Skip to main content

Advertisement

Log in

Consensus Paper: Cerebellum and Ageing

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer’s disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data shown in the figures are available on request.

Abbreviations

AD::

Alzheimer’s disease

APP:

Amyloid precursor protein

CES-D:

Center of epidemiology studies depression scale

ctDCS:

Cerebellar transcranial direct current stimulation

DAN:

Dorsal attention network

DMN:

Default mode network

FC:

Functional connectivity

fNIRS:

Functional near-infrared spectroscopy

GMV:

Grey matter volume

ILAS :

I-LAN longitudinal aging study

MCI:

Mild cognitive impairment

MF:

Mossy fiber

NIBS :

Non invasive brain stimulation

PCDS:

Physio-cognitive decline syndrome

PS:

Processing speed

SN:

Salience network

SNPs:

Single-nucleotide polymorphisms

VFM:

Volume fraction myelin

WMH:

White matter hyperintensities.

References

  1. Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Sillitoe RV. Handbook of Cerebellum and Cerebellar Disorders. Springer; 2022.

    Book  Google Scholar 

  2. Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, Guell X, Heleven E, Lupo M, Ma Q, Michelutti M, Olivito G, Pu M, Rice LC, Schmahmann JD, Siciliano L, Sokolov AA, Stoodley CJ, van Dun K, et al. Consensus Paper: cerebellum and social cognition. Cerebellum. 2020;19(6):833–68.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bareš M, Apps R, Avanzino L, Breska A, D’Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: decoding the contributions of the cerebellum as a time machine. from neurons to clinical applications. Cerebellum. 2019;18(2):266–86.

    Article  PubMed  Google Scholar 

  4. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19(6):338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D’Angelo E. Physiology of the cerebellum. Handb Clin Neurol. 2018;154:85–108.

    Article  PubMed  Google Scholar 

  6. GBD 2017 US Neurological Disorders Collaborators, Feigin VL, Vos T, Alahdab F, AML A, Bärnighausen TW, Beghi E, Beheshti M, Chavan PP, Criqui MH, Desai R, Dhamminda Dharmaratne S, Dorsey ER, Wilder Eagan A, Elgendy IY, Filip I, Giampaoli S, Giussani G, Hafezi-Nejad N, et al. Burden of neurological disorders across the US from 1990-2017: a global burden of disease study. JAMA Neurol. 2021;78(2):165–76.

    Article  Google Scholar 

  7. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565–81.

    Article  PubMed  Google Scholar 

  8. Jacobs HIL, Hopkins DA, Mayrhofer HC, Bruner E, van Leeuwen FW, Raaijmakers W, Schmahmann JD. The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline. Brain. 2018;141(1):37–47.

    Article  PubMed  Google Scholar 

  9. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–65.

    Article  CAS  PubMed  Google Scholar 

  10. Wencil EB, Coslett HB, Aguirre GK, Chatterjee A. Carving the clock at its component joints: neural bases for interval timing. J Neurophysiol. 2010;104(1):160–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buonomano DV, Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci. 2009;10(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  12. Filip P, Lošák J, Kašpárek T, Vaníček J, Bareš M. Neural network of predictive motor timing in the context of gender differences. Neural Plast. 2016;2016

  13. Filip P, Gallea C, Lehéricy S, Bertasi E, Popa T, Mareček R, et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord. 2017;32(5):757–68.

    Article  PubMed  Google Scholar 

  14. Bares M, Husarova I, Lungu OV. Essential tremor, the cerebellum, and motor timing: towards integrating them into one complex entity. Tremor Other Hyperkinetic Mov. 2012;2:1–9.

    Google Scholar 

  15. Naccarato M, Calautti C, Jones PS, Day DJ, Carpenter TA, Baron JC. Does healthy aging effect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. Neuroimage. 2006;32(3):1250–6.

    Article  CAS  PubMed  Google Scholar 

  16. Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, et al. Neurophysiological correlates of age-related changes in human motor function. Neurology. 2002;58(4):630.

    Article  CAS  PubMed  Google Scholar 

  17. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Ann Rev Psychol. 2009;60:173–96.

    Article  Google Scholar 

  18. Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 2001;22(4):581–94.

    Article  CAS  PubMed  Google Scholar 

  19. Bernard J, Nguyen AD, Hausman HK, Maldonado T, Ballard HK, Eakin SM, et al. Shaky scaffolding: age differences in cerebellar activation revealed through activation likelihood estimation meta-analysis. bioRxiv. 2019:716530.

  20. Horvath S, Mah V, Lu AT, Woo JS, Choi OW, Jasinska AJ, et al. The cerebellum ages slowly according to the epigenetic clock. Aging (Albany NY). 2015;7(5):294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):3156.

    Article  Google Scholar 

  22. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993;34(4):609–16.

    Article  CAS  PubMed  Google Scholar 

  23. Filip P, Gallea C, Lehéricy S, Lungu O, Bareš M. Neural scaffolding as the foundation for stable performance of aging cerebellum. Cerebellum. 2019;18(3):500–10.

    Article  PubMed  Google Scholar 

  24. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  25. Filip P, Lungu OV, Bareš M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol. 2013;124(7):1269–76.

    Article  PubMed  Google Scholar 

  26. Marcián V, Filip P, Bareš M, Brázdil M. Cerebellar dysfunction and ataxia in patients with epilepsy: coincidence, consequence, or cause? Tremor Other Hyperkinetic Mov. 2016;6:376.

