Skip to main content

Advertisement

Log in

New insights on (V10O28)6−-based electrode materials for energy storage: a brief review

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Progress in humanity has intensified the demand for efficient and renewable energy storage, which warrants the development of advanced rechargeable batteries such as lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), zinc-ion batteries (ZIBs), and lithium-sulfur batteries (Li–S batteries). Nevertheless, these batteries still suffer from certain limitations, such as the insufficient capacity and inferior stability in their electrode materials. Therefore, developing a feasible electrode material for Li/Na/Zn ion storage represents a critical challenge. Recently, polyoxovanadates (POVs) materials, particularly decavanadate anion (V10O28)6− clusters, have attracted considerate attention as promising battery electrodes, due to their rich multi-electron redox process, high structural stability, simple preparation process, and abundant ligand environment. In this review, we provide an overview of the research progress of (V10O28)6−-based materials in various metal-ion battery systems, including LIBs, SIBs, ZIBs, and Li–S batteries. We also discuss the underlying challenges associated with this type of materials, and we provide alternative strategies to overcome these issues. This review aims to facilitate the research and development of the next-generation (V10O28)6−-based battery materials.

Graphic abstract

摘要

人类的进步加大了对高效和可再生存储能源的需求,这促使了我们需大量开发先进的可充电电池,如锂离子电池(LIBs)、钠离子电池(SIBs)、锌离子电池(ZIBs)和锂硫电池(Li-S电池)。然而,这些电池仍然存在一定的限制,例如电极材料的容量偏低以及稳定性较差的问题。因此,亟需开发性能优异的存储锂/钠/锌离子的电极材料。最近,基于十钒酸阴离子(V10O28)6−团簇的多金属钒氧酸盐(POVs)材料因具有多电子氧化还原过程、良好的结构稳定性、简单的制备过程以及丰富的配位环境等优点,被视为有前途的电池电极材料,引起了人们的广泛关注。在这篇综述中,我们系统地概述了(V10O28)6−基材料在各种金属离子电池系统中的研究进展,包括LIBs、SIBs、ZIBs和Li-S电池。我们还讨论了与这类材料相关的挑战,并提供了克服这些问题的策略。本综述旨在促进下一代(V10O28)6−基电池材料的研究和开发。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [43]. Copyright 2006, Elsevier. g 51 V NMR spectrum of Na6[V10O28]; h normalized in situ V K-edge XANES spectra for redox process of Na6[V10O28] cathodes; i examples of transient currents with fitting curves at 25 °C. Reproduced with permission from Ref. [45]. Copyright 2017, The Royal Society of Chemistry

Fig. 3

Reproduced with permission from Ref. [46]. Copyright 2017, The Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [49]. Copyright 2015, Elsevier

Fig. 5

Reproduced with permission from Ref. [38]. Copyright 2022, Wiley–VCH GmbH. g Synthesis scheme of Na6V10O28·18H2O. Reproduced with permission from Ref. [59]. Copyright 2022, Elsevier

Fig. 6

Reproduced with permission from Ref. [60]. Copyright 2022, Wiley–VCH GmbH

Fig. 7

Reproduced with permission from Ref. [62]. Copyright 2020, Elsevier

Fig. 8

Similar content being viewed by others

References

  1. Zampardi G, Mantia FL. Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Curr Opin Electrochem. 2020;21:84. https://doi.org/10.1016/j.coelec.2020.01.014.

    Article  CAS  Google Scholar 

  2. Zhu LM, Wang ZH, Wang L, Xie LL, Li JJ, Cao XY. ZnSe embedded in N-doped carbon nanocubes as anode materials for high-performance Li-ion batteries. Chem Eng J. 2019;364:503. https://doi.org/10.1016/j.cej.2019.01.191.

    Article  CAS  Google Scholar 

  3. Wei FL, Zhang QP, Zhang P, Tian WQ, Dai KH, Zhang L, Mao J, Shao GS. Review-Research progress on layered transition metal oxide cathode materials for sodium ion batteries. J Electrochem Soc. 2021;168(5):050524. https://doi.org/10.1149/1945-7111/abf9bf.

