Skip to main content

Advertisement

Log in

Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Laser Wakefield Acceleration (LWFA) has emerged as a groundbreaking approach for generating ultra-high energy electron beams over short distances, revolutionizing the field of particle acceleration. In this paper, we investigate the novel concept of employing sin-Gaussian laser pulse for enhanced LWFA performance. sin-Gaussian pulses combine the advantageous features of both sinusoidal and Gaussian pulse shapes, offering unique opportunities for generating the plasma wakefield and optimizing electron acceleration. We present a comprehensive theoretical analysis of the interaction between a sin-Gaussian laser pulse and an underdense plasma medium, elucidating the intricate dynamics of the wakefield excitation and electron acceleration. Through analytical study, we demonstrate that the sin-Gaussian pulse configuration leads to a significant energy gain (Maximum gain of 2.06 GeV with chosen parameters) for plasma electrons. Furthermore, we explore the effects of varying key parameters such as the laser electric field amplitude and beam waist on the acceleration performance. Our findings reveal the underlying physics governing the interplay between these parameters and the resulting electron energy spectra for LWFA outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  • Abedi-Varaki, M.: Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. B 32(20), 1850225 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Abedi-Varaki, M., Daraei, M.E.: Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel-Gaussian laser pulses propagating in collisionless plasma. J. Plasma Phys. 89(1), 905890114 (2023)

    Article  Google Scholar 

  • Afhami, S., Eslami, E.: Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation. AIP Adv. 4(8) (2014)

  • Albert, F., Thomas, A.G.R.: Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control Fusion 58(10), 103001 (2016)

    Article  ADS  Google Scholar 

  • Albert, F., et al.: Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Phys. Control Fusion 56(8), 084015 (2014)

    Article  ADS  CAS  Google Scholar 

  • Askari, H.R., Shahidani, A.: Influence of properties of the Gaussian laser pulse and magnetic field on the electron acceleration in laser-plasma interactions. Opt. Laser Technol. 45(1), 613–619 (2013a)

    Article  ADS  Google Scholar 

  • Askari, H.R., Shahidani, A.: Effect of magnetic field on production of wake field in laser–plasma interactions: Gaussian-like (GL) and rectangular–triangular (RT) pulses. Optik Int. J. Light Electron Opt. 124(17), 3154–3161 (2013b)

    Article  Google Scholar 

  • Döpp, A., Guillaume, E., Thaury, C., Lifschitz, A., Ta Phuoc, K., Malka, V.: Energy boost in laser wakefield accelerators using sharp density transitions. Phys. Plasmas 23(5) (2016)

  • Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009)

    Article  ADS  CAS  Google Scholar 

  • Fallah, R., Khorashadizadeh, S.M.: Electron acceleration in a homogeneous plasma by Bessel-Gaussian and Gaussian pulses. Contrib. Plasma Phys. 58(9), 878–889 (2018a)

    Article  ADS  CAS  Google Scholar 

  • Fallah, R., Khorashadizadeh, S.M.: Influence of Gaussian, super-gaussian, and cosine-gaussian pulse properties on the electron acceleration in a homogeneous plasma. IEEE Trans. Plasma Sci. 46(6), 2085–2090 (2018b)

    Article  ADS  Google Scholar 

  • Fallah, R., Khorashadizadeh, S.M.: Electron acceleration by Bessel-Gaussian laser pulse in a plasma in the presence of an external magnetic field. High Energy Density Phys. 31, 5–12 (2019)

    Article  ADS  CAS  Google Scholar 

  • Fedyuk, V., et al.: Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat. Biotechnol. 41(2), 212–221 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Gopal, K., Gupta, D.N., Suk, H.: Pulse-length effect on laser wakefield acceleration of electrons by skewed laser pulses. IEEE Trans. Plasma Sci. 49(3), 1152–1158 (2021)

    Article  ADS  Google Scholar 

  • Gopal, K., Gupta, D.N.: Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses. Phys. Plasmas 24(10) (2017).