    Article  Google Scholar 

  27. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Yamazaki T. Consensus Paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kansal K, Yang Z, Fishman AM, Sair HI, Ying SH, Jedynak BM, Onyike CU. Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain. 2016:140. https://doi.org/10.1093/brain/aww327.

  29. Langner R, Eickhoff SB. Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull. 2013;139(4):870–900.

    Article  PubMed  Google Scholar 

  30. Keren‐Happuch E, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615.

    Article  Google Scholar 

  31. Roberts RD, StankovL. Individual differences in speed of mental processing and human cognitive abilities: troward a taxonomic model. Learning Individ Diff. 1999:11. https://doi.org/10.1016/S1041-6080(00)80007-2.

  32. Habeck C, Gazes Y, Razlighi Q, Steffener J, Brickman A, Barulli D, Stern Y. The reference ability neural network study: life-time stability of reference-ability neural networks derived from task maps of young adults. Neuroimage. 2016:125. https://doi.org/10.1016/j.neuroimage.2015.10.077.

  33. Habas C. Functional connectivity of the cognitive cerebellum. Front Syst Neurosci. 2021:15. https://doi.org/10.3389/fnsys.2021.642225.

  34. Forn C, Ripollés P, Cruz-Gómez AJ, Belenguer A, González-Torre JA, Ávila C. Task-load manipulation in the symbol digit modalities test: an alternative measure of information processing speed. Brain Cognition. 2013:82. https://doi.org/10.1016/j.bandc.2013.04.003.

  35. Silva PHR, Spedo CT, Baldassarini CR, Benini CD, Ferreira DA, Barreira AA, Leoni RF. Brain functional and effective connectivity underlying the information processing speed assessed by the Symbol Digit Modalities Test. Neuroimage. 2019:184. https://doi.org/10.1016/j.neuroimage.2018.09.080.

  36. Wong CHY, Liu J, Lee TMC, Tao J, Wong AWK, Chau BKH, Chan CCH. Fronto-cerebellar connectivity mediating cognitive processing speed. Neuroimage. 2021:226. https://doi.org/10.1016/j.neuroimage.2020.117556.

  37. Gao M, CHY W, Huang H, Shao R, Huang R, CCH C, TMC L. Connectome-based models can predict processing speed in older adults. Neuroimage. 2020;223 https://doi.org/10.1016/j.neuroimage.2020.117290.

  38. Wong CHY, Liu J, Tao J, Chen LD, Yuan HL, Wong MNK, Xu YW, Lee TMC, Chan CCH. Causal influences of salience/cerebellar networks on dorsal attention network subserved age-related cognitive slowing. GeroScience. 2022; https://doi.org/10.1007/s11357-022-00686-1.

  39. Bernard JA, Seidler RD. Moving forward: age effects on the cerebellum underlie cognitive and motor declines. Neurosci Biobehav Rev. 2014:42. https://doi.org/10.1016/j.neubiorev.2014.02.011.

  40. Eckert MA. Slowing down: age-related neurobiological predictors of processing speed. Front Neurosci. 2011:5. https://doi.org/10.3389/fnins.2011.00025.

  41. Ramnani N. Chapter 10 Automatic and controlled processing in the corticocerebellar system. Progr Brain Res. 2014;210 https://doi.org/10.1016/B978-0-444-63356-9.00010-8.

  42. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  43. Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38:3106–14.

    Article  PubMed  Google Scholar 

  44. Bernard JA, Peltier SJ, Wiggins JL, Jaeggi SM, Buschkuehl M, Fling BW, Kwak Y, Jonides J, Monk CS, Seidler RD. Disrupted cortico-cerebellar connectivity in older adults. Neuroimage. 2013;83:103–19.

    Article  PubMed  Google Scholar 

  45. Di Martino A, Scheres A, Margulies DS, Kelly AMC, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP. Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex. 2008;18:2735–47.

    Article  PubMed  Google Scholar 

  46. Hausman HK, Jackson TB, Goen JRM, Bernard JA. From synchrony to asynchrony: cerebellar-basal ganglia functional circuits in young and older adults. Cereb Cortex. 2020;30:718–29.

    PubMed  Google Scholar 

  47. Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, Jaeggi SM, Buschkuehl M, Monk CS, Jonides J, Peltier SJ. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012;10(6):31.

    Google Scholar 

  48. Jackson TB, Bernard JA. Cerebello-basal ganglia networks and cortical network global efficiency. Cerebellum. 2022; https://doi.org/10.1007/s12311-022-01418-z.

  49. Klostermann EC, Braskie MN, Landau SM, O’Neil JP, Jagust WJ. Dopamine and frontostriatal networks in cognitive aging. Neurobiol Aging. 2012;33:623.e15–24.

    Article  CAS  PubMed  Google Scholar 

  50. Bernard JA, Ballard HK, Jackson TB. Cerebellar dentate connectivity across adulthood: a large-scale resting state functional connectivity investigation. Cereb Cortex Commun. 2021;2:tgab050.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Carp J, Park J, Polk TA, Park DC. Age differences in neural distinctiveness revealed by multi-voxel pattern analysis. Neuroimage. 2011;56:736–43.