    Article  CAS  Google Scholar 

  4. Yi TF, Qiu LY, Qu JP, Liu HY, Zhang JH, Zhu YR. Towards high-performance cathodes: design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries. Coord Chem Rev. 2021;446:214124. https://doi.org/10.1016/j.ccr.2021.214124.

    Article  CAS  Google Scholar 

  5. Dong Y, Miao LC, Ma GQ, Di SL, Wang YY, Wang LB, Xu JZ, Zhang N. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem Sci. 2021;12(16):5843. https://doi.org/10.1039/d0sc06734b.

    Article  CAS  Google Scholar 

  6. Xu J, Peng Y, Xing WQ, Ding ZY, Zhang ST, Pang H. Metal-organic frameworks marry carbon: booster for electrochemical energy storage. J Energy Storage. 2022;53:105104. https://doi.org/10.1016/j.est.2022.105104.

    Article  Google Scholar 

  7. Wan F, Zhang LL, Dai X, Wang XY, Niu ZQ, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun. 2018;9(1):1656. https://doi.org/10.1038/s41467-018-04060-8.

    Article  CAS  Google Scholar 

  8. Ni LS, Guo RT, Fang SS, Chen J, Gao JQ, Mei Y, Zhang S, Deng WT, Zou GQ, Hou HS, Ji XB. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. eScience. 2022;2(1):116. https://doi.org/10.1016/j.esci.2022.02.006.

    Article  Google Scholar 

  9. Wang B, Ruan TT, Chen Y, Jin F, Peng L, Zhou Y, Wang DL, Dou SX. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020;24:22. https://doi.org/10.1016/j.ensm.2019.08.004.

    Article  Google Scholar 

  10. Wei TT, Peng PP, Ji YR, Zhu YR, Yi TF, Xie Y. Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J Energy Chem. 2022;71:400. https://doi.org/10.1016/j.jechem.2022.04.017.

    Article  CAS  Google Scholar 

  11. Liu YY, Lv TT, Wang H, Guo XT, Liu CS, Pang H. Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-ion batteries. Chem Eng J. 2021;417:128408. https://doi.org/10.1016/j.cej.2021.128408.

    Article  CAS  Google Scholar 

  12. Zhu S, Sheng J, Ni JF, Li Y. 3D vertical arrays of nanomaterials for microscaled energy storage devices. Accounts Mater Res. 2021;2(12):1215. https://doi.org/10.1021/accountsmr.1c00175.

    Article  CAS  Google Scholar 

  13. Wang ZQ, Zhou M, Qin LP, Chen MH, Chen ZX, Guo S, Wang LB, Fang GZ, Liang SQ. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. eScience. 2022;2(2):209. https://doi.org/10.1016/j.esci.2022.03.002.

    Article  Google Scholar 

  14. Ding GC, Zhu LM, Yang Q, Xie LL, Cao XY, Wang YL, Liu JP, Yang XL. NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Met. 2020;39(8):865. https://doi.org/10.1007/s12598-020-01452-y.

    Article  CAS  Google Scholar 

  15. Zhou T, Han Q, Xie LL, Yang XL, Zhu LM, Cao XY. Recent developments and challenges of vanadium oxides (VxOy) cathodes for aqueous zinc-ion batteries. Chem Rec. 2022;22(4):e202100275. https://doi.org/10.1002/tcr.202100275.

    Article  CAS  Google Scholar 

  16. Wang F, Liu Y, Wei HJ, Li TF, Xiong XH, Wei SZ, Ren FZ, Volinsky AA. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448. https://doi.org/10.1007/s12598-020-01649-1.

    Article  CAS  Google Scholar 

  17. Geng PB, Wang L, Du M, Bai Y, Li WT, Liu YF, Chen SQ, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li-S batteries: shape or size? Adv Mater. 2022;34(4):2107836. https://doi.org/10.1002/adma.202107836.

    Article  CAS  Google Scholar 

  18. Ma LB, Zhang WJ, Wang L, Hu Y, Zhu GY, Wang YR, Chen RP, Chen T, Tie ZX, Liu J, Jin Z. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano. 2018;12(5):4868. https://doi.org/10.1021/acsnano.8b01763.

