Skip to main content

Advertisement

Log in

Enhancing electrochemical performances of small quinone toward lithium and sodium energy storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Further application of organic quinone cathodes is restricted because they are inherent in poor conductivity and tend to dissolve in aprotic electrolytes. Salinization can work on the strong solubility of quinones. Herein, the ortho-disodium salt of tetrahydroxyquinone (o-Na2THBQ) was selected to promote the electrochemical properties of tetrahydroxyquinone (THBQ). Reduced dissolution of o-Na2THBQ in electrolyte after salinization (replacement of two H with two Na) contributed to enhanced electrochemical performance. In sodium-ion batteries (SIBs) in ester-based electrolyte, o-Na2THBQ cathodes at 50 mA·g−1 exhibited a reversible discharge capacity of 107 mAh·g−1 after 200 cycles. Ulteriorly, in ether-based electrolyte, reversible discharge capacities of 200.4, 102.2, 99.5 and 88 mAh·g−1 were obtained at 800, 1600, 3200 and 4800 mA·g−1 after 1000, 2000, 5000 and 8000 cycles, respectively. The ultraviolet absorption spectra and ex situ dissolution experiments of THBQ and o-Na2THBQ showed that o-Na2THBQ hardly dissolved in ether-based electrolyte. In lithium-ion batteries (LIBs), graphene was selected to further enhance the conductivity of o-Na2THBQ. At 50 mA·g−1, o-Na2THBQ and o-Na2THBQ/Gr cathodes exhibited reversible discharge capacities of 124 and 131.5 mAh·g−1 after 200 cycles in ester-based electrolyte, respectively. At 50 mA·g−1, PTPAn/o-Na2THBQ electrodes in an all-organic Na/Li-ion battery showed reversible charge/discharge capacities of 51/50.3 and 33.8/33.1 mAh·g−1 after 200 cycles.

Graphical abstract

摘要

有机醌类正极材料的进一步应用因其导电性差和易溶于有机电解液两个缺点受到了限制。本文选择四羟基苯醌邻二钠盐(o-Na2THBQ)(邻位的两H原子被两个Na原子取代)来提升四羟基苯醌(THBQ)的电化学性能。盐化后的o-Na2THBQ在有机电解液中的溶解性有所降低, 进而拥有较高的电化学性能。在钠离子电池酯基电解液中, o-Na2THBQ在50 mA·g−1电流密度下循环200圈后表现出了107 mAh·g−1的可逆放电比容量。进一步地, 在醚基电解液中, 在800, 1600, 3200和4800大电流密度下分别循环1000, 2000, 5000和8000圈后分别表现出了200.4, 102.2, 99.5和88 mAh·g−1的可逆放电比容量。非原位溶解性实验和紫外光谱图表明o-Na2THBQ在醚基电解液中几乎不溶解。在锂离子电池中酯基电解液中, 通过与石墨烯(Gr)的复合来进一步提升材料的电化学性能。在50 mA·g−1电流密度下循环200圈后, o-Na2THBQ and o-Na2THBQ/Gr分别表现出124和131.5 mAh·g−1的可逆放电比容量。在全有机锂/钠离子电池中50 mA·g−1电流密度下, PTPAn/o-Na2THBQ电极循环200圈后表现出了51/50.3 和 33.8/33.1 mAh·g−1的可逆放电比容量。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yi TF, Wei TT, Li Y, He YB, Wang ZB. Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Mater. 2020;26:165.

    Article  Google Scholar 

  2. Han X, Gui X, Yi TF, Li Y, Yue C. Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opin STM. 2018;22(4):109.

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.

    Article  CAS  Google Scholar 

  4. Zhu JL, Li YY, Huang Y, Ou CZ, Yuan XX, Yan L, Li WW, Zhang HY, Shen PK. General strategy to synthesize highly dense metal oxide quantum dots-anchored nitrogen-rich graphene compact monoliths enable fast and high-stability volumetric lithium/sodium storage, ACS Appl Energ Mater. 2019;2(5):3500.

    Article  CAS  Google Scholar 

  5. Wang B, Lv R, Lan D. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.

    Article  CAS  Google Scholar 

  6. Dai YQ, Li GC, Li XH, Guo HJ, Wang ZX, Yan GC, Wang JX. Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors. Rare Met. 2020;39(12):1364.

    Article  CAS  Google Scholar 

  7. Li YY, Ou CZ, Zhu JL, Liu ZG, Yu JL, Li WW, Zhang HY, Zhang QB, Guo ZP. Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith. Nano Lett. 2020;20(3):2034.