  • Gupta, D.N., Jain, A.: Terahertz radiation generation by a super-Gaussian laser pulse in a magnetized plasma. Optik (stuttg) 227, 165824 (2021)

    Article  ADS  CAS  Google Scholar 

  • Gupta, D.N., Gopal, K., Nam, I.H., Kulagin, V.V., Suk, H.: Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32(3), 449–454 (2014)

    Article  ADS  CAS  Google Scholar 

  • Gupta, D.N., Yadav, M., Jain, A., Kumar, S.: Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse. Phys. Lett. Sect. A General Atom. Solid State Phys. 414 (2021)

  • Hummer, D.G.: Expansion of Dawson’s function in a series of Chebyshev polynomials. Math. Comput. 18(86), 317–319 (1964)

    MathSciNet  Google Scholar 

  • Jha, P., Saroch, A., Kumar Verma, N.: Wakefield generation via two color laser pulses. Phys. Plasmas 20(5) (2013)

  • Kim, H.T., et al.: Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by Petawatt laser pulses. Phys. Rev. Lett. 111(16), 165002 (2013)

    Article  ADS  PubMed  Google Scholar 

  • Leemans, W.P., et al.: Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89(17), 174802 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Midha, H. K., Sharma, V., Kant, N., Thakur, V.: Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023)

  • Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T.: Geometric properties of normalized imaginary error function. Studia Universitatis Babes-Bolyai Matematica 67(2), 455–462 (2022)

    Article  MathSciNet  Google Scholar 

  • Ostermayr, T., et al.: Laser plasma accelerator driven by a super-Gaussian pulse. J. Plasma Phys. 78(4), 447–453 (2012)

    Article  ADS  CAS  Google Scholar 

  • Pathak, V.B., Kim, H.T., Vieira, J., Silva, L.O., Nam, C.H.: All optical dual stage laser wakefield acceleration driven by two-color laser pulses. Sci. Rep. 8(1), 11772 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Sharma, V., Kumar, S.: To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

    Article  Google Scholar 

  • Sharma, V., Thakur, V., Kant, N.: Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt Quantum Electron 52(10), 444 (2020)

    Article  CAS  Google Scholar 

  • Sharma, V., Kumar, S., Kant, N., Thakur, V.: Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron. 55(13), 1150 (2023a)

    Article  Google Scholar 

  • Sharma, V., Kumar, S., Kant, N., Thakur, V.: Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023d)

    Article  ADS  Google Scholar 

  • Sharma, V., Kumar, S., Kant, N., Thakur, V.: Excitation of the laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023)

  • Sharma, V., Kumar, S., Kant, N., Thakur, V.: Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023).

  • Singh, K.P.: Electron acceleration by a circularly polarized laser pulse in a plasma. Phys. Plasmas 11(8), 3992–3996 (2004)

    Article  ADS  CAS  Google Scholar 

  • Tajima, T., Dawson, J. M.: Laser Electron Accelerator 43(4) (1979)

  • Thakur, V., Kant, N.: Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front Phys (beijing) 11(4), 115202 (2016)

    Article  ADS  Google Scholar 

  • Thakur, V., Kant, N.: Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (stuttg) 142, 455–462 (2017)

    Article  ADS  Google Scholar 

  • Thakur, V., Kant, N.: Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (stuttg) 168, 159–164 (2018)

    Article  ADS  CAS  Google Scholar 

  • Thakur, V., Kant, N.: Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)

    Article  ADS  Google Scholar 

  • Thakur, V., Vij, S., Sharma, V., Kant, N.: Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (stuttg) 171, 523–528 (2018)

    Article  ADS  CAS  Google Scholar 

  • Wilson, T.C., Sheng, Z.-M., McKenna, P., Hidding, B.: Self-focusing, compression and collapse of ultrashort weakly-relativistic Laguerre-Gaussian lasers in near-critical plasma. J Phys Commun 7(3), 035002 (2023)

    Article  Google Scholar 

  • Zeng, M., et al.: Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers. Phys. Rev. Lett. 114(8), 084801 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, X. et al.: Effect of pulse profile and chirp on a laser wakefield generation. Phys. Plasmas 19(5) (2012)

  • Zhang, X., Wang, T., Khudik, V.N., Bernstein, A.C., Downer, M.C., Shvets, G.: Effects of laser polarization and wavelength on hybrid laser wakefield and direct acceleration. Plasma Phys. Control Fusion 60(10), 105002 (2018). https://doi.org/10.1088/1361-6587/aad76f

    Article  ADS  CAS  Google Scholar 

  • Zhu, K., Zhu, J., Su, Q., Tang, H.: Propagation property of an astigmatic sin–Gaussian beam in a strongly nonlocal nonlinear media. Appl. Sci. 9(1), 71 (2018)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS: derivation, methodology, analytical modeling, and graph plotting; NK: numerical analysis and result discussion; VT: supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval

Not applicable.

Consent to participation

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kant, N. & Thakur, V. Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma. Opt Quant Electron 56, 601 (2024). https://doi.org/10.1007/s11082-023-06262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06262-x

Keywords

Navigation