    Article  CAS  Google Scholar 

  19. Zhu LM, Ding GC, Han Q, Miao YX, Li X, Yang XL, Chen L, Wang GK, Xie LL, Cao XY. Enhancing electrochemical performances of small quinone toward lithium and sodium energy storage. Rare Met. 2022;41(2):425. https://doi.org/10.1007/s12598-021-01813-1.

    Article  CAS  Google Scholar 

  20. Jiang Y, Wang YC, Ni JF, Li L. Molybdenum-based materials for sodium-ion batteries InfoMat. 2021;3(4):339. https://doi.org/10.1002/inf2.12175.

    Article  CAS  Google Scholar 

  21. Ni JF, Li L. Cathode architectures for rechargeable ion batteries: progress and perspectives. Adv Mater. 2020;32(28):e2000288. https://doi.org/10.1002/adma.202000288.

    Article  CAS  Google Scholar 

  22. Feng J, Luo SH, Cai KX, Yan SX, Wang Q, Zhang YH, Liu X. Research progress of tunnel-type sodium manganese oxide cathodes for SIBs. Chin Chem Lett. 2022;33(5):2316. https://doi.org/10.1016/j.cclet.2021.09.077.

    Article  CAS  Google Scholar 

  23. Xiao J, Li X, Tang KK, Wang DD, Long MQ, Gao H, Chen WH, Liu CT, Liu H, Wang GX. Recent progress of emerging cathode materials for sodium ion batteries. Mat Chem Front. 2021;5(10):3735. https://doi.org/10.1039/d1qm00179e.

    Article  CAS  Google Scholar 

  24. Yan WW, Yang SY, Huang YY, Yang Y, Yuan GH. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. J Alloys Compd. 2020;819:153048. https://doi.org/10.1016/j.jallcom.2019.153048.

    Article  CAS  Google Scholar 

  25. Pang GY, Zhuang WD, Bai XT, Ban LQ, Zhao CR, Sun XY. Research advances of Co-free and Ni-rich LiNixMn1−xO2 (0.5<x<1) cathode materials. Chin J Rare Met. 2020;44(9):996. https://doi.org/10.13373/j.cnki.cjrm.xy19030056.

    Article  CAS  Google Scholar 

  26. Yu X, Hu F, Guo ZQ, Liu L, Song GH, Zhu K. High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries. Rare Met. 2022;41(1):29. https://doi.org/10.1007/s12598-021-01771-8.

    Article  CAS  Google Scholar 

  27. Anjass M, Lowe GA, Streb C. Molecular vanadium oxides for energy conversion and energy storage: current trends and emerging opportunities. Angew Chem Int Ed. 2021;60(14):7522. https://doi.org/10.1002/anie.202010577.

    Article  CAS  Google Scholar 

  28. Xue YT, Chen Y, Shen XP, Zhong A, Ji ZY, Cheng J, Kong LR, Yuan AH. Decoration of nickel hexacyanoferrate nanocubes onto reduced graphene oxide sheets as high-performance cathode material for rechargeable aqueous zinc-ion batteries. J Colloid Interface Sci. 2021;609:297. https://doi.org/10.1016/j.jcis.2021.12.014.

    Article  CAS  Google Scholar 

  29. Wang JJ, Wang JX, Jiang YL, Xiong FY, Tan SS, Qiao F, Chen JH, An QY, Mai LQ. CaV6O16·2.8H2O with Ca2+ pillar and water lubrication as a high-rate and long-life cathode material for Ca-ion batteries. Adv Funct Mater. 2022;32(25):2113030. https://doi.org/10.1002/adfm.202113030.

    Article  CAS  Google Scholar 

  30. Luo XY, Peng WC, Li Y, Zhang FB, Fan XB. Understanding of the electrochemical behaviors of aqueous zinc-manganese batteries: reaction processes and failure mechanisms. Green Energy Environ. 2022;7:858. https://doi.org/10.1016/j.gee.2021.08.006.

    Article  CAS  Google Scholar 

  31. Du M, Miao ZY, Li HZ, Zhang F, Sang YH, Wei L, Liu H, Wang SH. Oxygen-vacancy and phosphate coordination triggered strain engineering of vanadium oxide for high-performance aqueous zinc ion storage. Nano Energy. 2021;89:106477. https://doi.org/10.1016/j.nanoen.2021.106477.

