Skip to main content
Log in

Microstructure, Mechanical and Tribological Properties of the x SiC—(1-x) WC—10 wt.% Co Composites Prepared by High-Energy Milling and Spark Plasma Sintering

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work proposes to characterize the composites manufactured of SiC, WC, and Co [x SiC–(1-x) WC–10 wt.% Co], with x = 0, 0.25, 0.50, 0.75 and 1. These composites were prepared by high-energy milling (HEM) and consolidated by spark plasma sintering (SPS). The results showed that HEM promoted a decrease in particle size, dispersion, and homogenization of the constituent phases, improving the densification and mechanical properties of the composites. The WC-Co showed high relative density (96.37%) and microhardness (9.4 GPa) values. The tribological behavior of the composites was evaluated by a pin-on-disk tribometer, applied against 1020 steel discs with a 5-N load in non-lubricated conditions. There was a significant effect from the variations in the contents of SiC and WC in the wear volumes (3.13 × 10−2–49.0 × 10−2 mm3) and wear rates (0.63 × 10−5–9.83 × 10−5 mm3/N m) of the composites. Tribological tests showed that the composites sintered by SPS proved to be a promising material with good tribological performance and attractive for components/devices subjected to wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of a continuing study.

References

  1. H. Abderrazak, and E.S.B. Hadj Hmi, in Prop (Appl, Silicon Carbide (InTech), 2011).

    Google Scholar 

  2. B. Ghosh, and S.K. Pradhan, J. Alloys Compd. 486, 480 (2009).

    Article  Google Scholar 

  3. G. Roewer, U. Herzog, K. Trommer, E. Müller, and S. Frühauf, in High Perform. Non-Oxide Ceram. I (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002), pp. 59–135.

  4. V. Raman, O.P. Bahl, and U. Dhawan, J. Mater. Sci. 30, 2686 (1995).

    Article  Google Scholar 

  5. S.K. Sharma, B. Venkata Manoj Kumar, and Y.W. Kim, Int. J. Refract. Met. Hard Mater. 68, 166 (2017).

    Article  Google Scholar 

  6. S.K. Sharma, B.V.M. Kumar, K.-Y. Lim, Y.-W. Kim, and S.K. Nath, Ceram. Int. 40, 6829 (2014).

    Article  Google Scholar 

  7. S. Gupta, S.K. Sharma, B.V.M. Kumar, and Y.W. Kim, Ceram. Int. 41, 14780 (2015).

    Article  Google Scholar 

  8. S.K. Sharma, B.V.M. Kumar, and Y.-W. Kim, J. Korean Ceram. Soc. 53, 581 (2016).

    Article  Google Scholar 

  9. H. Liu, M.E. Fine, and H.S. Cheng, J. Am. Ceram. Soc. 74, 2224 (1991).

    Article  Google Scholar 

  10. C. Zishan, L. Hejun, F. Qiangang, C. Yanhui, W. Shaolong, and H. Zibo, Ceram. Int. 39, 1765 (2013).

    Article  Google Scholar 

  11. B. Guimarães, C.M. Fernandes, D. Figueiredo, M.F. Cerqueira, O. Carvalho, F.S. Silva, and G. Miranda, Ceram. Int. 46, 3002 (2020).

    Article  Google Scholar 

  12. A. Fazili, M.R. Derakhshandeh, S. Nejadshamsi, L. Nikzad, M. Razavi, and E. Ghasali, J. Alloys Compd. 823, 153857 (2020).

    Article  Google Scholar 

  13. H.V.S.B. Azevêdo, R.A. Raimundo, D.D.S. Silva, L.M.F. Morais, F.A. Costa, D.A. Macedo, D.G.L. Cavalcante, and U.U. Gomes, J. Mater. Eng. Perform. 30, 1504 (2021).

