Skip to main content

Advertisement

Log in

Strategies of binder design for high-performance lithium-ion batteries: a mini review

  • Mini review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Developing high-performance lithium-ion batteries (LIBs) with high energy density, rate capability and long cycle life are essential for the ever-growing practical application. Among all battery components, the binder plays a key role in determining the preparation of electrodes and the improvement of battery performance, in spite of a low usage amount. The main function of binder is to bond the active material, conductive additive and current collector together and provide electron and ion channels to improve the kinetics of electrochemical reaction. With the ever-increasing requirement of high energy density by LIBs, technical challenges such as volume expansion and active material dissolution are attracting worldwide attentions, where binder is thought to provide a new solution. There are two main categories (organic solvent soluble binder and water-soluble binder) and abundant polar functional groups providing adhesion ability. It is of great significance to timely summarize the latest progress in battery binders and present the principles for designing novel binders with both robust binding interaction and outstanding electrode stabilization function. This review begins with an introduction of the binding mechanism and the related binding forces, including mechanical interlocking forces and interfacial forces. Then, we discussed four different strategies (the enhancement of binding force, the formation of three-dimensional (3D) network, the enhancement of conductivity and binders with special functions) for constructing ideal binder system in order to satisfy the specific demands of different batteries, such as LIBs and lithium–sulfur (Li–S) batteries. Finally, some prospective and promising directions of binder design are proposed based on the existing and emerging binders and guide the development of the next-generation LIBs.

Graphical abstract

摘要

开发高能量密度、高倍率、长循环寿命的高性能锂离子电池对于日益增长的实际应用非常重要。在所有的电池部件中, 粘结剂的用量虽然很低, 但对电极的制备和电池性能的提高起着关键作用。粘结剂的主要作用是将活性材料、导电添加剂和集流体粘结在一起, 此外具有专门的电子和离子通道的粘结剂可以显著增强电化学反应动力学。随着锂离子电池对能量密度的要求越来越高, 其电极材料的体积膨胀和活性物质的溶解等技术难题日益受到了广泛的关注, 而粘结剂被认为是一种新的解决方案。粘结剂主要分为两大类 (有机溶剂型粘结剂和水溶型粘结剂), 其中丰富的极性官能团提供了粘结能力。因此及时地总结粘结剂的最新进展, 设计既具有坚固的粘结作用又具有优异电极稳定功能的新型粘结剂具有重要的意义。本文首先介绍了粘结机理和相关的粘结力, 包括机械互锁力和界面力。然后, 讨论了四种不同的策略(粘结力的增强, 三维(3D)粘结网络的形成, 导电性的增强和特定功能的粘结剂)用于设计构造理想的粘结剂, 最终满足不同的电池, 如锂离子电池和锂硫电池。最后, 基于现有的和新兴的粘结剂体系, 提出了一些有前景的粘结剂设计方向, 为下一代电池的开发提出了建议。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig.10
Fig.11

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011; 334 (6058): 928.

  2. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.

    Article  CAS  Google Scholar 

  3. Diouf B, Pode R. Potential of lithium-ion batteries in renewable energy. Renew Energ. 2015;76:375.

    Article  Google Scholar 

  4. Huang ZD, Wang TR, Song H, Li XL, Liang GJ, Wang DH, Yang Q, Chen Z, Ma LT, Liu ZX, Gao B, Fan J, Zhi CY. Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitor. Angew Chem Int Ed. 2021;60(2):1011.

    Article  CAS  Google Scholar 

  5. Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194.

    Article  CAS  Google Scholar 

  6. Liang Y, Zhao JT, Han ZJ, Yu HJ. Application of lithium rare metal in rechargeable batteries. Chinese Journal of Rare Metals. 2019;43(11):1187.

    Google Scholar 

  7. Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S. Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci. 2018;11(11):3096.

    Article  CAS  Google Scholar 

  8. Chen H, Ling M, Hencz L, Ling HY, Li G, Lin Z, Liu G, Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018;118(18):8936.

    Article  CAS  Google Scholar 

  9. Huang ZD, Chen A, Mo FN, Liang GJ, Li XL, Yang Q, Guo Y, Chen Z, Li Q, Dong BB, Zhi CY. Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv Energy Mater. 2020;10(24):2001024.