    Article  CAS  Google Scholar 

  32. Wu XW, Xiang YH, Peng QJ, Wu XS, Li YH, Tang F, Song RC, Liu ZX, He ZQ, Wu XM. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A. 2017;5(34):17990. https://doi.org/10.1039/c7ta00100b.

    Article  CAS  Google Scholar 

  33. Wang YB, Yang Q, Guo X, Yang S, Chen A, Liang GJ, Zhi CY. Strategies of binder design for high-performance lithium-ion batteries: a mini review. Rare Met. 2022;41(3):745. https://doi.org/10.1007/s12598-021-01816-y.

    Article  CAS  Google Scholar 

  34. Li QY, Zhang L, Dai JL, Tang H, Li Q, Xue HG, Pang H. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chem Eng J. 2018;351:441. https://doi.org/10.1016/j.cej.2018.06.074.

    Article  CAS  Google Scholar 

  35. Ji YC, Hu J, Huang LJ, Chen W, Streb C, Song YF. Covalent attachment of Anderson-type polyoxometalates to single-walled carbon nanotubes gives enhanced performance electrodes for lithium ion batteries. Chemistry. 2015;21(17):6469. https://doi.org/10.1002/chem.201500218.

    Article  CAS  Google Scholar 

  36. Monakhov KY, Bensch W, Kogerler P. Semimetal-functionalised polyoxovanadates. Chem Soc Rev. 2015;44(23):8443. https://doi.org/10.1039/c5cs00531k.

    Article  CAS  Google Scholar 

  37. Yang K, Hu YY, Li LY, Cui LL, He L, Wang SJ, Zhao JW, Song YF. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy. 2020;74:104851. https://doi.org/10.1016/j.nanoen.2020.104851.

    Article  CAS  Google Scholar 

  38. Zhou T, Zhu LM, Xie LL, Han Q, Yang XL, Cao XY, Ma JM. New insight on K2Zn2V10O28 as an advanced cathode for rechargeable aqueous zinc-ion batteries. Small. 2022;18(12):2107102. https://doi.org/10.1002/smll.202107102.

    Article  CAS  Google Scholar 

  39. Xing ZY, Xu GF, Xie XS, Chen MJ, Lu BA, Zhou J, Liang SQ. Highly reversible zinc-ion battery enabled by suppressing vanadium dissolution through inorganic Zn2+ conductor electrolyte. Nano Energy. 2021;90:106621. https://doi.org/10.1016/j.nanoen.2021.106621.

    Article  CAS  Google Scholar 

  40. Sanchez-Lara E, Trevino S, Sanchez-Gaytan BL, Sanchez-Mora E, Eugenia Castro M, Melendez-Bustamante FJ, Mendez-Rojas MA, Gonzalez-Vergara E. Decavanadate salts of cytosine and metformin: A combined experimental-theoretical study of potential metallodrugs against diabetes and cancer. Front Chem. 2018;6:402. https://doi.org/10.3389/fchem.2018.00402.

    Article  CAS  Google Scholar 

  41. Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates’ interactions with proteins: An overview. Coord Chem Rev. 2022;454:214344. https://doi.org/10.1016/j.ccr.2021.214344.

    Article  CAS  Google Scholar 

  42. Ueda T. Electrochemistry of polyoxometalates: from fundamental aspects to applications. ChemElectroChem. 2018;5(6):823. https://doi.org/10.1002/celc.201701170.

    Article  CAS  Google Scholar 

  43. Xie AL, Ma CA, Wang LB, Chu YQ. Li6V10O28, a novel cathode material for Li-ion battery. Electrochim Acta. 2007;52(9):2945. https://doi.org/10.1016/j.electacta.2006.08.069.

    Article  CAS  Google Scholar 

  44. Liu HW, Wang J. The synthesis, structure, and electrochemical properties of a novel rods-shaped Li6V10O28 for lithium-ion batteries. Ionics. 2009;16(4):379. https://doi.org/10.1007/s11581-009-0414-5.

    Article  CAS  Google Scholar 

  45. Chen HY, Friedl J, Pan CJ, Haider A, Al-Oweini R, Cheah YL, Lin MH, Kortz U, Hwang BJ, Srinivasan M, Stimming U. In situ X-ray absorption near edge structure studies and charge transfer kinetics of Na6[V10O28] electrodes. Phys Chem Chem Phys. 2017;19(4):3358. https://doi.org/10.1039/c6cp05768c.