    Article  PubMed  Google Scholar 

  52. Festini SB, Bernard JA, Kwak Y, Peltier S, Bohnen NI, Müller MLTM, Dayalu P, Seidler RD. Altered cerebellar connectivity in parkinson’s patients ON and OFF L-DOPA medication. Front Hum Neurosci. 2015;9:214. https://doi.org/10.3389/fnhum.2015.00214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kelly C, De Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci. 2009;29:7364–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease : substantia nigra regional selectivity. Brain. 1991;114:2283–301.

    Article  PubMed  Google Scholar 

  55. Hogan MJ. The cerebellum in thought and action: a fronto-cerebellar aging hypothesis. New Ideas Psychol. 2004;22:97–125. https://doi.org/10.1016/j.newideapsych.2004.09.002.

    Article  Google Scholar 

  56. Hogan MJ, Staff RT, Bunting BD, et al. Cerebellar brain volume accounts for variance in cognitive performance in older adults. Cortex. 2011;47:441–50. https://doi.org/10.1016/j.cortex.2010.01.001.

    Article  PubMed  Google Scholar 

  57. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78. https://doi.org/10.1176/jnp.16.3.367.

    Article  PubMed  Google Scholar 

  58. Han S, An Y, Carass A, Prince JL, Resnick SM. Longitudinal analysis of regional cerebellum volumes during normal aging. Neuroimage. 2020;220:117062. https://doi.org/10.1016/j.neuroimage.2020.117062.

    Article  PubMed  Google Scholar 

  59. Nadkarni NK, Nunley KA, Aizenstein H, et al. Association between cerebellar gray matter volumes, gait speed, and information-processing ability in older adults enrolled in the Health ABC study. J Gerontol A Biol Sci Med Sci. 2014;69:996–1003. https://doi.org/10.1093/gerona/glt151.

    Article  PubMed  Google Scholar 

  60. Kim HJ, Cheong EN, Jo S, et al. The cerebellum could serve as a potential imaging biomarker of dementia conversion in patients with amyloid-negative amnestic mild cognitive impairment. Eur J Neurol. 2021;28:1520–7. https://doi.org/10.1111/ene.14770.

    Article  PubMed  Google Scholar 

  61. Andersen K, Andersen BB, Pakkenberg B. Stereological quantification of the cerebellum in patients with Alzheimer’s disease. Neurobiol Aging. 2012;33(197):e111–20. https://doi.org/10.1016/j.neurobiolaging.2010.06.013.

    Article  Google Scholar 

  62. Liang KJ, Carlson ES. Resistance, vulnerability and resilience: a review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem. 2020;170:106981. https://doi.org/10.1016/j.nlm.2019.01.004.

    Article  PubMed  Google Scholar 

  63. Locke TM, Soden ME, Miller SM, et al. Dopamine D1 receptor-positive neurons in the lateral nucleus of the cerebellum contribute to cognitive behavior. Biol Psychiatry. 2018;84:401–12. https://doi.org/10.1016/j.biopsych.2018.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernard JA, Leopold DR, Calhoun VD, Mittal VA. Regional cerebellar volume and cognitive function from adolescence to late middle age. Hum Brain Mapp. 2015;36:1102–20. https://doi.org/10.1002/hbm.22690.

    Article  PubMed  Google Scholar 

  65. Romero JE, Coupe P, Lanuza E, et al. Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: a MRI analysis. Hum Brain Mapp. 2021;42:1287–303. https://doi.org/10.1002/hbm.25293.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Diedrichsen J, Maderwald S, Küper M, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54:1786–94. https://doi.org/10.1016/j.neuroimage.2010.10.035.

    Article  CAS  PubMed  Google Scholar 

  67. Gilissen EP, Leroy K, Yilmaz Z, et al. A neuronal aging pattern unique to humans and common chimpanzees. Brain Struct Funct. 2016;221:647–64. https://doi.org/10.1007/s00429-014-0931-5.

    Article  PubMed  Google Scholar 

  68. Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol Neurodegener. 2010;5:60. https://doi.org/10.1186/1750-1326-5-60.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bernard JA. Don’t forget the little brain: a framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev. 2022;137:104639. https://doi.org/10.1016/j.neubiorev.2022.104639.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yao Q, Tang F, Wang Y, et al. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: a randomized clinical trial. Brain Stimul. 2022;15:910–20. https://doi.org/10.1016/j.brs.2022.06.004.

    Article  PubMed  Google Scholar 

  71. Arleo A, Rondi-Reig L. Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. J Integr Neurosci. 2007;6:327–66. https://doi.org/10.1142/s0219635207001593.

    Article  PubMed  Google Scholar 

  72. Colombo D, Serino S, Tuena C, Pedroli E, Dakanalis A, Cipresso P, et al. Egocentric and allocentric spatial reference frames in aging: a systematic review. Neurosci Biobehav Rev. 2017;80:605–21. https://doi.org/10.1016/j.neubiorev.2017.07.012.

    Article  PubMed  Google Scholar 

  73. Lester AW, Moffat SD, Wiener JM, Barnes CA, Wolbers T. The aging navigational system. Neuron. 2017;95:1019–35. https://doi.org/10.1016/j.neuron.2017.06.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramanoël S, Durteste M, Bécu M, Habas C, Arleo A. Differential brain activity in regions linked to visuospatial processing during landmark-based navigation in young and healthy older adults. Front Hum Neurosci. 2020;14:552111. https://doi.org/10.3389/fnhum.2020.552111.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Igloi K, Doeller CF, Paradis A-L, Benchenane K, Berthoz A, Burgess N, et al. Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation. Cereb Cortex. 2015;25:4146–54. https://doi.org/10.1093/cercor/bhu132.

