Skip to main content
Log in

Microstructure and Near-Surface Tribological Property Correlations in Al-Cu Alloy Reinforced with Al2O3 Nanoparticles

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Strength and wear properties of metal matrix composites are important because of their numerous applications in automotive and aerospace industries. In the present study, Al-Cu alloy-based nanocomposites reinforced with different volume percentages of Al2O3 particles were developed by reactive stir mixing of nanocrystalline CuO powder in molten Al. X-ray diffraction (XRD) patterns of the resulting nanocomposites revealed the presence of Al2O3 reinforcements and CuAl2 intermetallic particles. Microstructural characteristics of the samples were investigated and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM analysis revealed the presence of geometrically necessary dislocations and microcracks inside the sample. Average dislocation density was determined by the modified Warren–Averbach method from XRD patterns. The near-surface wear behavior of the composites was studied by nanoscratch tests. The results were correlated with the microstructural features and dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Jiang, Z. Tan, R. Xu, G. Fan, D.B. Xiong, Q. Guo, Y. Su, Z. Li, and D. Zhang, Tailoring the Structure and Mechanical Properties of Graphene Nanosheet/Aluminum Composites by Flake Powder Metallurgy via Shift-Speed Ball Milling, Compos Part A Appl Sci Manuf, 2018, 111, p 73-82. https://doi.org/10.1016/j.compositesa.2018.05.022

    Article  CAS  Google Scholar 

  2. N. Samer, J. Andrieux, B. Gardiola, N. Karnatak, O. Martin, H. Kurita, L. Chaffron, S. Gourdet, S. Lay, and O. Dezellus, Microstructure and Mechanical Properties of an Al-TiC Metal Matrix Composite Obtained by Reactive Synthesis, Compos Part A Appl Sci Manuf, 2015, 72, p 50-57. https://doi.org/10.1016/j.compositesa.2015.02.001

    Article  CAS  Google Scholar 

  3. H. Arami, A. Simchi, and S.M.S. Reihani, Mechanical Induced Reaction in Al–CuO System for in-situ Fabrication of Al Based Nanocomposites, J Alloys Compd, 2008, 465, p 151-156. https://doi.org/10.1016/j.jallcom.2007.10.099

    Article  CAS  Google Scholar 

  4. M. Karbalaei Akbari, O. Mirzaee, and H.R. Baharvandi, Fabrication and Study on Mechanical Properties and Fracture Behavior of Nanometric Al2O3 Particle-Reinforced A356 Composites Focusing on the Parameters of Vortex Method, Mater Des, 2013, 46, p 199-205. https://doi.org/10.1016/j.matdes.2012.10.008

    Article  CAS  Google Scholar 

  5. S. Chatterjee and A.B. Mallick, Challenges in Manufacturing Aluminium Based Metal Matrix Nanocomposites via Stir Casting Route, Mater Sci Forum, 2013, 736, p 72-80. https://doi.org/10.4028/www.scientific.net/MSF.736.72

    Article  CAS  Google Scholar 

  6. X. Zhang, S. Li, and D. Pan, Microstructure and Synergistic-Strengthening Efficiency of CNTs-SiCp Dual-nano Reinforcements in Aluminum Matrix Composites, Compos Part A Appl Sci Manuf, 2018, 105, p 87-96. https://doi.org/10.1016/j.compositesa.2017.11.013

    Article  CAS  Google Scholar 

  7. D. Siva Prasad and C. Shoba, Hybrid Composites – A Better Choice for High Wear Resistant Materials, J Mater Res Technol, 2014, 3, p 172-178. https://doi.org/10.1016/j.jmrt.2014.03.004

    Article  CAS  Google Scholar 

  8. O.B. Bembalge and S.K. Panigrahi, Influence of SiC Ceramic Reinforcement Size in Establishing Wear Mechanisms and Wear Maps of Ultrafine Grained AA6063 Composites, Ceram. Int., 2019, 45, p 20091-20104. https://doi.org/10.1016/j.ceramint.2019.06.274