    Article  CAS  Google Scholar 

  46. Lu SS, Lv Y, Ma WQ, Lei XF, Zhang RE, Liu H, Liu XZ. Boosting the ultrastable Li storage performance in electron-sponge-like polyoxovanadates by constructing inorganic 3D structures. Inorg Chem Front. 2017;4(12):2012. https://doi.org/10.1039/c7qi00581d.

    Article  CAS  Google Scholar 

  47. Jiang CH, Tang ZL, Wang ST, Zhang ZT. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries. J Power Sources. 2017;357:144. https://doi.org/10.1016/j.jpowsour.2017.04.079.

    Article  CAS  Google Scholar 

  48. Zhang T, Yue HJ, Qiu HL, Wei YJ, Wang CZ, Chen G, Zhang D. Nano-particle assembled porous core-shell ZnMn2O4 microspheres with superb performance for lithium batteries. Nanotechnology. 2017;28(10):105403. https://doi.org/10.1088/1361-6528/aa5a49.

    Article  CAS  Google Scholar 

  49. Hartung S, Bucher N, Chen HY, Al-Oweini R, Sreejith S, Borah P, Zhao YL, Kortz U, Stimming U, Hoster HE, Srinivasan M. Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. J Power Sources. 2015;288:270. https://doi.org/10.1016/j.jpowsour.2015.04.009.

    Article  CAS  Google Scholar 

  50. Frost RL, Erickson KL, Weier ML, Carmody O. Raman and infrared spectroscopy of selected vanadates. Spectroc Acta Pt A-Molec Biomolec Spectr. 2005;61(5):829. https://doi.org/10.1016/j.saa.2004.06.006.

    Article  CAS  Google Scholar 

  51. Ponrouch A, Dedryvère R, Monti D, Demet AE, Ateba Mba JM, Croguennec L, Masquelier C, Johansson P, Palacín MR. Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ Sci. 2013;6(8):2361. https://doi.org/10.1039/c3ee41379a.

    Article  CAS  Google Scholar 

  52. Ponrouch A, Goñi AR, Palacín MR. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun. 2013;27:85. https://doi.org/10.1016/j.elecom.2012.10.038.

    Article  CAS  Google Scholar 

  53. Li XR, Cheng HY, Hu H, Pan KM, Yuan TT, Xia WT. Recent advances of vanadium-based cathode materials for zinc-ion batteries. Chin Chem Lett. 2021;32(12):3753. https://doi.org/10.1016/j.cclet.2021.04.045.

    Article  CAS  Google Scholar 

  54. Zhou T, Xiao HR, Xie LL, Han Q, Qiu XJ, Xiao YM, Yang XL, Zhu LM, Cao XY. Research on the electrochemical performance of polyoxovanadate material K4Na2V10O28 as a novel aqueous zinc-ion batteries cathode. Electrochim Acta. 2022;424:140621. https://doi.org/10.1016/j.electacta.2022.140621.

    Article  CAS  Google Scholar 

  55. Ruan PC, Liang SQ, Lu BA, Fan HJ, Zhou J. Design strategies for high-energy-density aqueous zinc batteries. Angew Chem Int Ed. 2022;61(17):e202200598. https://doi.org/10.1002/anie.202200598.

    Article  CAS  Google Scholar 

  56. Cai YS, Liu F, Luo ZG, Fang GZ, Zhou J, Pan AQ, Liang SQ. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 2018;13:168. https://doi.org/10.1016/j.ensm.2018.01.009.

    Article  Google Scholar 

  57. Dai X, Wan F, Zhang LL, Cao HM, Niu ZQ. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019;17:143. https://doi.org/10.1016/j.ensm.2018.07.022.

    Article  Google Scholar 

  58. Wu SG, Liu S, Hu LH, Chen SH. Constructing electron pathways by graphene oxide for V2O5 nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion batteries. J Alloys Compd. 2021;878:160324. https://doi.org/10.1016/j.jallcom.2021.160324.