    Article  PubMed  Google Scholar 

  76. Hauser MFA, Heba S, Schmidt-Wilcke T, Tegenthoff M, Manahan-Vaughan D. Cerebellar-hippocampal processing in passive perception of visuospatial change: An ego- and allocentric axis? Hum Brain Mapp. 2020;41:1153–66. https://doi.org/10.1002/hbm.24865.

    Article  PubMed  Google Scholar 

  77. Rondi-Reig L, Paradis A-L, Fallahnezhad M. A liaison brought to light: cerebellum-hippocampus, partners for spatial cognition. Cerebellum. 2022;21:826–37. https://doi.org/10.1007/s12311-022-01422-3.

    Article  PubMed  Google Scholar 

  78. Yuan P, Daugherty AM, Raz N. Turning bias in virtual spatial navigation: age-related differences and neuroanatomical correlates. Biol Psychol. 2014;96:8–19. https://doi.org/10.1016/j.biopsycho.2013.10.009.

    Article  PubMed  Google Scholar 

  79. Daugherty AM, Raz N. A virtual water maze revisited: two-year changes in navigation performance and their neural correlates in healthy adults. Neuroimage. 2017;146:492–506. https://doi.org/10.1016/j.neuroimage.2016.09.044.

    Article  PubMed  Google Scholar 

  80. Moffat SD, Elkins W, Resnick SM. Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiol Aging. 2006;27:965–72. https://doi.org/10.1016/j.neurobiolaging.2005.05.011.

    Article  PubMed  Google Scholar 

  81. Antonova E, Parslow D, Brammer M, Dawson GR, Jackson SHD, Morris RG. Age-related neural activity during allocentric spatial memory. Memory. 2009;17(2):125–43. https://doi.org/10.1080/09658210802077348.

    Article  CAS  PubMed  Google Scholar 

  82. Ramanoël S, Durteste M, Perot V, Habas C, Arleo A. An appraisal of the role of the neocerebellum for spatial navigation in healthy aging. Cerebellum. 2023;22(2):235–9.

    Article  PubMed  Google Scholar 

  83. Mirino P, Pecchinenda A, Boccia M, Capirchio A, D’Antonio F, Guariglia C. Cerebellum-cortical interaction in spatial navigation and its alteration in dementias. Brain Sci. 2022:12. https://www.mdpi.com/2076-3425/12/5/523

  84. Gellersen HM, Guell X, Sami S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. Neuroimage Clin. 2021;30:102605. https://doi.org/10.1016/j.nicl.2021.102605.

    Article  PubMed  PubMed Central  Google Scholar 

  85. World Health Organization. Decade of healthy ageing: baseline report. World Health Organization, Geneva, Switzerland; 2021. https://cdn.who.int/media/docs/default-source/mca-documents/decade-of-healthy-ageing-baseline-report_06012021.pdf. Accessed 25 June 2021.

  86. Panza F, Lozupone M, Solfrizzi V, Sardone R, Dibello V, Di Lena L, D’Urso F, Stallone R, Petruzzi M, Giannelli G, Quaranta N, Bellomo A, Greco A, Daniele A, Seripa D, Logroscino G. Different cognitive frailty models and health- and cognitive-related outcomes in older age: from epidemiology to prevention. J Alzheimers Dis. 2018;62:993–1012. https://doi.org/10.3233/JAD-170963.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12:840–51. https://doi.org/10.1016/j.arr.2013.06.004.

    Article  PubMed  Google Scholar 

  88. Zheng L, Li G, Gao D, Wang S, Meng X, Wang C, Yuan H, Chen L. Cognitive frailty as a predictor of dementia among older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr. 2020;87:103997. https://doi.org/10.1016/j.archger.2019.103997.

    Article  PubMed  Google Scholar 

  89. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21:300–307.e2. https://doi.org/10.1016/j.jamda.2019.12.012.

    Article  PubMed  Google Scholar 

  90. Chung CP, Lee WJ, Peng LN, Shimada H, Tsai TF, Lin CP, Arai H, Chen LK. Physio-cognitive decline syndrome as the phenotype and treatment target of unhealthy aging. J Nutr Health Aging. 2021;25(10):1179–89. https://doi.org/10.1007/s12603-021-1693-4.

    Article  PubMed  Google Scholar 

  91. Shimada H, Doi T, Lee S, Makizako H, Chen LK, Arai H. Cognitive frailty predicts incident dementia among community-dwelling older people. J Clin Med. 2018;7:250. https://doi.org/10.3390/jcm7090250.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tsutsumimoto K, Doi T, Nakakubo S, Kim M, Kurita S, Ishii H, Shimada H. Cognitive frailty as a risk factor for incident disability during late life: a 24-month follow-up longitudinal study. J Nutr Health Aging. 2020;24:494–9. https://doi.org/10.1007/s12603-020-1365-9.

