Skip to main content
Log in

Effect of YSZ Particle Size and Content on Microstructure, Mechanical and Tribological Properties of (CoCrFeNiAl)1−x(YSZ)x High Entropy Alloy Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

High entropy alloy composites (HEACs) have recently been explored for use in industrial applications. This study investigates the impact of particle size (micro or nano) and content (5 and 10 wt%) of YSZ on the microstructure and tribological properties of AlCoCrFeNi. The samples were prepared using a combination of mechanical alloying and spark plasma sintering. XRD results and Rietveld analysis reveal that HEACs with micro-sized YSZ have a higher BCC/FCC ratio. FESEM and EDS results confirmed the evolution of Al-rich regions in the vicinity of the reinforcements. Especially, in HEA-10NanoYSZ-sample, due to higher interfacial regions, a huge amount of Al-rich phase has been formed which yields the reduction of BCC phase content in this sample. Microhardness and pin-on-disc wear tests show that the samples reinforced with microparticles demonstrate better performance compared to nanocomposite samples. For example, HEA-10MicroYSZ-sample exhibits the highest hardness (5.1 GPa) and the lowest wear characteristics (with a coefficient of friction of 0.8 and a wear rate of 4 × 10−4 mm3/N.m). This can be correlated to the higher hardness and BCC phase content, and grain boundary strengthening in the microcomposites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.O. Mekhrabov, M.V. Akdeniz, Effect of ternary alloying elements addition on atomic ordering characteristics of Fe–Al intermetallics. Acta Mater. 47(7), 2067–2075 (1999)

    Article  CAS  Google Scholar 

  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  3. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534(7606), 227–230 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. J. Miao, H. Liang, A. Zhang, J. He, J. Meng, Y. Lu, Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces. Tribol. Int. 153, 106599 (2021)

    Article  CAS  Google Scholar 

  5. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Met. Mater. Int. 26(8), 1099–1133 (2020)

    Article  Google Scholar 

  6. X. Li, Y. Wang, F. Wang, A. Liang, Subsonic-flame-sprayed CoCrFeNi, AlCoCrFeNi and MnCoCrFeNi-based high-entropy alloy coatings and their tribological behaviors. J. Therm. Spray Technol. 32(1), 96–110 (2023)

    Article  CAS  Google Scholar 

  7. Y. Wang, R. Wang, J. Lin, L. Wang, Z. Chen, Mechanical and high-temperature wear resistance properties of WC-reinforced AlCoCrFeNiTi0.5 high entropy alloy matrix composite. Ceram. Int. 50(1), 2162–2176 (2024)

    Article  CAS  Google Scholar 

  8. K.R. Rao, S.K. Dewangan, A.H. Seikh, S.K. Sinha, B. Ahn, Microstructure and mechanical characteristics of AlCoCrFeNibased ODS high-entropy alloys consolidated by vacuum hot pressing. Met. Mater. Int. 30(3), 726–734 (2024)

    Article  Google Scholar 

  9. Ł Rogal, Z. Szklarz, P. Bobrowski, D. Kalita, G. Garzeł, A. Tarasek, M. Kot, M. Szlezynger, Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy. Met. Mater. Int. 25(4), 930–945 (2019)

    Article  CAS  Google Scholar 

  10. J. Feng, Y. Tang, J. Liu, P. Zhang, C. Liu, L. Wang, Bio-high entropy alloys: progress, challenges, and opportunities. Front. Bioeng. Biotechnol. 10, 977282 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  11. M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang (eds), High-Entropy Alloys: Fundamentals and Applications (Springer, Cham, 2016).

