Skip to main content
Log in

High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Exploring high-performance cathode materials for aqueous zinc ion batteries (ZIBs) is still one of the critical issues. Copper vanadate compound has become a potential cathode material for ZIBs with a novel displacement reaction mechanism of reversible reduction/oxidation of Cu2+/Cu0. Herein, we reported Cu0.95V2O5 nanoflowers prepared using a hydrothermal synthesis method as a capable cathode material for ZIBs. The Cu0.95V2O5 nanoflowers exhibit high specific capacity of 405 mAh·g−1 at the current density of 100 mA·g−1, benefiting from the displacement reaction mechanism and phase transformation mechanism from Cu0.95V2O5 to the open and stable architecture Cu0.4V2O5 and Zn3(OH)2V2O7·2H2O phase. The cathode exhibits excellent rate performance with a high capacity of ~ 200 mAh·g−1 at 5 A·g−1 and outstanding cycle stability with a capacity retention of 92% after 1000 cycles. It is anticipated that the novel Cu0.95V2O5 nanoflowers are promising cathode material in the application for zinc ion batteries.

Graphical Abstract

摘要

探索用于锌离子电池的高性能正极材料仍然是目前的研究重点之一。基于新颖的可逆Cu2+/Cu0氧化还原过程导致的置换反应机制, 钒酸铜化合物已成为一种具有应用潜力的锌离子电池正极材料。在本文中, 我们首次报道了采用水热合成法制备的Cu0.95V2O5 纳米花作为锌离子电池的正极材料, 在100 mA·g-1的电流密度下, 首次放电比容量可达405 mAh·g-1。得益于其置换反应机制和在首次循环中Cu0.95V2O5 转变为具有结构更开阔和稳定的Cu0.4V2O5和Zn3(OH)2V2O7·2H2O相,该电极在5A·g-1大电流密度下容量密度可达200 mAh·g-1, 经过1000次循环其容量保持率高达92%, 显示出了杰出的倍率性能和循环稳定性。新型Cu0.95V2O5纳米花有望成为锌离子电池应用中的正极材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Long R, Wang GL, Hu ZL, Sun PF, Zhang L. Gradually activated lithium uptake in sodium citrate toward high-capacity organic anode for lithium-ion batteries. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01502-5.

    Article  Google Scholar 

  2. Liu ZW, Xu RX, Wei W, Jing P, Li X, Zhu QY, Sun HJ, Dong YY, Zakharova GS. Flexible H2V3O8 nanobelts/reduced graphene oxide electrodes with high mass loading for lithium ion batteries. Solid State Ionics. 2018;329:74.

    Article  Google Scholar 

  3. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2021;40(2):309.

    Article  CAS  Google Scholar 

  4. Liu YY, He GJ, Jiang H, Parkin IP, Shearing PR, Brett DJL. Cathode design for aqueous rechargeable multivalent ion batteries: challenges and opportunities. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202010445.

    Article  Google Scholar 

  5. Jiao YD, Kang LQ, Berry-Gair J, McColl K, Li JW, Dong HB, Jiang H, Wang R, Corà F, Brett DJL, He GJ, Parkin IP. Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes. J Mater Chem A. 2020;8(42):22075.

    Article  CAS  Google Scholar 

  6. Guo XX, Zhang ZY, Li JW, Luo NJ, Chai GL, Miller TS, Lai FL, Shearing P, Brett DJL, Han DL, Weng Z, He GJ, Parkin IP. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 2021;6(2):395.

    Article  CAS  Google Scholar 

  7. Li JW, Luo NJ, Wan F, Zhao SY, Li ZN, Li WY, Guo J, Shearing PR, Brett DJL, Carmalt CJ, Chai GL, He GJ, Parkin IP. Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale. 2020;12(40):20638.

    Article  CAS  Google Scholar 

  8. Ding J, Du Z, Gu L, Li B, Wang L, Wang S, Gong Y, Yang S. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv Mater. 2018;30(26):1800762.

    Article  Google Scholar 

  9. Zhang LH, Wu SS, Wa Y, Hu YF, Luo YC, Yang MY, Li MC, Lu ZG. Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn-MnO2 batteries as high-performance energy materials. Rare Met. 2017;36(5):442.

    Article  CAS  Google Scholar 

  10. Zhu CY, Fang GZ, Liang SQ, Chen ZX, Wang ZQ, Ma JY, Wang H, Tang BY, Zheng XS, Zhou J. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 2020;24(40):394.

    Article  Google Scholar 

  11. Zhang L, Chen L, Zhou X, Liu Z. Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci Rep. 2015;5:18263.

    Article  CAS  Google Scholar 

  12. Qin H, Chen L, Wang L, Chen X, Yang Z. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim Acta. 2019;306:307.

    Article  CAS  Google Scholar 

  13. Kundu D, Adams B, Duffort V, Vajarhah S, Nazar L. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1(10):16119.

    Article  CAS  Google Scholar 

  14. An Q, Zhang P, Wei Q, He L, Xiong F, Sheng J, Wang Q, Mai L. Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. J Mater Chem A. 2014;2(10):3297.

    Article  CAS  Google Scholar 

  15. Lee B, Lee HR, Kim H, Chung KY, Cho BW, Oh SH. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem Commun. 2015;51:9265.

    Article  CAS  Google Scholar 

  16. Yang Q, Mo FN, Liu ZX, Ma LT, Li XL, Fang DL, Chen SM, Zhang SJ, Zhi CH. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv Mater. 2019;31(32):1901521.