    Article  CAS  Google Scholar 

  59. Zhou T, Xie LL, Han Q, Yang XL, Zhu LM, Cao XY. Investigation of Na6V10O28 as a promising rechargeable aqueous zinc-ion batteries cathode. Chem Eng J. 2022;445:136789. https://doi.org/10.1016/j.cej.2022.136789.

    Article  CAS  Google Scholar 

  60. Zhang MY, Song Y, Mu XJ, Yang D, Qin ZM, Guo D, Sun XQ, Liu XX. Decavanadate doped polyaniline for aqueous zinc batteries. Small. 2022;18(16):2107689. https://doi.org/10.1002/smll.202107689.

    Article  CAS  Google Scholar 

  61. Wang ML, Yin D, Cao YD, Dong XY, Gao GG, Hu X, Jin C, Fan LL, Yu J, Liu H. Surface modification of hollow capsule by Dawson-type polyoxometalate as sulfur hosts for ultralong-life lithium-sulfur batteries. Chin Chem Lett. 2022;33(9):4350. https://doi.org/10.1016/j.cclet.2021.11.043.

    Article  CAS  Google Scholar 

  62. Yu Y, Li TY, Zhang HZ, Luo Y, Zhang HM, Zhang JW, Yan JW, Li XF. Principle of progressively and strongly immobilizing polysulfides on polyoxovanadate clusters for excellent Li-S batteries application. Nano Energy. 2020;71:104596. https://doi.org/10.1016/j.nanoen.2020.104596.

    Article  CAS  Google Scholar 

  63. Chen LL, Yang ZH, Huang YG. Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale. 2019;11(27):13032. https://doi.org/10.1039/c9nr03129d.

    Article  CAS  Google Scholar 

  64. Wan F, Huang S, Cao HM, Niu ZQ. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano. 2020;14(6):6752. https://doi.org/10.1021/acsnano.9b10214.

    Article  CAS  Google Scholar 

  65. Wang L, Wang ZH, Xie LL, Zhu LM, Cao XY. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(18):16619. https://doi.org/10.1021/acsami.9b03365.

    Article  CAS  Google Scholar 

  66. Yang P, Zhao WL, Shkurenko A, Belmabkhout Y, Eddaoudi M, Dong XC, Alshareef HN, Khashab NM. Polyoxometalate-cyclodextrin metal-organic frameworks: from tunable structure to customized storage functionality. J Am Chem Soc. 2019;141(5):1847. https://doi.org/10.1021/jacs.8b11998.

    Article  CAS  Google Scholar 

  67. Fang YJ, Yu XY, Lou XW. Nanostructured electrode materials for advanced sodium-ion batteries. Matter. 2019;1(1):90. https://doi.org/10.1016/j.matt.2019.05.007.

    Article  Google Scholar 

  68. Yang YQ, Tang Y, Fang GZ, Shan LT, Guo JS, Zhang WY, Wang C, Wang LB, Zhou J, Liang SQ. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci. 2018;11(11):3157. https://doi.org/10.1039/c8ee01651h.

    Article  CAS  Google Scholar 

  69. Zhang DD, Cao J, Yue YL, Pakornchote T, Bovornratanaraks T, Han JT, Zhang XY, Qin JQ, Huang YH. Two birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13(32):38416. https://doi.org/10.1021/acsami.1c11531.

    Article  CAS  Google Scholar 

  70. Lu C, Chen X. All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett. 2020;20(3):1907. https://doi.org/10.1021/acs.nanolett.9b05148.

    Article  CAS  Google Scholar 

  71. Zhao DX, Mo LL, Han Q, Xie LL, Zhu LM, Cao XY. Nitrogen-doped carbon-coated Li3V2(PO4)3 as cathode materials for high-performance lithium storage. Ionics. 2021;27(2):507. https://doi.org/10.1007/s11581-020-03878-x.

    Article  CAS  Google Scholar 

  72. Yu PF, Zhou JX, Zheng MT, Li MR, Hu H, Xiao Y, Liu YL, Liang YR. Boosting zinc ion energy storage capability of inert MnO cathode by defect engineering. J Colloid Interface Sci. 2021;594:540. https://doi.org/10.1016/j.jcis.2021.03.071.