    Article  CAS  Google Scholar 

  8. Wang L, Wang Z, Xie L, Zhu L, Cao X. An enabling strategy for ultra-fast lithium storage derived from micro-flower-structured NiX (X=O, S, Se). Electrochim Acta. 2020;343:136138.

    Article  CAS  Google Scholar 

  9. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.

    Article  CAS  Google Scholar 

  10. Lei KX, Wang J, Chen C, Li SY, Wang SW, Zheng SJ, Li FJ. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. 2020;39(9):989.

    Article  CAS  Google Scholar 

  11. Airoldi L, Anselmi-Tamburini U, Vigani B, Rossi S, Mustarelli P, Quartarone E. Additive manufacturing of aqueous-processed LiMn2O4 thick electrodes for high-energy-density lithium-ion batteries. Batteries Supercaps. 2020;3(10):1040.

    Article  CAS  Google Scholar 

  12. Mathew V, Sambandam B, Kim S, Kim S, Park S, Lee S, Lee J, Park S, Song J, Kim J. High-voltage cathode materials by combustion-based preparative approaches for Li-ion batteries application. J Power Sources. 2020;472:228368.

    Article  CAS  Google Scholar 

  13. Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Edit. 2015;54(44):13058.

    Article  CAS  Google Scholar 

  14. Zheng F, Yang C, Ji X, Hu D, Chen Y, Liu M. Surfactants assisted synthesis and electrochemical properties of nano-LiFePO4/C cathode materials for low temperature applications. J Power Sources. 2015;288:337.

    Article  CAS  Google Scholar 

  15. Lee MJ, Lee S, Oh P, Kim Y, Cho J. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett. 2014;14(2):993.

    Article  CAS  Google Scholar 

  16. Zhao J, Yang J, Sun P, Xu Y. Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochem Commun. 2018;86:34.

    Article  CAS  Google Scholar 

  17. Zhu L, Ding G, Xie L, Cao X, Liu J, Lei X, Ma J. Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries. Chem Mater. 2019;31(21):8582.

    Article  CAS  Google Scholar 

  18. Shi HQ, Deng GW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.

    Article  Google Scholar 

  19. Ding GC, Zhu LM, Yang Q, Xie LL, Cao XY, Wang YL, Liu JP, Yang XL. NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Met. 2020;39(8):865.

    Article  CAS  Google Scholar 

  20. Ahmad A, Imani A, Mao L, Iqbal R, Zhang H, Ghazi ZA, Ahmad R, Khan AA, Xie L, Chen CM, Zhang Z, Wei Z. A bifunctional and free-standing organic composite film with high flexibility and good tensile strength for tribological and electrochemical applications. Adv Mater Technol. 2019;4(10):1900617.

    Article  CAS  Google Scholar 

  21. Zhao L, Guan Z, Ullah Z, Yu C, Song H, Chu R, Zhang Y, Li W, Li Q, Liu L. Significantly stable organic cathode for lithium-ion battery based on nanoconfined poly(anthraquinonyl sulfide)@MOF-derived microporous carbon. Electrochim Acta. 2020;335:135681.

    Article  CAS  Google Scholar 

  22. Zhao L, Yu J, Xing C, Ullah Z, Yu C, Zhu S, Chen M, Li W, Li Q, Liu L. Nanopore confined anthraquinone in MOF-derived N-doped microporous carbon as stable organic cathode for lithium-ion battery. Energy Storage Mater. 2019;22:433.

    Article  Google Scholar 

  23. Lee M, Hong J, Kim H, Lim HD, Cho SB, Kang K, Park CB. Organic nanohybrids for fast and sustainable energy storage. Adv Mater. 2014;26(16):2558.

    Article  CAS  Google Scholar 

  24. Bitenc J, Pirnat K, Bancic T, Gaberscek M, Genorio B, Randon-Vitanova A, Dominko R. Anthraquinone-based polymer as cathode in rechargeable magnesium batteries. ChemSusChem. 2015;8(24):4128.

    Article  CAS  Google Scholar 

  25. Bančič T, Bitenc J, Pirnat K, Kopač Lautar A, Grdadolnik J, Randon Vitanova A, Dominko R. Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery. J Power Sources. 2018;395:25.

    Article  Google Scholar 

  26. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2021;40(2):309.

    Article  CAS  Google Scholar 

  27. Dawut G, Lu Y, Miao L, Chen J. High-performance rechargeable aqueous Zn-ion batteries with poly(benzoquinonyl sulfide) cathode. Inorg Chem Front. 2018;5(6):1391.

