Skip to main content
Log in

Nitrogen-doped carbon-coated Li3V2(PO4)3 as cathode materials for high-performance lithium storage

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A series of novel N-doped carbon-coated Li3V2(PO4)3 (LVPC/N) composites were synthesized by rheological phase method with melamine as nitrogen source. The results showed that N-doping did not affect the main structure of Li3V2(PO4)3/C (LVPC) but only changed the structure and properties of the coating layer, which effectively improved the structural stability and electrochemical performance of LVPC. When the ratio of citric acid to melamine was 5:3, the properties of LVPCN composite were the best. The initial discharge specific capacity was 195 mAh g−1 at 30 mA g−1 in the voltage range of 3.0–4.8 V. After 100 cycles of charge and discharge, the discharge capacity was still 165 mAh g−1, and the capacity retention rate was increased to 85%. Owing to the low cost, high initial discharge capacity, and long lifespan, we believe that the LVPC/N composite is significantly competitive to other cathode materials for application in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin B, Zhu X, Fang L, Liu X, Li S, Zhai T, Xue L, Guo Q, Xu J, Xia H (2019) Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries. Adv Mater 31:1900060

    Article  Google Scholar 

  2. Zhu L, Li W, Xie L, Yang Q, Cao X (2019) Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. Chem Eng J 372:1056–1065

    Article  CAS  Google Scholar 

  3. Kheimeh Sari HM, Li X (2019) Controllable cathode-electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv Energy Mater 9:1901597

    Article  Google Scholar 

  4. Zhu L, Ding G, Xie L, Cao X, Liu J, Lei X, Ma J (2019) Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries. Chem Mater 31:8582–8612

    Article  CAS  Google Scholar 

  5. Zhu L, Ge P, Xie L, Miao Y, Cao X (2020) Doped-Li1+xV3O8 as cathode materials for lithium-ion batteries: a mini review. Electrochem Commun 115:106722

    Article  CAS  Google Scholar 

  6. Yi T, Mei J, Peng P, Luo S (2019) Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos Part B 167:566–572

    Article  CAS  Google Scholar 

  7. Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866

    Article  CAS  PubMed  Google Scholar 

  8. Hong W, Zhang Y, Yang L, Tian Y, Ge P, Hu J, Wei W, Zou G, Hou H, Ji X (2019) Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 65:104038

    Article  CAS  Google Scholar 

  9. Zhu L, Wang Z, Wang L, Xie L, Li J, Cao X (2019) ZnSe embedded in N-doped carbon nanocubes as anode materials for highperformance Li-ion batteries. Chem Eng J 364:503–513

    Article  CAS  Google Scholar 

  10. Shi JL, Xiao DD, Ge M, Yu X, Chu Y, Huang X, Zhang XD, Yin YX, Yang XQ, Guo YG, Gu L, Wan LJ (2018) High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater 30:1705575

    Article  Google Scholar 

  11. Yang R, Zhang XJ, Fan TF, Jiang DP, Wang Q (2020) Improved electrochemical performance of ternary Sn-Sb-Cu nanospheres as anode materials for lithium-ion batteries. Rare Metals 39:1159–1164

    Article  Google Scholar 

  12. Wang L, Wang Z, Xie L, Zhu L, Cao X (2019) ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 11:16619–16628

    Article  CAS  PubMed  Google Scholar 

  13. Zheng S, Li Q, Xue H, Pang H, Xu Q (2019) A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev 7:305–314

    Article  Google Scholar 

  14. Wang L, Wang Z, Xie L, Zhu L, Cao X (2020) An enabling strategy for ultra-fast lithium storage derived from micro-flower-structured NiX (X=O, S, Se). Electrochim Acta 343:136138

  15. Zheng S, Guo X, Xue H, Pan K, Liu C, Pang H (2019) Facile one-pot generation of metal oxide/hydroxide@metal–organic framework composites: highly efficient bifunctional electrocatalysts for overall water splitting. Chem Commun 55:10904–10907