    Article  CAS  PubMed  Google Scholar 

  93. Chen WT, Chou KH, Liu LK, Lee PL, Lee WJ, Chen LK, Wang PN, Lin CP. Reduced cerebellar gray matter is a neural signature of physical frailty. Hum Brain Mapp. 2015;36:3666–76. https://doi.org/10.1002/hbm.22870.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu LK, Chou KH, Hsu CCH, Peng LN, Lee WJ, Chen WT, Lin CP, Chung CP, Wang PN, Chen LK. Cerebellar-limbic neurocircuit is the novel biosignature of physio-cognitive decline syndrome. Aging (Albany NY). 2020;12:25319–36. https://doi.org/10.18632/aging.104135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nishita Y, Nakamura A, Kato T, Otsuka R, Iwata K, Tange C, Ando F, Ito K, Shimokata H, Arai H. Links between physical frailty and regional gray matter volumes in older adults: a voxel-based morphometry study. J Am Med Dir Assoc. 2019;20:1587–1592.e7. https://doi.org/10.1016/j.jamda.2019.09.001.

    Article  PubMed  Google Scholar 

  96. Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev. 2017;79:66–86. https://doi.org/10.1016/j.neubiorev.2017.04.030.

    Article  PubMed  Google Scholar 

  97. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–86.

    Article  PubMed  Google Scholar 

  98. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15:1676–89.

    Article  PubMed  Google Scholar 

  99. Damoiseaux JS, Beckman CF, Sanz Arigita EJ, Barkhof F, Scheltens PH, Stam CJ, Rombouts SARB. Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex. 2008;18:1856–64.

    Article  CAS  PubMed  Google Scholar 

  100. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56:924–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu T, Zang Y, Wang L, Long X, Hallett M, Chen Y, Chan P. Aging influence on functional connectivity of the motor network in the resting state. Neurosci Lett. 2007;42:164–8.

    Article  Google Scholar 

  102. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex. 2010;20:953–65.

    Article  PubMed  Google Scholar 

  104. Maguire EA, Frith CD. Aging affects the engagement of the hippocampus during autobiographical memory retrieval. Brain. 2003;126:1511–23.

    Article  PubMed  Google Scholar 

  105. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer’s disease. Nat Rev Neurol. 2011;7:137–52. https://doi.org/10.1038/nrneurol.2011.2.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Camicioli RM. Mild motor impairment: motor change preceding mild cognitive impairment and dementia. Alzheimers Dementia. 2010;6:S92. https://doi.org/10.1016/j.jalz.2010.05.282.

    Article  Google Scholar 

  107. Bruchhage MMK, Correia S, Malloy P, Salloway S, Deoni S. Machine learning classification identifies cerebellar contributions to early and moderate cognitive decline in Alzheimer’s disease. Front Aging Neurosci. 2020;12:524024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ito M. The Cerebellum: Brain for an implicit self. New Jersey: Upper Saddle River; 2012.

    Google Scholar 

  109. Stoodley CJ, Desmond JE, Schmahmann JD. Functional topography of the human cerebellum revealed by functional neuroimaging studies. In: Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer Netherlands; 2013. p. 1717–51.

    Google Scholar 

  110. Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, et al. Consensus paper: cerebellar development. Cerebellum. 2016;15(6):789–828.

    Article  PubMed  Google Scholar 

  111. Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellar development during childhood and adolescence: a longitudinal morphometric MRI study. NeuroImage. 2010;49(1):67–70.

    Article  Google Scholar 

  112. Gauvrit T, Benderradji H, Buee L, Blum D, Vieau D. Early-Life Environment Influence on Late-Onset Alzheimer’s Disease. Frontiers Cell Dev Biol. 2022;10:834661–1.

    Article  Google Scholar 

  113. Serra L, Cercignani M, Lenzi D, Perri R, Fadda L, Caltagirone C, Macaluso E, Bozzali M. Grey and white matter changes at different stages of Alzheimer’s disease. J Alzheimers Dis. 2010;19(1):147–59.

    Article  PubMed  Google Scholar 

  114. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev. 2006;30(6):749–61.

    Article  PubMed  Google Scholar 

  115. Limperopolous C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. Injury to the premature cerebellum: outcome is related to remote cortical development. Cereb Cortex. 2014;24(3):728–36.

    Article  Google Scholar 

  116. Piller S. Blots on a field? Science. 2022;377(6604) https://doi.org/10.1126/science.ade0209.

  117. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome The cerebellar cognitive affective syndrome. Brain. 1998;141:561–79.

    Article  Google Scholar 

  118. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. the theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42(1):337–64.

    Article  CAS  PubMed  Google Scholar 

  119. Frangou S, Modabbernia A, Williams SCR, Papachristou E, Doucet GE, et al. Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Hum. Brain Mapp. 2022;43(1):431–51.

    Article  PubMed  Google Scholar 

  120. Hoogendam YY, van der Geest JN, van der Lijn F, van der Lugt A, Niessen WJ, et al. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging. 2012;33(12):2774–81.

    Article  PubMed  Google Scholar 

  121. Buhrmann A, Brands AMA, van der Grond J, Schilder C, van der Mast RC, et al. Cerebellar grey matter volume in older persons is associated with worse cognitive functioning. Cerebellum. 2021;20:9–20.

    Article  CAS  PubMed  Google Scholar 

  122. Chaudhari K, Wang L, Kruse J, Winters A, Sumien N, et al. Early loss of cerebellar Purkinje cells in human and a transgenic mouse model of Alzheimer’s disease. Neurol Res. 2021;43(7):570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mavroudis I, Petridis F, Kazis D, Njau S, Costa V, Baloyannis S. Purkinje cells pathology in Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2019;34(7):439–49.