    Article  Google Scholar 

  14. X. Li, Y. Liu, W. Wei, M. Du, K. Li, J. Zhou, and K. Fu, Mater. Des. 90, 562 (2016).

    Article  Google Scholar 

  15. L. An, J. Han, and J. Chen, J. Univ. Sci. Technol. Beijing. Miner. Metall. Mater. 13, 174 (2006).

    Google Scholar 

  16. Z. Wang, Y. Liu, K. Liu, and B. Wang, Ceram. Int. 45, 23658 (2019).

    Article  Google Scholar 

  17. P. Siwak, and D. Garbiec, Trans. Nonferrous Met. Soc. China 26, 2641 (2016).

    Article  Google Scholar 

  18. P.A. Olubambi, K.K. Alaneme, and A. Andrews, Int. J. Refract. Met. Hard Mater. 50, 163 (2014).

    Article  Google Scholar 

  19. R.M. Genga, G. Akdogan, J.E. Westraadt, and L.A. Cornish, Int. J. Refract. Met. Hard Mater. 49, 240 (2015).

    Article  Google Scholar 

  20. K.H. Lee, S.I. Cha, B.K. Kim, and S.H. Hong, Int. J. Refract. Met. Hard Mater. 24, 109 (2006).

    Article  Google Scholar 

  21. H.V.S.B. Azevêdo, R.A. Raimundo, D.D.S. Silva, L.M.F. Morais, D.A. Macedo, D.G.L. Cavalcante, and U.U. Gomes, Int. J. Refract. Met. Hard Mater. 94, 105408 (2021).

    Article  Google Scholar 

  22. D.M. Hulbert, A. Anders, J. Andersson, E.J. Lavernia, and A.K. Mukherjee, Scr. Mater. 60, 835 (2009).

    Article  Google Scholar 

  23. D. Hitchcock, R. Livingston, and D. Liebenberg, J. Appl. Phys 17(17), 174505 (2015).

    Article  Google Scholar 

  24. S. Hocquet, V. Dupont, F. Cambier, F. Ludewig, and N. Vandewalle, J. Eur. Ceram. Soc. 40, 2586 (2020).

    Article  Google Scholar 

  25. E. Ghasali, R. Yazdani-rad, K. Asadian, and T. Ebadzadeh, J. Alloys Compd. 690, 512 (2017).

    Article  Google Scholar 

  26. E. Ghasali, H. Nouranian, A. Rahbari, H. Majidian, M. Alizadeh, and T. Ebadzadeh, Mater. Res. 19, 1189 (2016).

    Article  Google Scholar 

  27. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  28. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  29. C. Suryanarayana, and N. Al-Aqeeli, Prog. Mater. Sci. 58, 383 (2013).

    Article  Google Scholar 

  30. N.T. Câmara, R.A. Raimundo, C.S. Lourenço, L.M.F. Morais, D.D.S. Silva, R.M. Gomes, M.A. Morales, D.A. Macedo, U.U. Gomes, and F.A. Costa, Adv. Powder Technol. 32, 2950 (2021).

    Article  Google Scholar 

  31. M.C.L. Silva, M.M.B. Leite, R.A. Raimundo, G.F. Henriques, S.M. Valcacer, M. Mashhadikarimi, M.A. Morales, and U.U. Gomes, Ceram. Int. 48, 19026 (2022).

    Article  Google Scholar 

  32. M. Shirani, M. Rahimipour, M. Zakeri, S. Safi, and T. Ebadzadeh, Ceram. Int. 43, 14517 (2017).

    Article  Google Scholar 

  33. J.F. Guria, A. Bansal, V. Kumar, and B.V. Manoj Kumar, Ceram. Int. 48, 12675 (2022).

    Google Scholar 

  34. E. Ghasali, T. Ebadzadeh, M. Alizadeh, and M. Razavi, J. Alloys Compd. 786, 938 (2019).

    Article  Google Scholar 

  35. S. Liu, D.Q. Yi, Y.X. Li, and D. Zou, Acta Metall. Sin. 15, 448 (2002).

    Google Scholar 

  36. R.A. Raimundo, K.V.A. Santos, C.S. Lourenço, F.A. Costa, M.A. Morales, D.A. Macedo, A.G.P. Silva, and U.U. Gomes, Ceram. Int. 47, 677 (2021).

    Article  Google Scholar 

  37. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).