    Article  CAS  Google Scholar 

  28. Huang T, Lu D, Ma L, Xi X, Liu R, Wu D. A hit-and-run strategy towards perylene diimide/reduced graphene oxide as high performance sodium ion battery cathode. Chem Eng J. 2018;349:66.

    Article  CAS  Google Scholar 

  29. Huang W, Zheng S, Zhang X, Zhou W, Xiong W, Chen J. Synthesis and application of calix[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries. Energy Storage Mater. 2020;26:465.

    Article  Google Scholar 

  30. Huang W, Zhang M, Cui H, Yan B, Liu Y, Zhang Q. Cost-effective biomass carbon /calix[4]quinone composites for lithium ion batteries. Chem Asian J. 2019;14(23):4164.

    Article  CAS  Google Scholar 

  31. Song Z, Zhan H, Zhou Y. Polyimides: promising energy-storage materials. Angew Chem Int Edit. 2010;49(45):8444.

    Article  CAS  Google Scholar 

  32. Ai W, Zhou W, Du Z, Sun C, Yang J, Chen Y, Sun Z, Feng S, Zhao J, Dong X, Huang W, Yu T. Toward high energy organic cathodes for Li-ion batteries: a case study of vat dye/graphene composites. Adv Funct Mater. 2017;27(19):1603603.

    Article  Google Scholar 

  33. Tang M, Li H, Wang E, Wang C. Carbonyl polymeric electrode materials for metal-ion batteries. Chinese Chem Lett. 2018;29(2):232.

    Article  CAS  Google Scholar 

  34. Amin K, Mao L, Wei Z. Recent progress in polymeric carbonyl-based electrode materials for lithium and sodium ion batteries. Macromol Rapid Commun. 2019;40(1): e1800565.

    Article  Google Scholar 

  35. Han C, Li H, Shi R, Zhang T, Tong J, Li J, Li B. Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. J Mater Chem A. 2019;7(41):23378.

    Article  CAS  Google Scholar 

  36. Peng H, Wang S, Kim M, Kim J, Yamauchi Y, Yu J, Li D. Highly reversible electrochemical reaction of insoluble 3D nanoporous polyquinoneimines with stable cycle and rate performance. Energy Storage Mater. 2020;25:313.

    Article  Google Scholar 

  37. Wu H, Shevlin SA, Meng Q, Guo W, Meng Y, Lu K, Wei Z, Guo Z. Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv Mater. 2014;26(20):3338.

    Article  CAS  Google Scholar 

  38. Xiang B, An WL, Fu JJ, Mei SX, Guo SG, Zhang XM, Gao B, Paul KC. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode. Rare Met. 2021;40(2):383.

    Article  CAS  Google Scholar 

  39. Song Z, Xu T, Gordin ML, Jiang YB, Bae IT, Xiao Q, Zhan H, Liu J, Wang D. Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 2012;12(5):2205.

    Article  CAS  Google Scholar 

  40. Le Gall T, Reiman KH, Grossel MC, Owen JR. Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries. J Power Sources. 2003;119:316.

    Article  Google Scholar 

  41. Liu K, Zheng J, Zhong G, Yang Y. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. J Mater Chem. 2011;21(12):4125.

    Article  CAS  Google Scholar 

  42. Song Z, Zhan H, Zhou Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem Commun. 2009;4:448.

    Article  Google Scholar 

  43. Song Z, Qian Y, Liu X, Zhang T, Zhu Y, Yu H, Otani M, Zhou H. A quinone-based oligomeric lithium salt for superior Li–organic batteries. Energy Environ Sci. 2014;7(12):4077.

    Article  CAS  Google Scholar 

  44. Wu D, Huang Y, Hu X. A sulfurization-based oligomeric sodium salt as a high-performance organic anode for sodium ion batteries. Chem Commun. 2016;52(75):11207.

    Article  CAS  Google Scholar 

  45. Zhu L, Liu J, Liu Z, Xie L, Cao X. Anthraquinones with ionizable sodium sulfonate groups as renewable cathode materials for sodium-ion batteries. ChemElectroChem. 2018;6(3):787.

    Article  Google Scholar 

  46. Chen L, Liu S, Wang Y, Liu W, Dong Y, Kuang Q, Zhao Y. Ortho-di-sodium salts of tetrahydroxyquinone as a novel electrode for lithium-ion and potassium-ion batteries. Electrochim Acta. 2019;294:46.