    Article  PubMed  Google Scholar 

  124. Mavroudis IA, Fotiou DF, Adipepe LF, Manani MG, Njau SD, et al. Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2010;25(7):585–91.

    Article  PubMed  Google Scholar 

  125. Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain. 2016;139(5):1527–38.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lin CY, Chen CH, Tom SE, Kuo SH. cerebellar volume is associated with cognitive decline in mild cognitive impairment: results from ADNI. Cerebellum. 2020;19(2):217–25.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pagen LHG, Van De Ven VG, Gronenschild EHBM, Priovoulos N, Verhey FRJ, Jacobs HIL. 2020. Contributions of cerebro-cerebellar default mode connectivity patterns to memory performance in mild cognitive impairment. J Alzheimer Dis. 2020;75(2):633–47.

    Article  Google Scholar 

  128. Guell X. Functional gradients of the cerebellum: a review of practical applications. Cerebellum. 2022;21(6):1061–72.

    Article  PubMed  Google Scholar 

  129. Guell X, Schmahmann J. Cerebellar Functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum. 2020;19:1–5.

    Article  PubMed  Google Scholar 

  130. Guell X, Schmahmann J, Gabrieli J, Ghosh S. Functional gradients of the cerebellum. Elife. 2018;7:e36652.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  CAS  PubMed  Google Scholar 

  132. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.

    Article  PubMed  Google Scholar 

  133. Cole G, Neal JW, Singhrao SK, Jasani B, Newman GR. The distribution of amyloid plaques in the cerebellum and brain stem in Down’s syndrome and Alzheimer’s disease: a light microscopical analysis. Acta Neuropathol. 1993;85(5):542–52.

    Article  CAS  PubMed  Google Scholar 

  134. Ghisays V, Lopera F, Goradia DD, Protas HD, Malek-Ahmadi MH, et al. PET evidence of preclinical cerebellar amyloid plaque deposition in autosomal dominant Alzheimer’s disease-causing Presenilin-1 E280A mutation carriers. NeuroImage Clin. 2021;31:102749.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wang H, D’Andrea M, Nagele R. Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells. Neurobiol Aging. 2002;23(2):213–23.

    Article  CAS  PubMed  Google Scholar 

  136. Shimada H, Minatani S, Takeuchi J, Takeda A, Kawabe J, et al. Heavy tau burden with subtle amyloid beta accumulation in the cerebral cortex and cerebellum in a case of familial alzheimer’s disease with app osaka mutation. Int J Mol Sci. 2020;21(12):4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jacobs HIL, Becker JA, Kwong K, Engels-Domínguez N, Prokopiou PC, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci Transl Med. 2021;13(612):eabj2511.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Del Cerro I, Villarreal MF, Abulafia C, Duarte-Abritta B, Sánchez SM, et al. Disrupted functional connectivity of the locus coeruleus in healthy adults with parental history of Alzheimer’s disease. J Psychiatr Res. 2020;123:81–8.

    Article  PubMed  Google Scholar 

  139. Olivito G, Serra L, Marra C, Di Domenico C, Caltagirone C, et al. Cerebellar dentate nucleus functional connectivity with cerebral cortex in Alzheimer’s disease and memory: a seed-based approach. Neurobiol Aging. 2020;89:32–40.

    Article  PubMed  Google Scholar 

  140. Tang F, Zhu D, Ma W, Yao Q, Li Q, Shi J. Differences changes in cerebellar functional connectivity between mild cognitive impairment and Alzheimer’s disease: a seed-based approach. Front Neurol. 2021;12:645171.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhou Z, Zhu R, Shao W, Zhang SJ, Wang L, et al. Changes in resting-State Functional Connectivity of Cerebellum in Amnestic Mild Cognitive Impairment and Alzheimer’s disease: a case-control study. Front Syst Neurosci. 2021;15:596221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Woodruff-Pak DS. Eyeblink classical conditioning differentiates normal aging from Alzheimer’s Disease. Integr Physiol Behav Sci. 2001;36(2):87–108.

    Article  CAS  PubMed  Google Scholar 

  143. Woodruff-Pak DS, Foy MR, Akopian GG, Lee KH, Zach J, et al. Differential effects and rates of normal aging in cerebellum and hippocampus. Proc Natl Acad Sci (USA). 2010;107(4):1624–9.

    Article  CAS  PubMed  Google Scholar 

  144. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum. 2007;6:254–67. https://doi.org/10.1080/14734220701490995.

    Article  PubMed  Google Scholar 

  145. Depping MS, Schmitgen MM, Kubera KM, Wolf RC. cerebellar contributions to major depression. Front Psychiatry. 2018;9:634. https://doi.org/10.3389/fpsyt.2018.00634.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. NeuroImage Clin. 2013;3:332–9. https://doi.org/10.1016/j.nicl.2013.08.016.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lai CH, Wu YT. The gray matter alterations in major depressive disorder and panic disorder: Putative differences in the pathogenesis. J Affective Disord. 2015;186:1–6. https://doi.org/10.1016/j.jad.2015.07.022.