    Article  CAS  Google Scholar 

  10. Li JB, Xu Z, Ji ZG, Sun Q, Huang XZ. Overview on current technologies of recycling spent lithium-ion batteries. Chinese Journal of Rare Metals. 2019;43(2):201.

    Google Scholar 

  11. Yuan H, Huang JQ, Peng HJ, Titirici MM, Xiang R, Chen R, Liu Q, Zhang Q. A review of functional binders in lithium-sulfur batteries. Adv Energy Mater. 2018;8(31):1802107.

    Article  Google Scholar 

  12. Wu MG, Li Y, Liu XH, Yang SC, Ma JM, Dou SX. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat. 2021;2(1):5.

    Article  Google Scholar 

  13. Huang Y, Zhong M, Shi FK, Liu XY, Tang ZJ, Wang YK, Huang Y, Hou HQ, Xie XM, Zhi CY. An intrinsically stretchable and compressible supercapacitor containinga polyacrylamide hydrogel electrolyte. Angew Chem Int Ed. 2017;56(31):9141.

    Article  CAS  Google Scholar 

  14. Liu WF, Huang XJ, Li GB, Wang ZX, Huang H, Lu ZH, Xue RJ, Chen LQ. Electrochemical and X-ray photospectroscopy studies of polytetrafluoroethylene and polyvinylidene fluoride in Li/C batteries. J Power Sour. 1997;68(2):344.

    Article  CAS  Google Scholar 

  15. Sun J, Yao L, Zhao QL, Huang J, Song R, Ma Z, He LH, Huang W, Hao YM. Modification on crystallization of poly(vinylidene fluoride) (PVDF) by solvent extraction of poly(methyl methacrylate) (PMMA) in PVDF/PMMA blends. Front Mater Sci. 2011;5(4):388.

    Article  Google Scholar 

  16. Wang N, NuLi Y, Su SJ, Yang J, Wang JL. Effects of binders on the electrochemical performance of rechargeable magnesium batteries. J Power Sour. 2017;341:219.

    Article  CAS  Google Scholar 

  17. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 2011;334(6052):75.

    Article  CAS  Google Scholar 

  18. YSR Krishnaiah, V Satyanarayana, B Dinesh Kumar, RS Karthikeyan. In vitro drug release studies on guar gum-based colon targeted oral drug delivery systems of 5-fluorouracil. Eur J Pharm Sci. 2002; 16(3):185.

  19. Bie Y, Yang J, Nuli Y, Wang J. Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries. RSC Adv. 2016;6(99):97084.

    Article  CAS  Google Scholar 

  20. Bridel JS, Azaïs T, Morcrette M, Tarascon JM, Larcher D. In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries. J Electrochem Soc. 2011;158(6):A750.

    Article  CAS  Google Scholar 

  21. Courtel FM, Niketic S, Duguay D, Abu-Lebdeh Y, Davidson IJ. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J Power Sour. 2011;196(4):2128.

    Article  CAS  Google Scholar 

  22. Tigari G, Manjunatha JG. Electrochemical preparation of poly(arginine)-modified carbon nanotube paste electrode and its application for the determination of pyridoxine in the presence of riboflavin: an electroanalytical approach. J Anal Test. 2019;3:331.

    Article  Google Scholar 

  23. Maqbool M, Ali A, Alderson PG, Mohamed MTM, Siddiqui Y, Zahid N. Postharvest application of gum arabic and essential oils for controlling anthracnose and quality of banana and papaya during cold storage. Postharvest Biol Tec. 2011;62(1):71.

    Article  CAS  Google Scholar 

  24. Palaniraj A, Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng. 2011;106(1):1.

    Article  CAS  Google Scholar 

  25. Sun J, Huang YQ, Wang WK, Yu ZB, Wang AB, Yuan KG. Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder. Electrochem Commun. 2008;10(6):930.

    Article  CAS  Google Scholar 

  26. Wang JL, Yao ZD, Monroe CW, Yang J, Nuli YN. Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv Func Mater. 2013;23(9):1194.