    Article  Google Scholar 

  17. Cui FH, Zhao J, Zhang DX, Fang YZ, Hu F, Zhu K. VO2(B) Nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries. Chem Eng J. 2020;390:124118.

    Article  CAS  Google Scholar 

  18. Lai JW, Tang H, Zhu XP, Wang Y. A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries. J Mater Chem A. 2019;7(40):23140.

    Article  CAS  Google Scholar 

  19. Kim SJ, Tang CR, Singh G, Housel LM, Yang SZ, Takeuchi KJ, Marschilok AC, Takeuchi ES, Zhu YM. New insights into the reaction mechanism of sodium vanadate for an aqueous zn ion battery. Chem Mater. 2020;32(5):2053.

    Article  CAS  Google Scholar 

  20. Liu X, Xu GB, Huang SJ, Li L, Wang Y, Yang LW. Free-standing composite of NaxV2O5·nH2O nanobelts and carbon nanotubes with interwoven architecture for large areal capacity and high-rate capability aqueous zinc ion batteries. Electrochim Acta. 2021;368:137600.

    Article  CAS  Google Scholar 

  21. Yu X, Hu F, Cui FH, Zhao J, Guan C, Zhu K. The displacement reaction mechanism of the CuV2O6 nanowire cathode for rechargeable aqueous zinc ion batteries. Dalton Trans. 2020;49(4):B1048.

    Article  Google Scholar 

  22. Liu YY, Li Q, Ma KX, Yang GZ, Wang CG. Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano. 2019;13(10):12081.

    Article  CAS  Google Scholar 

  23. Chen LL, Yang ZH, Wu J, Chen HZ, Meng JL. Energy storage performance and mechanism of the novel copper pyrovanadate Cu3V2O7(OH)2·2H2O cathode for aqueous zinc ion batteries. Electrochim Acta. 2020;330:135347.

    Article  CAS  Google Scholar 

  24. Hu W, Du XC, Wu YM, Wang LM. Novel ε-Cu0.95V2O5 hollow microspheres and α-CuV2O6 nanograins: facile synthesis and application in lithium-ion batteries. J Power Sour. 2013;237:112.

    Article  CAS  Google Scholar 

  25. Zhang YF, Chen CX, Wu WB, Niu F, Liu XH, Zhong YL, Cao YL, Liu X, Huang C. Facile hydrothermal synthesis of vanadium oxides nanobelts by ethanol reduction of peroxovanadium complexes. Ceram Int. 2013;39(1):129.

    Article  CAS  Google Scholar 

  26. Li JW, McColl K, Lu XK, Sathasivam S, Dong HB, Kang LQ, Li ZN, Zhao SY, Kafizas AG, Wang R, Brett DJL, Shearing PR, Corà F, He GJ, Carmalt CJ, Parkin IP. Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries. Adv Energy Mater. 2020;10(15):2000058.

    Article  CAS  Google Scholar 

  27. Pang Q, Sun CL, Yu YH, Zhao KN, Zhang ZY, Voyles PM, Chen G, Wei YJ, Wang XD. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater. 2018;8(19):1800144.

    Article  Google Scholar 

  28. Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater. 2018;30(5):1705580.

    Article  Google Scholar 

  29. Yang GZ, Wei TY, Wang CX. Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl matter Inter. 2018;10(41):35079.

    Article  CAS  Google Scholar 

  30. Wu B, Zhang G, Yan M, Xiong T, He P, He L, Xu X, Mai L. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small. 2018;14(13):1703850.

    Article  Google Scholar 

  31. Liu SC, Zhu H, Zhang BH, Li G, Zhu HK, Ren Y, Geng HB, Liu YQ, Li CC. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv Mater. 2020;32(26):2001113.

    Article  CAS  Google Scholar 

  32. Jiang HM, Zhang YF, Xu L, Gao ZM, Zheng JQ, Wang QS, Meng CG, Wang J. Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem Eng J. 2020;382:122844.

    Article  CAS  Google Scholar 

  33. Tang BY, Fang GZ, Zhou J, Wang LB, Lei YP, Wang C, Lin TQ, Tang Y, Liang SQ. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. J Electrochem Soc. 2018;51:579.

    CAS  Google Scholar 

  34. Wang X, Xi B, Feng Z, Chen W, Li H, Jia Y, Feng J, Qian Y, Xiong S. Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. J Mater Chem A. 2019;7(32):19130.

    Article  CAS  Google Scholar 

  35. Lai JW, Zhu HH, Zhu XP, Koritala H, Wang Y. Interlayer-expanded V6O13·nH2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl Energy Mater. 2019;2(3):1988.

    Article  CAS  Google Scholar 

  36. Yang YQ, Tang Y, Liang SQ, Wu ZX, Fang GZ, Cao XX, Wang C, Lin TQ, Pan AQ, Zhou J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy. 2019;61:617.

    Article  CAS  Google Scholar 

  37. Wei T, Li Q, Yang G, Wang C. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts. J Mater Chem A. 2018;6(41):20402.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51772193) and China Postdoctoral Science Foundation (No. 2019T120254).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Hu or Kai Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Hu, F., Guo, ZQ. et al. High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries. Rare Met. 41, 29–36 (2022). https://doi.org/10.1007/s12598-021-01771-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01771-8

Navigation