  12. P. Zhou, P.K. Wong, P. Niu, M. Chen, C.T. Kwok, Y. Tang, R. Li, S. Wang, H. Pan, Anodized AlCoCrFeNi high-entropy alloy for alkaline water electrolysis with ultra-high performance. Sci. China Mater. 66(3), 1033–1041 (2023)

    Article  CAS  Google Scholar 

  13. S.K. Dewangan, A. Mangish, S. Kumar, A. Sharma, B. Ahn, V. Kumar, A review on high-temperature applicability: a milestone for high entropy alloys. Eng. Sci. Technol. Int. J. 35, 101211 (2022)

    Google Scholar 

  14. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  CAS  Google Scholar 

  15. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016)

    Article  CAS  Google Scholar 

  16. T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater. Lett. 189, 148–151 (2017)

    Article  CAS  Google Scholar 

  17. J. Fan, W. Zhang, Atomic scale diffusion study in quaternary and quinary alloys of Co–Cr–Fe–Mn–Ni system. Met. Mater. Int. 30(2), 457–468 (2024)

    Article  Google Scholar 

  18. H. Zheng, R. Chen, G. Qin, X. Li, Y. Su, H. Ding, J. Guo, H. Fu, Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification. J. Mater. Sci. Technol. 38, 19–27 (2020)

    Article  CAS  Google Scholar 

  19. H. Yang, J. Li, T. Guo, W.Y. Wang, H. Kou, J. Wang, Fully recrystallized Al0.5CoCrFeNi high-entropy alloy strengthened by nanoscale precipitates. Met. Mater. Int. 25(5), 1145–1150 (2019)

    Article  CAS  Google Scholar 

  20. A. Shafiei, Design of eutectic high entropy alloys in Al–Co–Cr–Fe–Ni system. Met. Mater. Int. 27(1), 127–138 (2021)

    Article  CAS  Google Scholar 

  21. J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, H.-C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261(5), 513–519 (2006)

    Article  CAS  Google Scholar 

  22. C.T. Wang, Y. He, Z. Guo, X. Huang, Y. Chen, H. Zhang, Y. He, Strain rate effects on the mechanical properties of an AlCoCrFeNi high-entropy alloy. Met. Mater. Int. 27(7), 2310–2318 (2021)

    Article  CAS  Google Scholar 

  23. L. Guo, D. Xiao, W. Wu, S. Ni, M. Song, Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)100xFex high entropy alloys processed by spark plasma sintering. Intermetallics 103, 1–11 (2018)

    Article  CAS  Google Scholar 

  24. T.-T. Shun, W.-J. Hung, Effects of Cr content on microstructure and mechanical properties of AlCoCrxFeNi high-entropy alloy. Adv. Mater. Sci. Eng. 2018, 5826467 (2018)

    Article  Google Scholar 

  25. Y. Wang, X. Li, A. Liang, Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures. Int. J. Mater. Res. 113(8), 730–743 (2022)

    Article  CAS  Google Scholar 

  26. A. Faraji, M. Farvizi, T. Ebadzadeh, H.S. Kim, Microstructure, wear performance, and mechanical properties of spark plasma-sintered AlCoCrFeNi high-entropy alloy after heat treatment. Intermetallics 149, 107656 (2022)

    Article  CAS  Google Scholar 

  27. S. Praveen, B.S. Murty, R.S. Kottada, Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65(12), 1797–1804 (2013)

    Article  CAS  Google Scholar 

  28. I. Basu, V. Ocelík, J.T. De Hosson, BCC-FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys. Acta Mater. 157, 83–95 (2018)

    Article  CAS  Google Scholar 

  29. M. Farvizi, M. Bahamirian, A. Faraji, H.S. Kim, Role of particle size of Al2O3 reinforcement on the wear performance of NiTi-based composites. Met. Mater. Int. 28, 101726 (2023)

    CAS  Google Scholar 

  30. R. Zhou, G. Chen, B. Liu, J. Wang, L. Han, Y. Liu, Microstructures and wear behaviour of (FeCoCrNi)1x(WC)x high entropy alloy composites. Int. J. Refract Metal Hard Mater. 75, 56–62 (2018)

    Article  CAS  Google Scholar 

  31. D. Yim, P. Sathiyamoorthi, S.-J. Hong, H.S. Kim, Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering. J. Alloy. Compd. 781, 389–396 (2019)

    Article  CAS  Google Scholar 

  32. B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, F. Xuan, Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects. Powder Technol. 360, 509–521 (2020)

    Article  CAS  Google Scholar 

  33. L. Zong, L. Xu, C. Luo, Z. Jiao, X. Li, W. Sun, S. Wei, Mechanical properties and strengthening mechanism of the nano-sized m-ZrO2 ceramic particle reinforced NbMoTaW refractory high-entropy alloy. Int. J. Refract Metal Hard Mater. 113, 106201 (2023)