    Article  CAS  Google Scholar 

  27. Kumar D, Sharma RC. Advances in conductive polymers. Eur Polym J. 1998;34(8):1053.

    Article  CAS  Google Scholar 

  28. Wan MX. Conducting polymers with micro or nanometer structure. Edited by Wan MX. 2008.

  29. Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10(6):2341.

    Article  CAS  Google Scholar 

  30. Kirchmeyer S, Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem. 2005;15(21):2077.

    Article  CAS  Google Scholar 

  31. MT Jeena, Taesoo B, Si HK, Sooham P, JY Kim, Soojin P, JH Ryu. Siloxane incorporated copolymer as an in situ cross-linkable binder for high performance silicon anode in Li-ion battery. Nanoscale. 2015;8(17):9245.

  32. Gao HC, Zhou WD, Jang JH, Goodenough JB. Cross-linked chitosan as a polymer network binder for an antimony anode in sodium-ion batteries. Adv Energy Mater. 2016;6(6):1502130.

    Article  Google Scholar 

  33. Jang SY, Han SH. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders. Sci Rep. 2016;6(1):38050.

    Article  CAS  Google Scholar 

  34. Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed. 2012;51(35):8762.

    Article  CAS  Google Scholar 

  35. Kwon Tw, Jeong YK, Lee I, Kim TS, Choi JW, Coskun A. Systematic molecular-level design of binders incorporating meldrum's ccid for silicon anodes in lithium rechargeable batteries. Adv Mater. 2014;26(47):7979.

  36. Lim S, Chu H, Lee K, Yim T, Kim YJ, Mun J, Kim TH. Physically cross-linked polymer binder induced by reversible acid-base interaction for high-performance silicon composite anodes. ACS Appl Mater Int. 2015;7(42):23545.

    Article  CAS  Google Scholar 

  37. Song JX, Zhou MJ, Yi R, Xu T, Gordin ML, Tang DH, Yu ZX, Regula M, Wang DH. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater. 2014;24(37):5904.

    Article  CAS  Google Scholar 

  38. Wang Y, Gozen A, Chen L, Zhong WH. Gum-like nanocomposites as conformable, conductive, and adhesive electrode matrix for energy storage devices. Adv Energy Mater. 2016;7(6):1601767.

    Article  Google Scholar 

  39. Zhang L, Zhang LY, Chai LL, Xue P, Hao WW, Zheng HH. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J Mater Chem A. 2014;2(44):19036.

    Article  CAS  Google Scholar 

  40. Venables JD. Adhesion and durability of metal-polymer bonds. J Mater Sci. 1984;19:2431.

    Article  CAS  Google Scholar 

  41. Burkstrand JM. Metal-polymer interfaces: adhesion and X-ray photoemission studies. J Appl Phys. 1981;52(7):4795.

    Article  CAS  Google Scholar 

  42. Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng. 2008;39(6):933.

    Article  Google Scholar 

  43. Liu G, Zheng HH, Kim S, Deng YH, Minor AM, Song XY, Battaglia VS. Effects of various conductive additive and polymeric binder contents on the performance of a lithium-ion composite cathode. J Electrochem Soc. 2008;155(12):A887.

    Article  CAS  Google Scholar 

  44. Liu G, Zheng H, Song X, Battaglia VS. Particles and polymer binder interaction: a controlling factor in lithium-ion electrode performance. J Electrochem Soc. 2012;159(3):A214.

    Article  CAS  Google Scholar 

  45. Gardner DJ, Blumentritt M, Wang L, Yildirim N. Adhesion theories in wood adhesive bonding. Rev Adhes Adhes. 2014;2(46):127.

    Article  CAS  Google Scholar 

  46. McBain JW, Hopkins DG. On adhesives and adhesive action. J Phys Chem. 1925;29(2):188.

    Article  CAS  Google Scholar 

  47. Derjaguin BV, Aleinikova IN, Toporov YP. On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces. Powder Technol. 1969;2(3):154.

    Article  Google Scholar 

  48. Sharpe L. Theory gives direction to adhesion work. Chem Eng News. 1963;41(15):67.

    Article  Google Scholar 

  49. Pizzi A, Mtsweni B, Parsons W. Wood-induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding. J Appl Polym Sci 1994;52(13):1847.