    Article  CAS  Google Scholar 

  47. Chen L, Zhao Y. Exploration of p-Na2C6H2O6-based organic electrode materials for sodium-ion and potassium-ion batteries. Mater Lett. 2019;243:69.

    Article  CAS  Google Scholar 

  48. Wang S, Wang L, Zhang K, Zhu Z, Tao Z, Chen J. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 2013;13(9):4404.

    Article  CAS  Google Scholar 

  49. Shimizu A, Kuramoto H, Tsujii Y, Nokami T, Inatomi Y, Hojo N, Suzuki H, Yoshida JI. Introduction of two lithiooxycarbonyl groups enhances cyclability of lithium batteries with organic cathode materials. J Power Sources. 2014;260:211.

    Article  CAS  Google Scholar 

  50. Zhu L, Ding G, Xie L, Yang Q, Yang X, Cao X. Facile preparation of NaV3O8 /polytriphenylamine composites as cathode materials towards high-performance sodium storage. Int J Energy Res. 2020;44(4):3215.

    Article  CAS  Google Scholar 

  51. Zhu L, Ding G, Liu J, Liu Z, Xie L, Cao X. Graphene-wrapped poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) nanoflowers as low-cost and high-performance cathode materials for sodium-ion batteries. Int J Energy Res. 2019;43(13):7635.

    CAS  Google Scholar 

  52. Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F, Chen J. A microporous covalent organic framework with abundant accessible carbonyls for lithium-ion batteries. Angew Chem Int Edit. 2018;57(30):9443.

    Article  CAS  Google Scholar 

  53. Yin YX, Xin S, Guo YG, Wan LJ. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Edit. 2013;52(50):13186.

    Article  CAS  Google Scholar 

  54. Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev. 2013;42(7):3018.

    Article  CAS  Google Scholar 

  55. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium-sulfur batteries. Accounts Chem Res. 2013;46(5):1125.

    Article  CAS  Google Scholar 

  56. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2011;11(1):19.

    Article  Google Scholar 

  57. Zhang K, Wang L, Hu Z, Cheng F, Chen J. Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries. Sci Rep. 2014;4:6467.

    Article  CAS  Google Scholar 

  58. Gao J, Lowe MA, Kiya Y, Abruña HD. Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C. 2011;115(50):25132.

    Article  CAS  Google Scholar 

  59. Deng W, Qian J, Cao Y, Ai X, Yang H. Graphene-wrapped Na2C12H6O4 nanoflowers as high performance anodes for sodium-ion batteries. Small. 2016;12(5):583.

    Article  CAS  Google Scholar 

  60. Wan W, Lee H, Yu X, Wang C, Nam KW, Yang XQ, Zhou H. Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group. RSC Adv. 2014;4(38):19878.

    Article  CAS  Google Scholar 

  61. Wang C, Xu Y, Fang Y, Zhou M, Liang L, Singh S, Zhao H, Schober A, Lei Y. Extended pi-conjugated system for fast-charge and -discharge sodium-ion batteries. J Am Chem Soc. 2015;137(8):3124.

    Article  CAS  Google Scholar 

  62. Wang Y, Deng Y, Qu Q, Zheng X, Zhang J, Liu G, Battaglia VS, Zheng H. Ultrahigh-capacity organic anode with high-rate capability and long cycle life for lithium-ion batteries. ACS Energy Lett. 2017;2(9):2140.

    Article  CAS  Google Scholar 

  63. Okoshi M, Yamada Y, Yamada A, Nakai H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Am Chem Soc. 2013;160(11):A2160.

    CAS  Google Scholar 

  64. Li H, Duan W, Zhao Q, Cheng F, Liang J, Chen J. 2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorg Chem Front. 2014;1(2):193.

    Article  CAS  Google Scholar 

  65. Guo C, Zhang K, Zhao Q, Pei L, Chen J. High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chem Commun. 2015;51(50):10244.

    Article  CAS  Google Scholar 

  66. Zhang K, Guo C, Zhao Q, Niu Z, Chen J. High-performance organic lithium batteries with an ether-based electrolyte and 9,10-anthraquinone (AQ)/CMK-3 cathode. Adv Sci. 2015;2(5):1500018.

    Article  Google Scholar 

  67. Kwon MS, Choi A, Park Y, Cheon JY, Kang H, Jo YN, Kim YJ, Hong SY, Joo SH, Yang C, Lee KT. Synthesis of ordered mesoporous phenanthrenequinone-carbon via pi-pi interaction-dependent vapor pressure for rechargeable batteries. Sci Rep. 2014;4:7404.

    Article  CAS  Google Scholar 

  68. Huang W, Zhang X, Zheng S, Zhou W, Xie J, Yang Z, Zhang Q. Calix[6]quinone as high-performance cathode for lithium-ion battery. Sci China Mater. 2019;63(3):339.

    Article  Google Scholar 

  69. Xiong W, Huang W, Zhang M, Hu P, Cui H, Zhang Q. Pillar[5]quinone–carbon nanocomposites as high-capacity cathodes for sodium-ion batteries. Chem Mater. 2019;31(19):8069.

    Article  CAS  Google Scholar 

  70. Zheng S, Hu J, Huang W. An inorganic–organic nanocomposite calix[4]quinone (C4Q)/CMK-3 as a cathode material for high-capacity sodium batteries. Inorg Chem Front. 2017;4(11):1806.

    Article  CAS  Google Scholar 

  71. Zheng S, Sun H, Yan B, Hu J, Huang W. High-capacity organic electrode material calix[4] quinone/CMK-3 nanocomposite for lithium batteries. Sci China Mater. 2018;61(10):1285.

    Article  CAS  Google Scholar 

  72. Yang G, Zhang Y, Huang Y, Shakir MI, Xu Y. Incorporating conjugated carbonyl compounds into carbon nanomaterials as electrode materials for electrochemical energy storage. Phys Chem Chem Phys. 2016;18(46):31361.

    Article  CAS  Google Scholar 

  73. Wasalathilake KC, Li H, Xu L, Yan C. Recent advances in graphene based materials as anode materials in sodium-ion batteries. J Energy Chem. 2020;42:91.

    Article  Google Scholar 

  74. Zhang M, Zhang Y, Huang W, Zhang Q. Recent progress in calix[n]quinone (n=4, 6) and pillar[5]quinone electrodes for secondary rechargeable batteries. Batteries Supercaps. 2020;3(6):476.

    Article  CAS  Google Scholar 

  75. Zhu Z, Chen J. Review—advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries. J Electrochem Soc. 2015;162(14):A2393.

    Article  CAS  Google Scholar 

  76. Kim HJ, Kim Y, Shim J, Jung KH, Jung MS, Kim H, Lee JC, Lee KT. Environmentally sustainable aluminum-coordinated poly(tetrahydroxybenzoquinone) as a promising cathode for sodium ion batteries. ACS Appl Mater Interfaces. 2018;10(4):3479.

    Article  CAS  Google Scholar 

  77. Deng W, Shen Y, Qian J, Cao Y, Yang H. A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries. ACS Appl Mater Interfaces. 2015;7(38):21095.

    Article  CAS  Google Scholar 

  78. Deng W, Liang X, Wu X, Qian J, Cao Y, Ai X, Feng J, Yang H. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci Rep. 2013;3:2671.

    Article  Google Scholar 

  79. Yuan C, Wu Q, Duan Q, Li Y, Wang HG. Porous organic polymer/RGO composite as high performance cathode for half and full sodium ion batteries. ACS Sustain Chem Eng. 2018;6(7):8392.

    Article  CAS  Google Scholar 

  80. Li A, Feng Z, Sun Y, Shang L, Xu L. Porous organic polymer/RGO composite as high performance cathode for half and full sodium ion batteries. J Power Sources. 2017;343:424.

    Article  CAS  Google Scholar 

  81. Banda H, Damien D, Nagarajan K, Hariharan M, Shaijumon MM. A polyimide based all-organic sodium ion battery. J Mater Chem A. 2012;3(19):10453.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation, China (Nos. 21773057, 21773057, 52071132 and U1904216), Zhongyuan Thousand People Plan-Zhongyuan Youth Talent Support Program (in Science and Technology), China (No. ZYQR201810139), the Innovative Funds Plan of Henan University of Technology, China (No. 2020ZKCJ04), Fundamental Research Funds for Henan Provincial Colleges and Universities in Henan University of Technology, China (No. 2018RCJH01), and the Science and Technology Research Project of Henan Province, China (No. 212102210215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Ling Xie or Xiao-Yu Cao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, LM., Ding, GC., Han, Q. et al. Enhancing electrochemical performances of small quinone toward lithium and sodium energy storage. Rare Met. 41, 425–437 (2022). https://doi.org/10.1007/s12598-021-01813-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01813-1

Keywords

Navigation