    Article  CAS  Google Scholar 

  16. Li X, Wei J, Li Q, Zheng S, Xu Y, Du P, Chen C, Zhao J, Xue H, Xu Q, Pang H (2018) Nitrogen-doped cobalt oxide nanostructures derived from cobalt–alanine complexes for high-performance oxygen evolution reactions. Adv Funct Mater 28:1800886

    Article  Google Scholar 

  17. Zhu L, Bao C, Xie L, Yang X, Cao X (2020) Review of synthesis and structural optimization of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries applications. J Alloys Compd 831:154864

    Article  CAS  Google Scholar 

  18. Jiao F, Shaju KM, Bruce PG (2005) Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew Chem Int Edit 44:6550–6553

    Article  CAS  Google Scholar 

  19. Fan L, Lei S, Kheimeh Sari HM, Zhong L, Kakimov A, Wang J, Chen J, Liu D, Huang L, Hu J, Lin L, Li X (2020) Controllable S-vacancies of monolayered Mo–S nanocrystals for highly harvesting lithium storage. Nano Energy 78:105235

    Article  CAS  Google Scholar 

  20. Qian J, Zhou M, Cao Y, Ai X, Yang H (2010) Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. J Phys Chem C 114:3477–3482

    Article  CAS  Google Scholar 

  21. Oh SW, Myung ST, Oh SM, Oh KH, Amine K, Scrosati B, Sun YK (2010) Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater 22:4842–4845

    Article  CAS  PubMed  Google Scholar 

  22. Deng LZ, Wu F, Gao XG, Wu WP (2020) Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Metals 39:1457–1463

    Article  Google Scholar 

  23. Tang M, Yuan A, Zhao H, Xu J (2013) High-performance LiMn2O4 with enwrapped segmented carbon nanotubes as cathode material for energy storage. J Power Sources 235:5–13

    Article  CAS  Google Scholar 

  24. Lee HW, Muralidharan P, Ruffo R, Mari CM, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10:3852–3856

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Yang X, Xue H, Pang H, Xu Q (2020) Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2:100027

    Article  Google Scholar 

  26. Cao X, Mo L, Zhu L, Xie L (2017) Preparation and electrochemical properties of Li3V2(PO4)3−xBrx/carbon composites as cathode materials for lithium-ion batteries. Nanomaterials 7:52

    Article  PubMed Central  Google Scholar 

  27. Ren MM, Zhou Z, Gao XP, Peng WX, Wei JP (2008) Core−shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J Phys Chem C 112:5689–5693

    Article  CAS  Google Scholar 

  28. Li Y, Zhou Z, Ren M, Gao X, Yan J (2006) Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method. Electrochim Acta 51:6498–6502

    Article  CAS  Google Scholar 

  29. Zhu L, Yang J, Cao X (2015) Graphene modified Li3V2(PO4)3/C composites with improved electrochemical performances as cathode materials for Li-ion batteries. Int J Electrochem Sci 10:6509–6516

    CAS  Google Scholar 

  30. Liu H, Gao P, Fang J, Yang G (2011) Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem Commun 47:9110–9112

    Article  CAS  Google Scholar 

  31. Cao X, Wu H, Ge P, Zhao Y, Zhu L, Liu F, Wang J (2015) Synthesis of Li3V2(PO4)3/C composites as cathode materials for lithium ion batteries via a sol-gel method. Int J Electrochem Sc 10:2997–3009

    CAS  Google Scholar 

  32. Zhu LM, Sun QH, Xie LL, Cao XY (2020) Na3V2(PO4)3@NC composite derived from polyaniline as cathode material for high-rate and ultralong-life sodium-ion batteries. Int J Energy Res 44:4586–4594