  50. Drago RS, Vogel GC, Needham TE. Four-parameter equation for predicting enthalpies of adduct formation. J Am Chem Soc. 1971;93(23):6014.

    Article  CAS  Google Scholar 

  51. Lestriez B. Functions of polymers in composite electrodes of lithium ion batteries. C R Chim. 2010;13(11):1341.

    Article  CAS  Google Scholar 

  52. Ph Biensan, B Simon, JP Peres, Ade Guibert, M Broussely, JM Bodet, F Perton. On safety of lithium-ion cells. J Power Sour. 1999;81–82:906.

  53. Lux SF, Schappacher F, Balducci A, Passerini S, Winter M. Low Cost, Environmentally benign binders forlithium-ion batteries. J Electrochem Soc. 2010;157(3):A320.

    Article  CAS  Google Scholar 

  54. Placke T, Siozios V, Schmitz R, Lux SF, Bieker P, Colle C, Meyer HW, Passerini S, Winter M. Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries. J Power Sour. 2012;200:83.

  55. Zhang SS, Jow TR. Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. J Power Sour. 2002;109(2):422.

    Article  CAS  Google Scholar 

  56. Cheng Q, Yuge R, Nakahara K, Tamura N, Miyamoto S. KOH etched graphite for fast chargeable lithium-ion batteries. J Power Sour. 2015;284:258.

    Article  CAS  Google Scholar 

  57. Lemon MT, Jones MS, Stansbury JW. Hydrogen bonding interactions in methacrylate monomers and polymers. J Biomed Mater Res A. 2007;83A(3):734.

    Article  CAS  Google Scholar 

  58. Shim J, Kostecki R, Richardson T, Song X, Striebel KA. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sources. 2002;112(1):222.

    Article  CAS  Google Scholar 

  59. Valvo M, Liivat A, Eriksson H, Tai CW, Edström K. Iron-based electrodes meet water-based preparation, fluorine-free electrolyte and binder: a chance for more sustainable lithium-ion batteries? Chemsuschem. 2017;10(11):2431.

    Article  CAS  Google Scholar 

  60. Cai YJ, Li YY, Jin BY, Ali A, Ling M, Cheng DG, Lu JG, Hou Y, He QG, Zhan XL, Chen FQ, Zhang QH. Dual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteries. ACS Appl Mater Int. 2019;11(50):46800.

    Article  CAS  Google Scholar 

  61. Liu J, Zhang Q, Wu ZY, Wu JH, Li JT, Huang L, Sun SG. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. ChemComm. 2014;50(48):6386.

    CAS  Google Scholar 

  62. Wu ZY, Deng L, Li JT, Huang QS, Lu YQ, Liu J, Zhang T, Huang L, Sun SG. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochim Acta. 2017;245:371.

    Article  CAS  Google Scholar 

  63. Guo RN, Zhang SL, Ying HJ, Yang WT, Wang JL, Han WQ. Preparation of an amorphous cross-linked binder for silicon anodes. Chemsuschem. 2019;12(21):4838.

    Article  CAS  Google Scholar 

  64. Liu J, Sun MH, Zhang Q. Dong FF, Kaghazchi P, Fang YX, Zhang SQ, Lin Z. A robust network binder with dual functions of Cu2+ ions as ionic crosslinking and chemical binding agents for highly stable Li-S batteries. J Mater Chem A. 2018;6(17):7382.

  65. Zhu GB, Gu YY, Wang Y, Liu G, Battaglia VS, Qu QT, Zheng HH. Suppressing the dry bed-lake fracture of silicon anode via dispersant modification in electrode processing. Electrochim Acta. 2019;319:682.

    Article  CAS  Google Scholar 

  66. Wang Q, Yan N, Wang MR, Qu C, Yang XF, Zhang HZ, Li XF, Zhang HM. Layer-by-layer assembled C/S cathode with trace binder for Li–S battery application. ACS Appl Mater Int. 2015;7(45):25002.