    Article  CAS  Google Scholar 

  34. S. Yang, X. Yan, K. Yang, Z. Fu, Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131, 69–72 (2016)

    Article  CAS  Google Scholar 

  35. B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, R. Banerjee, Strengthening of Al0.3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3. Scr. Mater. 162, 477–481 (2019)

    Article  CAS  Google Scholar 

  36. M. Farvizi, T. Ebadzadeh, M.R. Vaezi, E.Y. Yoon, Y.J. Kim, H.S. Kim, A. Simchi, Microstructural characterization of HIP consolidated NiTi–nano Al2O3 composites. J. Alloy. Compd. 606, 21–26 (2014)

    Article  CAS  Google Scholar 

  37. U. Mücke, Ceramic microstructures. Property control by processing. von W. E. Lee und W. M. Rainforth, 590 Seiten, Zahlreiche Abbildungen, Chapman & Hall, London, Glasgow, Weinheim. New York, Tokio, Melbourne, Madras, 1994, £ 89.00, ISBN 0-412-43140-8. Mater. Corros. 47(6), 346–347 (1996).

  38. M. Woydt, A. Skopp, I. Dörfel, K. Witke, Wear engineering oxides/anti-wear oxides. Wear 218(1), 84–95 (1998)

    Article  CAS  Google Scholar 

  39. M. Ghanbariha, M. Farvizi, T. Ebadzadeh, Microstructural development in nanostructured AlCoCrFeNi–ZrO2 high-entropy alloy composite prepared with mechanical alloying and spark plasma sintering methods. Mater. Res. Express 6(12), 1265b5 (2019)

    Article  CAS  Google Scholar 

  40. M. Ghanbariha, M. Farvizi, T. Ebadzadeh, A. Alizadeh Samiyan, Effect of ZrO2 particles on the nanomechanical properties and wear behavior of AlCoCrFeNi–ZrO2 high entropy alloy composites. Wear 484, 204032 (2021)

    Article  Google Scholar 

  41. T. Liao, Y.-K. Cao, W.-M. Guo, Q.-H. Fang, J. Li, B. Liu, Microstructure and mechanical property of NbTaTiV refractory high-entropy alloy with different Y2O3 contents. Rare Met. 41(10), 3504–3514 (2022)

    Article  CAS  Google Scholar 

  42. A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater. Sci. Eng. A 531, 112–118 (2012)

    Article  CAS  Google Scholar 

  43. Z. Zhang, Y.H. Xie, X.Y. Huo, S.L.I. Chan, J.M. Liang, Y.F. Luo, D.K.Q. Mu, J. Ju, J. Sun, J. Wang, Microstructure and mechanical properties of ultrafine grained CoCrFeNi and CoCrFeNiAl0.3 high entropy alloys reinforced with Cr2O3/Al2O.3 nanoparticles. Mater. Sci. Eng. A 816, 141313 (2021)

    Article  CAS  Google Scholar 

  44. F.S. Kaplan, I.G. Shulik, L.S. Alekseenko, G.P. Orekhova, Properties of slips of zirconia stabilized by oxides of rare earth metals. Refractories 36(3), 82–85 (1995)

    Article  Google Scholar 

  45. O.A. Graeve, Zirconia, in Ceramic and Glass Materials: Structure, Properties and Processing, ed. by J.F. Shackelford, R.H. Doremus (Springer, New York, 2008), pp. 169–197

  46. G.P. Cousland, X.Y. Cui, A.E. Smith, A.P.J. Stampfl, C.M. Stampfl, Mechanical properties of zirconia, doped and undoped yttria-stabilized cubic zirconia from first-principles. J. Phys. Chem. Solids 122, 51–71 (2018)

    Article  CAS  Google Scholar 

  47. S.A. Ataie, R. Keshtmand, M.R. Zamani-Meymian, Nano-mechanical properties of Cr-Zr-Nb-N medium entropy alloy films produced by reactive sputtering. Int. J. Refract Metal Hard Mater. 110, 106006 (2023)