    Article  Google Scholar 

  148. Xu LY, Xu FC, Liu C, Ji YF, Wu JM, Wang Y, Wang HB, Yu YQ. Relationship between cerebellar structure and emotional memory in depression. Brain Behav. 2017;7:e00738. https://doi.org/10.1002/brb3.738.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zhang YN, Li H, Shen ZW, Xu C, Huang YJ, Wu RH. Healthy individuals vs patients with bipolar or unipolar depression in gray matter volume. World J Clin Cases. 2021;9:1304–17. https://doi.org/10.12998/wjcc.v9.i6.1304.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Depping MS, Wolf ND, Vasic N, Sambataro F, Hirjak D, Thomann PA, Wolf RC. Abnormal cerebellar volume in acute and remitted major depression. Progr Neuro-psychopharmacol Biol Psych. 2016;71:97–102. https://doi.org/10.1016/j.pnpbp.2016.06.005.

    Article  Google Scholar 

  151. Depping MS, Nolte HM, Hirjak D, Palm E, Hofer S, Stieltjes B, Maier-Hein K, Sambataro F, Wolf RC, Thomann PA. Cerebellar volume change in response to electroconvulsive therapy in patients with major depression. Progr Neuro-psychopharmacol Biol Psych. 2017;73:31–5. https://doi.org/10.1016/j.pnpbp.2016.09.007.

    Article  Google Scholar 

  152. Bogoian HR, King TZ, Turner JA, Semmel ES, Dotson VM. Linking depressive symptom dimensions to cerebellar subregion volumes in later life. Translat Psychiatry. 2020;10:201. https://doi.org/10.1038/s41398-020-00883-6.

    Article  Google Scholar 

  153. Li J, Gong H, Xu H, Ding Q, He N, Huang Y, Jin Y, Zhang C, Voon V, Sun B, Yan F, Zhan S. Abnormal voxel-wise degree centrality in patients with late-life depression: a resting-state functional magnetic resonance imaging study. Front Psychiatry. 2019;10:1024. https://doi.org/10.3389/fpsyt.2019.01024.

    Article  CAS  PubMed  Google Scholar 

  154. Liu F, Hu M, Wang S, Guo W, Zhao J, Li J, Xun G, Long Z, Zhang J, Wang Y, Zeng L, Gao Q, Wooderson SC, Chen J, Chen H. Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: a resting-state fMRI study. Progr Neuro-psychopharmacol Biol Psych. 2012;39:326–31. https://doi.org/10.1016/j.pnpbp.2012.07.004.

    Article  Google Scholar 

  155. Avedisova AS, Samotaeva IS, Luzin RV, Semenovyh NS, Sergunova KA, Akzhigitov RG, Zakharova RV. Apathy in depression: a morphometric analysis. Zh Nevrol Psikhiatr Im S S Korsakova. 2019;119:141–7. https://doi.org/10.17116/jnevro2019119051141.

    Article  CAS  PubMed  Google Scholar 

  156. Salo KI, Scharfen J, Wilden ID, Schubotz RI, Holling H. Confining the Concept of Vascular Depression to late-onset depression: a meta-analysis of MRI-defined hyperintensity burden in major depressive disorder and bipolar disorder. Front Psychol. 2019;10:1241. https://doi.org/10.3389/fpsyg.2019.01241.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ataullah AHM, Naqvi IA. Cerebellar dysfunction. Treasure Island (FL): StatPearls; 2022.

    Google Scholar 

  158. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166:822–39. https://doi.org/10.1016/j.cell.2016.07.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci (USA). 2001;98:6736.

    Article  CAS  PubMed  Google Scholar 

  160. Choi H, Joe S, Nam H. Development of tissue-specific age predictors using DNA methylation data. Genes. 2019:10. https://doi.org/10.3390/genes10110888.

  161. El Khoury LY, Gorrie-Stone T, Smart M, Hughes A, Bao Y, Andrayas A, et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 2019;20:1–10.

    Article  Google Scholar 

  162. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.

    Article  CAS  PubMed  Google Scholar 

  163. Li X, Li W, Xu Y. Human age prediction based on DNA methylation using a gradient boosting regressor. Genes. 2018:9. https://doi.org/10.3390/genes9090424.

  164. Bryant P, Elofsson A. The relationship between ageing and changes in the human blood and brain methylomes. NAR Genom Bioinform. 2022:4. https://doi.org/10.1093/nargab/lqac001.

  165. Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson C, Siscovick D, et al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun. 2014:5. https://doi.org/10.1038/ncomms6366.

  166. Lu AT, Hannon E, Levine ME, Hao K, Crimmins EM, Lunnon K, et al. Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. Nat Commun. 2016:7. https://doi.org/10.1038/ncomms10561.

  167. Jin Z, Liu Y. DNA methylation in human diseases. Genes Dis. 2018;5:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Slieker RC, Relton CL, Gaunt TR, Slagboom PE, Heijmans BT. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin. 2018;11:1–11.

    Article  Google Scholar 

  169. Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacol. 2012;38:23–38.

    Article  Google Scholar 

  170. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34:721.

    Article  CAS  PubMed  Google Scholar 

  171. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019:11. https://doi.org/10.18632/aging.101684.

  172. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U. Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage. 2010;51(2):501–11. https://doi.org/10.1016/j.neuroimage.2010.03.020.