    Article  CAS  Google Scholar 

  9. S.R. Bakshi, A.K. Keshri, and A. Agarwal, A Comparison of Mechanical and Wear Properties of Plasma Sprayed Carbon Nanotube Reinforced Aluminum Composites at Nano and Macro Scale, Mater Sci Eng A, 2011, 528, p 3375-3384. https://doi.org/10.1016/j.msea.2011.01.061

    Article  CAS  Google Scholar 

  10. M.F. Zawrah, H. Abdel-Kader, and N.E. Elbaly, Fabrication of Al2O3–20 vol% Al Nanocomposite Powders Using High Energy Milling and their Sinterability, Mater Res Bull, 2012, 47, p 655-661. https://doi.org/10.1016/j.materresbull.2011.12.023

    Article  CAS  Google Scholar 

  11. K. Dash, D. Chaira, and B.C. Ray, Synthesis and Characterization of Aluminium-Alumina Micro- and Nano-Composites by Spark Plasma Sintering, Mater Res Bull, 2013, 48, p 2535-2542. https://doi.org/10.1016/j.materresbull.2013.03.014

    Article  CAS  Google Scholar 

  12. S. Mula, P. Padhi, S.C. Panigrahi, S.K. Pabi, and S. Ghosh, On Structure and Mechanical Properties of Ultrasonically Cast Al-2% Al2O3 Nanocomposite, Mater Res Bull, 2009, 44, p 1154-1160. https://doi.org/10.1016/j.materresbull.2008.09.040

    Article  CAS  Google Scholar 

  13. G. Zhao, Z. Shi, N. Ta, G. Ji, and R. Zhang, Effect of the Heating Rate on the Microstructure of in situ Al2O3 Particle-Reinforced Al Matrix Composites Prepared via Displacement Reactions in an Al/CuO System, Mater. Des., 2015, 66, p 492-497. https://doi.org/10.1016/j.matdes.2014.06.023

    Article  CAS  Google Scholar 

  14. A.R. Najarian, R. Emadi, and M. Hamzeh, Fabrication of as-cast Al Matrix Composite Reinforced by Al2O3/Al3Ni Hybrid Particles via In-situ Reaction and Evaluation of its Mechanical Properties, Mater. Sci. Eng., B, 2018, 231, p 57-65. https://doi.org/10.1016/j.mseb.2018.09.002

    Article  CAS  Google Scholar 

  15. S. Chatterjee, A. Ghosh, and A. Basu Mallick, Understanding the Evolution of Microstructural Features in the in-situ Intermetallic Phase Reinforced Al/Al3Ti Nanocomposite, Mater Today: Proceed, 2018, 5(3), p 10118-10130. https://doi.org/10.1016/j.matpr.2017.11.008

    Article  CAS  Google Scholar 

  16. T. Venugopal, K. Prasad Rao, and B.S. Murty, Synthesis of Copper-Alumina Nanocomposite by Reactive Milling, Mater Sci Eng A, 2005, 393, p 382-386. https://doi.org/10.1016/j.msea.2004.10.035

    Article  CAS  Google Scholar 

  17. K. Gao, S. Song, S. Li, and H. Fu, Characterization of Microstructures and Growth Orientation Deviating of Al2Cu Phase Dendrite at Different Directional Solidification Rates, Compos Part A Appl Sci Manuf, 2018, 111, p 73-82. https://doi.org/10.1016/j.compositesa.2018.05.022

    Article  CAS  Google Scholar 

  18. L. Huang, T.D. Topping, H. Yang, E.J. Lavernia, and J.M. Schoenung, Nanoscratch-Induced Deformation Behaviour in B4C Particle Reinforced Ultrafine Grained Al Alloy Composites: A Novel Diagnostic Approach, Philos Mag, 2014, 94, p 1754-1763. https://doi.org/10.1080/14786435.2014.895442