    Article  CAS  Google Scholar 

  73. Zhang N, Jia M, Dong Y, Wang YY, Xu JZ, Liu YC, Jiao LF, Cheng FY. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv Funct Mater. 2019;29(10):1807331. https://doi.org/10.1002/adfm.201807331.

    Article  CAS  Google Scholar 

  74. Gao Y, Yin JY, Xu X, Cheng YH. Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J Mater Chem A. 2022;10(18):9773. https://doi.org/10.1039/d2ta01014c.

    Article  CAS  Google Scholar 

  75. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2021;40(2):309. https://doi.org/10.1007/s12598-020-01588-x.

    Article  CAS  Google Scholar 

  76. Zhou T, Zhu LM, Xie LL, Han Q, Yang XL, Chen L, Wang GK, Cao XY. Cathode materials for aqueous zinc-ion batteries: a mini review. J Colloid Interface Sci. 2021;605:828. https://doi.org/10.1016/j.jcis.2021.07.138.

    Article  CAS  Google Scholar 

  77. Yang K, Ying YX, Cui LL, Sun JC, Luo H, Hu YY, Zhao JW. Stable aqueous Zn-Ag and Zn-polyoxometalate hybrid battery driven by successive Ag+ cation and polyoxoanion redox reactions. Energy Storage Mater. 2021;34:203. https://doi.org/10.1016/j.ensm.2020.09.011.

    Article  Google Scholar 

  78. Zhang TS, Tang Y, Guo S, Cao XX, Pan AQ, Fang GZ, Zhou J, Liang SQ. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ Sci. 2020;13(12):4625. https://doi.org/10.1039/d0ee02620d.

    Article  CAS  Google Scholar 

  79. Fitz O, Bischoff C, Bauer M, Gentischer H, Birke KP, Henning HM, Biro D. Electrolyte study with in operando pH tracking providing insight into the reaction mechanism of aqueous acidic Zn//MnO2 batteries. ChemElectroChem. 2021;8(18):3553. https://doi.org/10.1002/celc.202100888.

    Article  CAS  Google Scholar 

  80. Wei TY, Li Q, Yang GZ, Wang CX. Pseudo-Zn-air and Zn-ion intercalation dual mechanisms to realize high-areal capacitance and long-life energy storage in aqueous Zn battery. Adv Energy Mater. 2019;9(34):1901480. https://doi.org/10.1002/aenm.201901480.

    Article  CAS  Google Scholar 

  81. Wahyudi W, Ladelta V, Tsetseris L, Alsabban MM, Guo XR, Yengel E, Faber H, Adilbekova B, Seitkhan A, Emwas AH, Hedhili MN, Li LJ, Tung V, Hadjichristidis N, Anthopoulos TD, Ming J. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv Funct Mater. 2021;31(23):2101593. https://doi.org/10.1002/adfm.202101593.

    Article  CAS  Google Scholar 

  82. Zhao K, Fan GL, Liu JD, Liu FM, Li JH, Zhou XZ, Ni YX, Yu M, Zhang YM, Su H, Liu QH, Cheng FY. Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J Am Chem Soc. 2022;144(25):11129. https://doi.org/10.1021/jacs.2c00551.

    Article  CAS  Google Scholar 

  83. Pan HL, Shao YY, Yan PF, Cheng YW, Han KS, Nie ZM, Wang CM, Yang JH, Li XL, Bhattacharya P, Mueller KT, Liu J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy. 2016;1(5):16039. https://doi.org/10.1038/nenergy.2016.39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52071132, U21A20284 and U1904216), Zhongyuan Thousand People Plan-The Zhongyuan Youth Talent Support Program (in Science and Technology), China (No. ZYQR201810139), the Innovative Funds Plan of Henan University of Technology, China (No. 2020ZKCJ04), and the Natural Science Foundation of Henan, China (No. 222300420138). Additionally, Dr. Xianyong Wu acknowledges the support from the NSF Center for the Advancement of Wearable Technologies (No. 1849243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Yong Wu, Li-Min Zhu, Huan Pang or Xiao-Yu Cao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Xie, LL., Niu, Y. et al. New insights on (V10O28)6−-based electrode materials for energy storage: a brief review. Rare Met. 42, 1431–1445 (2023). https://doi.org/10.1007/s12598-022-02207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02207-7

Keywords

Navigation