Hirai, and Y. Yamada: ISIJ Int., 1989, vol. 29, pp. 92-95.

    Article  CAS  Google Scholar 

  53. M. Ohya: Ferrous Metallurgy and Thermodynamics, Nikkan Kogyo Shimbun–sha, Tokyo, Japan, 1971.

    Google Scholar 

  54. J. Yang, M. Kuwabara, K. Okumura, and M. Sano: ISIJ Int., 2005, vol. 45, pp. 1795-803.

    Article  CAS  Google Scholar 

  55. J. Lee and K. Morita: ISIJ Int., 2004, vol. 44, pp. 235-42.

    Article  CAS  Google Scholar 

  56. E.T. Turkdogan: ISIJ Int., 2000, vol. 40, no. 10, pp. 964-70.

    Article  CAS  Google Scholar 

  57. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, no. 9, pp. 298-310.

    CAS  Google Scholar 

  58. J.F. Elliott, M. Gleiser, and V. Ramakrisha: Thermochemistry for Steelmaking, Addison–Wesley Publishing Co., London, UK, 1963, vol. 2, pp. 620–21.

  59. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 295-303.

    Article  CAS  Google Scholar 

  60. J. Tanabe, I, Seki, and K, Nagata: ISIJ Int., 2006, vol. 46, no. 2, pp.169-73.

    Article  CAS  Google Scholar 

  61. R. Tsujino, J. Nakashima, M. Hirai, and Y. Yamada: ISIJ Int., 1989, vol. 29, no. 1, pp. 92-95.

    Article  CAS  Google Scholar 

  62. D.G.C. Robertson, B. Deo, and S. Ohguchi: Ironmaking Steelmaking, 1984, vol. 11, no. 1, pp. 41-53.

    CAS  Google Scholar 

  63. R. Markus and P. Wolfgang: Steel Res., 1994, vol. 65, no. 8, pp. 309-14.

    Google Scholar 

  64. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 119-29.

    Article  CAS  Google Scholar 

  65. T. Tsao and H.G. Katayama: ISIJ Int., 1986, vol. 26, no. 8, pp. 717-23.

    Article  Google Scholar 

  66. The Recommended Values for the Equilibrium of Steelmaking Reactions, ed.: The Japan Society for the Promotion of Science, Nikan Kogyo Shinbunsha, Tokyo, Japan, 1968.

  67. D.B. Hyun and J.B. Shim: ISIJ Int., 1988, vol. 28, no. 9, pp. 736-45.

    Article  CAS  Google Scholar 

  68. I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, p. 877-89.

    Article  CAS  Google Scholar 

  69. C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, and H.J. Guo: ISIJ Int., 2010, vol. 50, no. 10, pp. 1362-72.

    Article  CAS  Google Scholar 

  70. J. Björklund, T. Miki, M. Andersson, and P.G. Jönsson: ISIJ Int., 2008, vol. 48, no. 4, pp. 438-45.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely appreciate Prof. Jian Zhang, who is a founder of the ion and molecule theory, for providing helpful discussions and encouragement. The sincere thanks are also extended to Prof. Chang–xiang Xiang, on metallurgical physicochemistry at the School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, for valuable discussion and helps for preparing Section III–B–4 on deciding the standard molar Gibbs free energy change of related reactions. Meanwhile, heartfelt thanks are also extended to Shougang Qian’an Iron and Steel Company Limited for carrying out the industrial experiments and permitting the authors to publish the related results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Min Yang.

Additional information

Manuscript submitted January 15, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XM., Shi, CB., Zhang, M. et al. A Thermodynamic Model of Sulfur Distribution Ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags and Molten Steel during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall Mater Trans B 42, 1150–1180 (2011). https://doi.org/10.1007/s11663-011-9547-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9547-9

Keywords

Navigation