Skip to main content

Advertisement

Log in

Effect of Deoxidation Process on Inclusion and Fatigue Performance of Spring Steel for Automobile Suspension

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

55SiCrA spring steel was smelted in a vacuum induction levitation furnace. The liquid steel was treated by Si deoxidation, Al modification with Ca treatment and Al modification, and the steel samples were obtained with deformable Al2O3-SiO2-CaO-MgO inclusions closely contacted with steel matrix, Al2O3-CaO-CaS-SiO2-MgO inclusions surrounded by small voids or Al2O3(> 80 pct)-SiO2-CaO-MgO inclusions surrounded by big voids, respectively. Effect of three types of inclusions on steel fatigue cracks was studied. The perpendicular and transverse fatigue cracks around the three types of inclusions leading to fracture were found to vary in behavior. Under the applied stress amplitude of 775 MPa, the fatigue lives of the three spring steels decreased from 4.0 × 107 to 3.8 × 107, and to 3.1 × 107 cycles. For the applied stress amplitude of 750 MPa, the fatigue lives of the three spring steels decreased from 5.2 × 107 to 4.1 × 107, and to 3.4 × 107 cycles. Based on the voids around inclusions, the equivalent size of initial fatigue crack has been newly defined as \( \sqrt {\frac{{{\text{area}}_{\text{inclusion}} }}{{(1 - {\text{CC}})}}} \), where the contraction coefficient CC of inclusion was introduced. A reliable forecast model of the critical size of inclusion leading to fracture was established by the incorporation of actual width binclusion or diameter dinclusion of internal inclusion; the model prediction was found to be in agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.J. Nam, C.S. Lee and D.Y. Ban: Mater. Sci. Eng. A, 2000, vol. 289, pp. 8-17.

    Article  Google Scholar 

  2. H. Mughrabi: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 25, pp. 755-764.

    Article  Google Scholar 

  3. V.F. Terentev: Met. Sci. Heat Treat., 2008, vol. 50, pp. 88-96.

    Article  Google Scholar 

  4. D. Brooksbank, K.W. Andrews: J. Iron Steel., 1970, 210:246-255.

    Google Scholar 

  5. P. Wu and A. McLean: J. Iron Steel Res. Int., 2011, 18:762-768.

    Google Scholar 

  6. Y.L. Zhang, J.L. Wang, Q.C. Sun, H. Zhang and P.S. Jiang: Mater. Des., 2015, vol. 69, pp. 241-246.

    Article  Google Scholar 

  7. Q.Y. Wang, C. Bathias, N. Kawagoishi and Q. Chen: Int. J. Fatigue, 2002, vol. 24, pp. 1269-1274.

    Article  Google Scholar 

  8. Y.Q. Meng, Y.R. Zheng and H.Q. Zhao: J. Iron Steel Res. (China), 2015, vol. 27, pp. 1-6.

    Google Scholar 

  9. Y. Hu and W. Q. Chen: Ironmaking Steelmaking, 2016, vol. 43, pp. 340-350.

    Article  Google Scholar 

  10. C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, P. Valentin and H. Schifferl: Ironmaking Steelmaking, 2003, vol. 30, pp. 165-169.

    Article  Google Scholar 

  11. Y. Murakami and H. Usuki: Int. J. Fatigue, 1989, vol. 11, pp. 299-307.

    Article  Google Scholar 

  12. J.M. Zhang, S.X. Lia, Z.G. Yang, G.Y. Li, W.J. Hui and Y.Q. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765-771.

    Article  Google Scholar 

  13. J.L. Wang, Y.L. Zhang, S.J. Liu, Q.C. Sun and H.T. Lu: Int. J. Fatigue, 2016, vol. 87, pp. 203-209.

    Article  Google Scholar 

  14. W. Yan, H.C. Xu and W.Q. Chen: Steel Res. Int., 2014, vol. 85, pp. 53-59.

    Article  Google Scholar 

  15. K.P. Wang, M. Jiang, X.H. Wang, Y. Wang, H.Q. Zhao and Z.M. Cao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 282-290.

    Article  Google Scholar 

  16. W. Yang, L.F. Zhang, X.H. Wang, Y. Ren, X.F. Liu and Q.L. Shan: ISIJ, 2013, vol. 53, pp. 1401-1410.

    Article  Google Scholar 

  17. V. Presem, B. Korousic and J.W. Hastie: Steel Res. Int., 1991, vol. 62, pp. 289-295.

    Article  Google Scholar 

  18. Y. Hu, W.Q. Chen, H.B. Han and R.J. Bai: Ironmaking Steelmaking, 2017, vol. 44, pp. 28-35.

    Article  Google Scholar 

  19. L. Holappa, M. Hamalainen, M. Liukkonen and M. Lind: Ironmaking Steelmaking, 2003, vol. 30, pp. 111-115.

    Article  Google Scholar 

  20. M.S. Prasad, C.S. Venkatesha and T. Jayaraju: J. Miner. Mater. Charact. Eng., 2011, vol. 10, pp. 1263-1275.

    Google Scholar 

  21. Y. Sandaiji, E. Tamura and T. Tsuchida: Procedia Mater. Sci., 2014, vol. 3, pp. 894-899.

    Article  Google Scholar 

  22. Y. Neishi, T. Makino, N. Matsui, H. Matsumoto, M. Higashida and H. Ambai: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2131-2140.

    Article  Google Scholar 

  23. Y.P. Zeng, H.M. Fan and X.S. Xie: Int. J. Miner. Metall. Mater., 2013, 20:360-364.

    Article  Google Scholar 

  24. Y. Murakami and M. Endo: Int. J. Fatigue, 1994, vol. 16, pp. 163-182.

    Article  Google Scholar 

  25. Y. Murakami: Chromatographia, 2002, vol. 70, pp. 1197-1200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hu.

Additional information

Manuscript submitted January 19, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chen, W., Wan, C. et al. Effect of Deoxidation Process on Inclusion and Fatigue Performance of Spring Steel for Automobile Suspension. Metall Mater Trans B 49, 569–580 (2018). https://doi.org/10.1007/s11663-018-1187-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1187-x

Keywords

Navigation