    Article  CAS  Google Scholar 

  67. Kasavajjula U, Wang CS, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sour. 2007;163(2):1003.

    Article  CAS  Google Scholar 

  68. Alfaro P, Palavicini A, Wang CM. Hydrogen, oxygen and hydroxyl on porous silicon surface: a joint density-functional perturbation theory and infrared spectroscopy approach. Thin Solid Films. 2014;571:206.

    Article  CAS  Google Scholar 

  69. Lee JI, Kang H, Park KH, Shin M, Hong D, Cho HJ, Kang NR, Lee J, Lee S, Kim JY, Kim CK, Park H, Choi NS, Park S, Yang C. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries. Small. 2016;12(23):3119.

    Article  CAS  Google Scholar 

  70. Liu Z, Han SJ, Xu C, Luo YW, Peng N, Qin CY, Zhou MJ, Wang WQ, Chen LW, Okada S. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv. 2016;6(72):68371.

    Article  CAS  Google Scholar 

  71. Wang ZF, Li HF, Tang ZJ, Liu ZX, Ruan ZH, Ma LT, Yang Q, Wang DH, Zhi CY. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Func Mater. 2018;28(48):1804560.

    Article  Google Scholar 

  72. Zhang GZ, Yang Y, Chen YH, Huang J, Zhang T, Zeng HB, Wang CY, Liu G, Deng YH. A Quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries. Small. 2018;14(29):1801189.

    Article  Google Scholar 

  73. Kwon Tw, Choi JW, Coskun A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem Soc Rev. 2018;47(6):2145.

  74. Kienle S, Gallei M, Yu H, Zhang BZ, Krysiak S, Balzer BN, Rehahn M, Schlüter AD, Hugel T. Effect of molecular architecture on single polymer adhesion. Langmuir. 2014;30(15):4351.

    Article  CAS  Google Scholar 

  75. Kwon Tw, Jeong YK, Deniz E, AlQaradawi SY, Choi JW, Coskun A. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano. 2015;9(11):11317.

  76. Ma LT, Chen SM, Wang DH, Yang Q, Mo FN, Liang GJ, Li N, Zhang HY, Zapien JA, Zhi CY. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv Energy Mater. 2019;9(12):1803046.

    Article  Google Scholar 

  77. Xu ZX, Yang J, Zhang T, Nuli Y, Wang JL, Hirano Si. Silicon microparticle anodes with self-healing multiple network binder. Joule. 2018;2(5):950.

  78. Shi Y, Zhou XY, Zhang J, Bruck AM, Bond AC, Marschilok AC, Takeuchi KJ, Takeuchi ES, Yu GH. Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in Li-ion batteries. Nano Lett. 2017;17(3):1906.

    Article  CAS  Google Scholar 

  79. Gu YY, Yang SM, Zhu GB, Yuan YN, Qu QT, Wang Y, Zheng HH. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim Acta. 2018;269:405.

    Article  CAS  Google Scholar 

  80. Liu ZX, Liang GJ, Zhan YX, Li HF, Wang ZF, Ma T, Wang YK, Niu XR, Zhi CY. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy. 2019;58:732.

    Article  CAS  Google Scholar 

  81. Wu H, Yu GH, Pan LJ, Liu N, McDowell MT, Bao ZD, Cui Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun. 2013;4(1).

  82. Liu G, Xun SD, Vukmirovic N, Song XY, Olalde-Velasco P, Zheng HH, Battaglia VS, Wang LW, Yang WL. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater. 2011;23(40):4679.

    Article  CAS  Google Scholar 

  83. Salem N, Lavrisa M, Abu-Lebdeh Y. Ionically-functionalized poly (thiophene) conductive polymers as binders for silicon and graphite anodes for Li-ion batteries. Energy Technol. 2016;4(2):331.

    Article  CAS  Google Scholar 

  84. Yu YY, Zhu JD, Zeng K, Jiang MJ. Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. J Mater Chem A. 2021;6(9):3472.

    Article  Google Scholar 

  85. Patnaik SG, Vedarajan R, Matsumi N. BIAN based functional diimine polymer binder for high performance Li ion batteries. J Mater Chem A. 2017;34(5):17909.

    Article  Google Scholar 

  86. Park SJ, Zhao H, Ai G, Wang C, Song XY, Yuca N, Battaglia VS, Yang WL, Liu G. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J Am Chem Soc. 2015;137(7):2565.

    Article  CAS  Google Scholar 

  87. Wu MY, Xiao XC, Vukmirovic N, Xun S, Das PK, Song XY, Olalde-Velasco P, Wang DD, Weber AZ, Wang LW, Battaglia VS, Yang WL, Liu G. Toward an ideal polymer binder design for high-capacity battery anodes. J Am Chem Soc. 2013;135(32):12048.

    Article  CAS  Google Scholar 

  88. Zhao H, Yuca N, Zheng ZY, Fu YB, Battaglia VS, Abdelbast G, Zaghib K, Liu G. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries. ACS Appl Mater Int. 2014;7(1):862.

    Article  Google Scholar 

  89. Zhao H, Wang Z, Lu P, Jiang M, Shi FF, Song XY, Zheng ZY, Zhou X, Fu YB, Abdelbast G, Xiao XC, Liu Z, Battaglia VS, Zaghib K, Liu G. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 2014;14(11):6704.

    Article  CAS  Google Scholar 

  90. Ai G, Dai YL, Ye YF, Mao WF, Wang ZH, Zhao H, Chen YL, Zhu JF, Fu YB, Battaglia V, Guo JH, Srinivasan V, Liu G. Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy. 2015;16:28.

    Article  CAS  Google Scholar 

  91. Sun CW, Liu J, Gong YD, Wilkinson DP, Zhang JJ. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363.

    Article  CAS  Google Scholar 

  92. Liew CW,Durairaj R, Ramesh S. Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt. PLoS One. 2014;9(7):e102815

  93. Mo FN, Chen Z, Liang GJ, Wang DH, Zhao YW, Li HF, Dong BB, Zhi CY. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv Energy Mater. 2020;10(16):2000035.

    Article  CAS  Google Scholar 

  94. Hu SJ, Li Y, Yin CJ, Wang HQ, Yuan XM, Li QY. Effect of different binders on electrochemical properties of LiFePO4/C cathode material in lithium ion batteries. Chem Eng J. 2014;237:497.

    Article  CAS  Google Scholar 

  95. Qin DJ, Xue LX, Du B, Wang J, Nie F, Wen L. Flexible fluorine containing ionic binders to mitigate the negative impact caused by the drastic volume fluctuation from silicon nano-particles in high capacity anodes of lithium-ion batteries. J Mater Chem A. 2015;3(20):10928.

    Article  CAS  Google Scholar 

  96. Pieczonka NPW, Borgel V, Ziv B, Leifer N, Dargel V, Aurbach D, Kim JH, Liu Z, Huang X, Krachkovskiy SA, Goward GR, Halalay I, Powell BR, Manthiram A. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries. Adv Energy Mater. 2015;5(23):1501008.

    Article  Google Scholar 

  97. Schneider H, Garsuch A, Panchenko A, Gronwald O, Janssen N, Novák P. Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J Power Sour. 2012;205:420.

    Article  CAS  Google Scholar 

  98. Huang Y, Li Z, Pei ZX, Liu ZX, Li HF, Zhu MS, Fan J, Dai QB, Zhang MD, Dai LM, Zhi CY. Solid-state rechargeable Zn//NiCo and Zn-Air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Adv Energy Mater. 2018;8(31):1802288.

    Article  Google Scholar 

  99. Zeng WW, Wang L, Peng X, Liu T, Jiang YY, Qin F, Hu L, Chu PK, Huo K, Zhou YH. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv Energy Mater. 2018;8(11):1702314.

    Article  Google Scholar 

  100. Ling M, Qiu JX, Li S, Yan C, Kiefel MJ, Liu G, Zhang SQ. Multifunctional SA-PProDOT binder for lithium ion batteries. Nano Lett. 2015;15(7):4440.

    Article  CAS  Google Scholar 

  101. Fang RP, Zhao SY, Sun ZH, Wang DW, Cheng HM, Li F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater. 2017;29(48):1606823.

    Article  Google Scholar 

  102. Chung SH, Chang CH, Manthiram A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv Func Mater. 2018;28(28):1801188.

    Article  Google Scholar 

  103. Chen W, Qian T, Xiong J, Xu N, Liu XJ, Liu J, Zhou JQ, Shen XW, Yang TZ, Chen Y, Yan CL. A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv Mater. 2017;29(12):1605160.

    Article  Google Scholar 

  104. Ling M, Zhang L, Zheng TY, Feng J, Guo JH, Mai LQ, Liu G. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy. 2017;38:82.

  105. Li LJ, Pascal TA, Connell JG, Fan FY, Meckler SM, Ma L, Chiang YM, Prendergast D, Helms BA. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nat Commun. 2017;8(1):1.

  106. Andersson AM, Henningson A, Siegbahn H, Jansson U, Edström K. Electrochemically lithiated graphite characterised by photoelectron spectroscopy. J Power Sour. 2003;119:522.

    Article  Google Scholar 

  107. Bryngelsson H, Stjerndahl M, Gustafsson T, Edström K. How dynamic is the SEI? J Power Sour. 2007;174(2):970.

    Article  CAS  Google Scholar 

  108. Edström K, Herstedt M, Abraham DP. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J Power Sour. 2006;153(2):380.

    Article  Google Scholar 

  109. Malmgren S, Ciosek K, Hahlin M, Gustafsson T, Gorgoi M, Rensmo H, Edström K. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochim Acta. 2013;97:23.

    Article  CAS  Google Scholar 

  110. Ku JH, Hwang SS, Ham DJ, Song MS, Shon JK, Ji SM, Choi JM, Doo SG. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries. J Power Sour. 2015;287:36.

    Article  CAS  Google Scholar 

  111. Beaman DK, Robertson EJ, Richmond GL. Metal Ions: driving the orderly assembly of polyelectrolytes at a hydrophobic surface. Langmuir. 2012;28(40):14245.

    Article  CAS  Google Scholar 

  112. Komaba S, Okushi K, Ozeki T, Yui H, Katayama Y, Miura T, Saito T, Groult H. Polyacrylate modifier for graphite anode of lithium-ion batteries. Electrochem Solid-State Lett. 2009;12(5):A107.

    Article  CAS  Google Scholar 

  113. Mo FN, Liang GJ, Wang DH, Tang ZJ, Li HF, Zhi CY. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat. 2019;1(1): e12008.

  114. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366.

    Article  CAS  Google Scholar 

  115. Lee YJ, Yi H, Kim WJ, Kang K, Yun DS, Strano MS, Ceder G, Belcher AM. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science. 2009;324(5930):1051.

    Article  CAS  Google Scholar 

  116. Besenhard JO, Yang JW. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sour. 1997;68(1):87.

    Article  CAS  Google Scholar 

  117. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587.

    Article  CAS  Google Scholar 

  118. Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190.

    Article  CAS  Google Scholar 

  119. Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sour. 2011;196(1):13.

    Article  CAS  Google Scholar 

  120. Huang Y, Liu J, Wang JQ, Hu MM, Mo FN, Liang GJ, Zhi CY. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew Chem Int Ed. 2018;57(31):9810.

    Article  CAS  Google Scholar 

  121. Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao ZD. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem. 2013;5(12):1042.

    Article  CAS  Google Scholar 

  122. Jiao X, Yin J, Xu X, Wang J, Liu Y, Xiong S, Zhang Q, Song JX. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv Func Mater. 2020;31(3):2005699.

    Article  Google Scholar 

  123. Choi S, Kwon TW. Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science. 2017;357(6348):279.

  124. Lee YH, Kim JS, Noh J, Lee I, Kim HJ, Choi S, Seo J, Jeon S, Kim TS, Lee JY, Choi JW. Wearable textile battery rechargeable by solar energy. Nano Lett. 2013;13(11):5753.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2019YFA0705104) and Guangdong Province Science and Technology Department under Project (No. 2020A0505100014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yi Zhi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YB., Yang, Q., Guo, X. et al. Strategies of binder design for high-performance lithium-ion batteries: a mini review. Rare Met. 41, 745–761 (2022). https://doi.org/10.1007/s12598-021-01816-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01816-y

Keywords

Navigation