    Article  CAS  Google Scholar 

  48. S.A. Ataie, M. Soltanieh, R. Naghizadeh, A. Cavaleiro, M. Evaristo, F. Fernandes, F. Ferreira, Effect of substrate bias voltage on structural and tribological properties of W-Ti-C-N thin films produced by combinational HiPIMS and DCMS co-sputtering. Wear 520–521, 204654 (2023)

    Article  Google Scholar 

  49. R. Liu, D.Y. Li, Y.S. Xie, R. Llewellyn, H.M. Hawthorne, Indentation behavior of pseudoelastic TiNi alloy. Scripta Mater. 41(7), 691–696 (1999)

    Article  CAS  Google Scholar 

  50. K. Raja, P. Ganeshan, B.K. Singh, R.K. Upadhyay, P. Ramshankar, V. Mohanavel, Effect of mol% of Yttria in Zirconia matrix alongside a comparative study among YSZ, alumina & ZTA ceramics in terms of mechanical and functional properties. Sādhanā 48(2), 72 (2023)

    Article  CAS  Google Scholar 

  51. G. Fiquet, C. Narayana, C. Bellin, A. Shukla, I. Estève, A.L. Ruoff, G. Garbarino, M. Mezouar, Structural phase transitions in aluminium above 320GPa. C.R. Geosci. 351(2), 243–252 (2019)

    Google Scholar 

  52. S.A. Makhlouf, E. Ivanov, K. Sumiyama, K. Suzuki, Structural and magnetic properties of nanocrystalline b.c.c. cobalt particles obtained by leaching of mechanically alloyed Co Al. J. Alloys Compd. 189(1), 117–121 (1992)

    Article  CAS  Google Scholar 

  53. S. Tailor, M. Singh, A.V. Doub, Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano-clusters for thermal barrier coatings (TBCs) applications. J. Clust. Sci. 27(4), 1097–1107 (2016)

    Article  CAS  Google Scholar 

  54. B.P. Dhonge, T. Mathews, S. Rajagopalan, S. Dash, S. Dhara, A.K. Tyagi, Cubic fluorite yttria stabilized zirconia (YSZ) film synthesis by combustion chemical vapour deposition(C-CVD), in Proceedings of the International Conference on Nanoscience, Engineering and Technology (ICONSET 2011), Chennai, 28-30 November 2011 (IEEE, New York, 2011), pp. 65–68

  55. J. Yang, W.N. Martens, R.L. Frost, Transition of chromium oxyhydroxide nanomaterials to chromium oxide: a hot-stage Raman spectroscopic study. J. Raman Spectrosc. 42(5), 1142–1146 (2011)

    Article  CAS  Google Scholar 

  56. K. Song, Y. Lee, M.R. Jo, K.M. Nam, Y.-M. Kang, Comprehensive design of carbon-encapsulated Fe3O4 nanocrystals and their lithium storage properties. Nanotechnology 23(50), 505401 (2012)

    Article  PubMed  Google Scholar 

  57. S. Benafia, D. Retraint, S. Yapi Brou, B. Panicaud, J.L. Grosseau Poussard, Influence of surface mechanical attrition treatment on the oxidation behaviour of 316L stainless steel. Corros. Sci. 136, 188–200 (2018)

    Article  CAS  Google Scholar 

  58. C. Laurent, A. Rousset, Metal-oxide ceramic matrix nanocomposites. Key Eng. Mater. 108–110, 405–406 (1995)

    Article  Google Scholar 

  59. M. Bai, L. Yang, J. Li, L. Luo, S. Sun, B. Inkson, Mechanical and tribological properties of Si and W doped diamond like carbon (DLC) under dry reciprocating sliding conditions. Wear 484–485, 204046 (2021)

    Article  Google Scholar 

  60. X. Liu, Y. Wang, L. Qin, Z. Guo, Z. Lu, X. Zhao, H. Dong, Q. Xiao, Friction and wear properties of a novel interface of ordered microporous Ni-based coating combined with MoS2 under complex working conditions. Tribol. Int. 189, 108970 (2023)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farvizi.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbariha, M., Farvizi, M., Ataie, S.A. et al. Effect of YSZ Particle Size and Content on Microstructure, Mechanical and Tribological Properties of (CoCrFeNiAl)1−x(YSZ)x High Entropy Alloy Composites. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01656-2

Keywords

Navigation