    Article  Google Scholar 

  38. ASTM B962-13: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. ASTM International (2013).

  39. K. Ponhan, K. Tassenberg, D. Weston, K.G.M. Nicholls, and R. Thornton, Ceram. Int. 46, 26956 (2020).

    Article  Google Scholar 

  40. M.A. Taha, and M.F. Zawrah, Ceram. Int. 46, 19519 (2020).

    Article  Google Scholar 

  41. ASTM E384-99: Standard Test Method for Microindentation Hardness of Materials. ASTM International (1999).

  42. J.F. Archard, J. Appl. Phys. 24, 981 (1953).

    Article  Google Scholar 

  43. W. Pitschke, H. Hermann, and N. Mattern, Powder Diffr. 8, 74 (1993).

    Article  Google Scholar 

  44. P. Krishna, and A.R. Verma, Acta Crystallogr. 15, 383 (1962).

    Article  Google Scholar 

  45. E. A. Owen and D. M. Jones, IOPScience 456 (1954)

  46. J. García, V. Collado Ciprés, A. Blomqvist, and B. Kaplan, Int. J. Refract. Met. Hard Mater. 80, 40 (2019).

    Article  Google Scholar 

  47. A. Nino, Y. Nakaibayashi, S. Sugiyama, and H. Taimatsu, Mater. Trans. 52, 1641 (2011).

    Article  Google Scholar 

  48. R.W. Rice, C.C. Wu, and F. Boichelt, J. Am. Ceram. Soc. 77, 2539 (1994).

    Article  Google Scholar 

  49. E.A.D. Leal, U.U. Gomes, S.M. Alves, and F.A. Costa, Int. J. Refract. Met. Hard Mater. 92, 105275 (2020).

    Article  Google Scholar 

  50. W. Zhang, S. Yamashita, and H. Kita, Mater. Des. 190, 108528 (2020).

    Article  Google Scholar 

  51. W. Zhang, S. Yamashita, and H. Kita, J. Mater. Res. Technol. 9, 12880 (2020).

    Article  Google Scholar 

  52. W. Zhang, Curr. Opin. Solid State Mater. Sci. 26, 101000 (2022).

    Article  Google Scholar 

  53. A. Öztürk, K.V. Ezirmik, K. Kazmanlı, M. Ürgen, O.L. Eryılmaz, and A. Erdemir, Tribol. Int. 41, 49 (2008).

    Article  Google Scholar 

  54. M. Sarkar, and N. Mandal, Mater. Today Proc. 66, 3762 (2022).

    Article  Google Scholar 

  55. M. Godet, Wear 136, 29 (1990).

    Article  Google Scholar 

  56. K.H. Zum Gahr, R. Blattner, D.H. Hwang, and K. Pöhlmann, Wear 250(1–12), 299–310 (2001).

    Article  Google Scholar 

  57. S.K. Sharma, B.V.M. Kumar, and Y.W. Kim, Ceram. Int. 41, 3427 (2015).

    Article  Google Scholar 

  58. D.C. Cranmer, J. Mater. Sci. 20, 2029 (1985).

    Article  Google Scholar 

  59. V.S.R. Murthy, H. Kobayashi, S. Tsurekawa, N. Tamari, T. Watanabe, and K. Kato, Tribol. Int. 37, 353 (2004).

    Article  Google Scholar 

  60. S.K. Sharma, B.V. Manoj Kumar, and Y.W. Kim, Friction. 7, 129–142 (2019).

    Article  Google Scholar 

  61. P. Andersson, and A. Blomberg, Wear 174, 1 (1994).

    Article  Google Scholar 

  62. B.M. Kumar, Y.W. Kim, D.S. Lim, and W.S. Seo, Ceram. Int. 37(8), 3599–3608 (2011).

    Article  Google Scholar 

  63. S.K. Sharma, B.V. Kumar, K.Y. Lim, Y.W. Kim, and S.K. Nath, Ceram. Int. 40(5), 6829–6839 (2014).

    Article  Google Scholar 

  64. S.K. Sharma, B.V.M. Kumar, B.B. Zugelj, M. Kalin, and Y.W. Kim, Ceram. Int. 43, 16827 (2017).

    Article  Google Scholar 

  65. I. Gotman, E.Y. Gutmanas, and G. Hunter, Compr. Biomater. II 1, 165 (2017).

    Google Scholar 

  66. W. Fu, Q.Y. Chen, C. Yang, D.L. Yi, H.L. Yao, H.T. Wang, G.C. Ji, and F. Wang, Ceram. Int. 46, 14940 (2020).

    Article  Google Scholar 

  67. ISO 4287–02: Geometrical Product Specifications (GPS) –Surface Texture: Profile Method–Terms, Definitions and Surface Texture Parameters (2002).

  68. ISO 25178–2: Geometrical Product Specifications (GPS)-Surface Texture: Areal--Part 2: Terms, Definitions and Surface Texture Parameters (2012).

Download references

Acknowledgements

The authors would like to acknowledge the support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brazil (CAPES) –Finance Code 001. The LAINEZ is acknowledged for supplying the tungsten carbide powder.

Funding

General financial support received from CAPES/Brazil. No interference with study design and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heytor V. S. B. Azevêdo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevêdo, H.V.S.B., Raimundo, R.A., Morais, L.M.F. et al. Microstructure, Mechanical and Tribological Properties of the x SiC—(1-x) WC—10 wt.% Co Composites Prepared by High-Energy Milling and Spark Plasma Sintering. JOM 75, 1660–1671 (2023). https://doi.org/10.1007/s11837-023-05754-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05754-1

Navigation