    Article  CAS  Google Scholar 

  33. Ge P, Hou H, Li S, Yang L, Ji X (2018) Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv Funct Mater 28:1801765

    Article  Google Scholar 

  34. Cui K, Hu SC, Li YK (2016) Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries. Electrochim Acta 210:45–52

    Article  CAS  Google Scholar 

  35. Wang F, Wang Y, Xu J, Huang K (2020) A high-energy sandwich-type self-powered biosensor based on DNA bioconjugates and a nitrogen doped ultra-thin carbon shell. J Mater Chem B 8:1389–1395

    Article  CAS  PubMed  Google Scholar 

  36. Xing L, Huang K, Cao S, Pang H (2018) Chestnut shell-like Li4Ti5O12 hollow spheres for high-performance aqueous asymmetric supercapacitors. Chem Eng J 332:253–259

    Article  CAS  Google Scholar 

  37. Darwiche A, Bodenes L, Madec LC, Monconduit L, Martinez H (2016) Impact of the salts and solvents on the SEI formation in Sb/Na batteries: an XPS analysis. Electrochim Acta 207:284–292

    Article  CAS  Google Scholar 

  38. Xie X, Huang K, Wu X, Wu N, Xu Y, Zhang S, Zhang C (2020) Binding hierarchical MoSe2 on MOF-derived N-doped carbon dodecahedron for fast and durable sodium-ion storage. Carbon 169:1–8

    Article  CAS  Google Scholar 

  39. Zhai Z, Huang K, Wu X, Hu H, Xu Y, Chai R (2019) Metal–organic framework derived small sized metal sulfide nanoparticles anchored on N-doped carbon plates for high-capacity energy storage. Dalton Trans 48:4712–4718

    Article  CAS  PubMed  Google Scholar 

  40. Zhu T, Liu S, Wan K, Zhang C, Feng Y, Feng W, Liu T (2020) Fluorine and nitrogen dual-doped porous carbon nanosheet-enabled compact electrode structure for high volumetric energy storage. ACS Appl Energy Mater 3:4949–4957

    Article  CAS  Google Scholar 

  41. Chen Y, Xiang K, Zhu Y, Xiao L, Chen W, Chen X, Chen H (2019) Bio-template fabrication of nitrogen-doped Li3V2(PO4)3/carbon composites from cattail fibers and their high-rate performance in lithium-ion batteries. J Alloys Compd 782:89–99

    Article  CAS  Google Scholar 

  42. Mu T, Zuo P, Lou S, Pan Q, Li Q, Du C, Gao Y, Cheng X, Ma Y, Yin G (2018) A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. Chem Eng J 341:37–46

    Article  CAS  Google Scholar 

  43. Rui XH, Yan QY, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38

    Article  CAS  Google Scholar 

  44. Zhu L, Xie L, Cao X (2018) LiV3O8/polydiphenylamine composites with significantly improved electrochemical behavior as cathode materials for rechargeable lithium batteries. ACS Appl Mater Interfaces 10:10909–10917

    Article  CAS  PubMed  Google Scholar 

  45. Ding GC, Zhu LM, Yang Q, Xie LL, Cao XY, Wang YL, Liu JP, Yang XL (2020) NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Metals 39:865–873

    Article  CAS  Google Scholar 

  46. Xu Q, Li X, Kheimeh Sari HM, Li W, Liu W, Hao Y, Qin J, Cao B, Xiao W, Xu Y, Wei Y, Kou L, Tian Z, Shao L, Zhang C, Sun X (2020) Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides. Nano. Energy 77:105034

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 52071132, U1704142, and 21773057), Zhongyuan Thousand People Plan-The Zhongyuan Youth Talent Support Program (in Science and Technology), China (No. ZYQR201810139), and Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology, China (No. 2018RCJH01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Zhu or Xiaoyu Cao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Mo, L., Han, Q. et al. Nitrogen-doped carbon-coated Li3V2(PO4)3 as cathode materials for high-performance lithium storage. Ionics 27, 507–515 (2021). https://doi.org/10.1007/s11581-020-03878-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03878-x

Keywords

Navigation