    Article  PubMed  Google Scholar 

  173. Ramanoël S, Hoyau E, Kauffmann L, Renard F, Pichat C, Boudiaf N, et al. Gray matter volume and cognitive performance during normal aging. a voxel-based morphometry study. Front Aging Neurosci. 2018;10:235. https://doi.org/10.3389/fnagi.2018.00235.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Nyberg L, Lövdén M, Riklund K, Lindenberger U, Bäckman L. Memory aging and brain maintenance. Trends Cogn Sci. 2012;16(5):292–305. https://doi.org/10.1016/j.tics.2012.04.005.

    Article  PubMed  Google Scholar 

  175. Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348(25):2508–16. https://doi.org/10.1056/NEJMoa022252.

    Article  PubMed  Google Scholar 

  176. Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci. 2007;8(7):547–58. https://doi.org/10.1038/nrn2152.

    Article  CAS  PubMed  Google Scholar 

  177. Hutchinson S, Lee LH, Gaab N, Schlaug G. Cerebellar volume of musicians. Cereb Cortex. 2003;13(9):943–9. https://doi.org/10.1093/cercor/13.9.943.

    Article  PubMed  Google Scholar 

  178. Paquette S, Fujii S, Li HC, Schlaug G. The cerebellum’s contribution to beat interval discrimination. Neuroimage. 2017;163:177–82. https://doi.org/10.1016/j.neuroimage.2017.09.017.

    Article  CAS  PubMed  Google Scholar 

  179. Yamashita M, Ohsawa C, Suzuki M, Guo X, Sadakata M, Otsuka Y, et al. Neural advantages of older musicians involve the cerebellum: implications for healthy aging through lifelong musical instrument training. Front Hum Neurosci. 2022;15:784026. https://doi.org/10.3389/fnhum.2021.784026.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018;265(3):597–606. https://doi.org/10.1007/s00415-018-8738-6.

    Article  CAS  PubMed  Google Scholar 

  181. Baumann S, Koeneke S, Schmidt CF, Meyer M, Lutz K, Jancke L. A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res. 2007;1161:65–78. https://doi.org/10.1016/j.brainres.2007.05.045.

    Article  CAS  PubMed  Google Scholar 

  182. Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M. Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol. 2003;89(2):989–1002. https://doi.org/10.1152/jn.00132.2002.

    Article  PubMed  Google Scholar 

  183. Meister IG, Krings T, Foltys H, Boroojerdi B, Müller M, Töpper R, et al. Playing piano in the mind—an fMRI study on music imagery and performance in pianists. Brain Res Cogn Brain Res. 2004;19(3):219–28. https://doi.org/10.1016/j.cogbrainres.2003.12.005.

    Article  CAS  PubMed  Google Scholar 

  184. Watanabe T, Yagishita S, Kikyo H. Memory of music: roles of right hippocampus and left inferior frontal gyrus. Neuroimage. 2008;39(1):483–91. https://doi.org/10.1016/j.neuroimage.2007.08.024.

    Article  PubMed  Google Scholar 

  185. Herholz SC, Coffey EBJ, Pantev C, Zatorre RJ. Dissociation of neural networks for predisposition and for training-related plasticity in auditory-motor learning. Cereb Cortex. 2016;26(7):3125–34. https://doi.org/10.1093/cercor/bhv138.

    Article  PubMed  Google Scholar 

  186. Mitoma H, Manto M, Hampe CS. Time is cerebellum. Cerebellum. 2018;17(4):387–91.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, et al. Consensus paper. Cerebellar reserve: From cerebellar physiology to cerebellar disorders. Cerebellum. 2020;19(1):131–53.

    Article  CAS  PubMed  Google Scholar 

  188. Mitoma H, Kakei S, Yamaguchi K, Manto M. Physiology of cerebellar reserve: redundancy and plasticity of a modular machine. Int J Mol Sci. 2021;22(9):4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Manto M, Kakei S, Mitoma H. The critical need to develop tools assessing cerebellar reserve for the delivery and assessment of non-invasive cerebellar stimulation. Cerebell Ataxias. 2021;8(1):2.

    Article  Google Scholar 

  190. Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.

    Article  Google Scholar 

  191. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11(11):1006–12.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Stern Y. An approach to studying the neural correlates of reserve. Brain Imaging Behav. 2017;11(2):410–6.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Palmer SJ, Ng B, Abugharbieh R, Eigenraam L, McKeown MJ. Motor reserve and novel area recruitment: Amplitude and spatial characteristics of compensation in Parkinson’s disease. Eur J Neurosci. 2009;29(11):2187–96.

    Article  PubMed  Google Scholar 

  194. Colin F, Ris L, Godaux E. Neuroanatomy of the cerebellum. In: Manto M, Pandolfo M, editors. The cerebellum and Its Disorders. Cambridge, UK: Cambridge University Press; 2002. p. 6–29.

    Google Scholar 

  195. Walloe S, Pakkenberg B, Fabricius K. Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex. Front Hum Neurosci. 2014;8:508.

    PubMed  PubMed Central  Google Scholar 

  196. Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995;269(5232):1880–2.

    Article  CAS  PubMed  Google Scholar 

  197. Popa LS, Hewitt AL, Ebner TJ. Purkinje cell simple spike discharge encodes error signals consistent with a forward internal model. Cerebellum. 2013;12(3):331–3.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Tanaka H, Ishikawa T, Kakei S. Neural evidence of the cerebellum as a state predictor. Cerebellum. 2019;18(3):349–71.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Tanaka H, