Skip to main content
Log in

Electrochemical deoxidation of induction-stirred copper melts

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Induction-stirred melts of copper contained in zirconia-base electrolyte crucibles were deoxidized by electrochemical pumping of oxygen. The rate-controlling step for the deoxidation reaction was found to be transport of oxygen in the electrolyte in the higher oxygen concentration ranges, and transport across a boundary layer in the melt at the melt/electrolyte interface for the lower concentration ranges. The mass transfer coefficient for transport of oxygen across the boundary layer at the melt/crucible interface was determined to be αcou = 1.7 . exp (-12,900/äT) cm/s The optimization of the experimental parameters for this new deoxidation method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Osterwald and G. Schwarzlose:Z. Phys. Chem., 1968, vol. 62, pp. 119–26.

    Article  Google Scholar 

  2. H. Rickert and A. El Miligy:Z. Metallic., 1968, vol. 59, pp. 635–41.

    Google Scholar 

  3. K. E. Oberg, L. Friedman, W. M. Boorstein and R. A. Rapp,Met Trans., 1973, vol. 4, pp. 61–67.

    Article  Google Scholar 

  4. K. E. Oberg, L. Friedman, R. Szwarc, W. M. Boorstein, and R. A. Rapp:Journal of the Iron and Steel Institute, 1972, vol. 210, pp. 3 59–62.

    Google Scholar 

  5. C. Wagner:Z. Elektrochem., 1956, vol. 60, pp. 4–7.

    Google Scholar 

  6. C. Wagner:Proc. Int. Comtn. Electrochem. Thermo, and Kinetics (C1TCE), 7th meeting, London, 1955, Butterworth Scientific Publications, London, 1957.

    Google Scholar 

  7. D. Raleigh:Progress in Solid State Chemistry, chap. 3, Pergamon Press, Oxford, 1967.

    Google Scholar 

  8. J. W. Patterson, E. C. Bogren, and R. A. Rapp:J. Electrochem. Soc., 1967, vol. 114, pp. 752–58.

    Article  Google Scholar 

  9. C. Wagner:Z. Phys. Chem., 1969, vol. 64, pp. 49–53.

    Article  Google Scholar 

  10. T. A. Ramanarayanan and R. A. Rapp:Met. Trans., 1972, vol. 3, pp. 323946.

    Article  Google Scholar 

  11. L. M. Friedman, K. E. Oberg, W. M. Boorstein and R. A. Rapp,Met Trans., 1973, vol. 4, pp. 69–74.

    Article  Google Scholar 

  12. L. D. Lucas:Compt. Rend., 1959, vol. 248, p. 2336; 1960, vol. 250, p. 1850; 1961, vol. 253, p. 2526; 1965, vol. 260, p. 4499;Mem. Sci. Rev. Met., 1964, vol. 61, p. 1.

    Google Scholar 

  13. A. C. Riddiford:J Phys. Chem., 1952, vol. 56, pp. 746–48.

    Article  Google Scholar 

  14. E. S. Machlin:Trans. TMS-AIME, 1960, vol. 218, pp. 314–26.

    Google Scholar 

  15. W. H. McAdams:Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.

    Google Scholar 

  16. E. N. Sieder and G. E. Tate:Ind. Eng. Chem., 1936, vol. 28, pp. 1429–36.

    Article  Google Scholar 

  17. A. P. Colburn:Trans. Amer. Inst. Chem. Eng., 1933, vol. 29, pp. 174–210.

    Google Scholar 

  18. L. Bienas and F. Sauerwald:Z. Anorg. Chem., 1926, vol. 161, pp. 51–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberg, K.E., Friedman, L.M., Boorstein, W.M. et al. Electrochemical deoxidation of induction-stirred copper melts. Metall Trans 4, 75–82 (1973). https://doi.org/10.1007/BF02649607

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649607

Keywords

Navigation