    Article  CAS  ADS  Google Scholar 

  19. C. Ouyang, M. Huang, Z. Li, and L. Hu, Circular Nano-Indentation in Particle-Reinforced Metal Matrix Composites: Simply Uniformly Distributed Particles Lead to Complex Nano-Indentation Response, Comput Mater Sci, 2010, 47, p 940-950. https://doi.org/10.1016/j.commatsci.2009.11.027

    Article  CAS  Google Scholar 

  20. M. Omidi, A. Khodabandeh, S. Nategh, and M. Khakbiz, Wear Mechanisms Maps of CNT Reinforced Al6061 Nanocomposites Treated by Cryomilling and Mechanical Milling, Tribol Int, 2017, 110, p 151-160. https://doi.org/10.1016/j.triboint.2017.01.033

    Article  CAS  Google Scholar 

  21. A. Hodzic, S. Kalyanasundaram, J.K. Kim, A.E. Lowe, and Z.H. Stachurski, Application of Nano-indentation, Nano-scratch and Single Fibre Tests in Investigation of Interphases in Composite Materials, Micron, 2001, 32, p 765-775. https://doi.org/10.1016/S0968-4328(00)00084-6

    Article  CAS  Google Scholar 

  22. Y. Chen, S.R. Bakshi, and A. Agarwal, Surface & Coatings Technology Correlation Between Nanoindentation and Nanoscratch Properties of Carbon Nanotube Reinforced Aluminum Composite Coatings, Surf Coat Technol, 2010, 204, p 2709-2715. https://doi.org/10.1016/j.surfcoat.2010.02.024

    Article  CAS  Google Scholar 

  23. T. Ungár, I. Dragomir, Á. Révész, and A. Borbély, The Contrast Factors of Dislocations in Cubic Crystals: the Dislocation Model of Strain Anisotropy in Practice, J Appl Crystallogr, 1999, 32, p 992-1002. https://doi.org/10.1107/S0021889899009334

    Article  ADS  Google Scholar 

  24. T. Ungár, Dislocation Densities, Arrangements and Character from x-ray Diffraction Experiments, Mater Sci Eng A, 2000, 14219, p 1-9.

    Google Scholar 

  25. S. Chatterjee and A.B. Mallick, Insights into the Microstructural Parameters and Mechanical Property Correlation of Al3Ti Phase Reinforced Al Based Nanocomposites, Mater Sci Eng Technol, 2019, 50, p 1459-1470. https://doi.org/10.1002/mawe.201800110

    Article  CAS  Google Scholar 

  26. J.P. Lokker, Localized Stress Near and the Thermal Expansion of Al2Cu Precipitates in an Al Thin Film Matrix, J. Appl. Phys., 2000, 87, p 682-688. https://doi.org/10.1063/1.371926

    Article  CAS  ADS  Google Scholar 

  27. J. Na, Q. Chen, and X. Ren, Chapter 1 - Friction Dynamics and Modeling, Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics, 1st ed. Academic Press, Cambridge, 2018, p 11-18. https://doi.org/10.1016/B978-0-12-813683-6.00003-9

    Book  Google Scholar 

  28. S. Chatterjee, S. Ghosh Sur, S. Bandyopadhyay, and A. Basumallick, Effect of Microstructure and Residual Stresses on Nano-Tribological and Tensile Properties of Al2O3- and SiC-Reinforced 6061-Al Metal Matrix Composites, J Compos Mater, 2015 https://doi.org/10.1177/0021998315611481

    Article  Google Scholar 

  29. B. Bhushan, Nanotribology and Nanomechanics: An Introduction, 4th ed. Springer, Berlin, 2017. https://doi.org/10.1007/978-3-319-51433-8

    Book  Google Scholar 

Download references

Acknowledgments

We acknowledge the grant received from DST (DST/INT/AUS/PROJ/T-2/08(1)) and TEQIP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Basu Mallick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Sengupta, B. & Mallick, A.B. Microstructure and Near-Surface Tribological Property Correlations in Al-Cu Alloy Reinforced with Al2O3 Nanoparticles. J. of Materi Eng and Perform 33, 1518–1526 (2024). https://doi.org/10.1007/s11665-023-08063-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08063-5

Keywords

Navigation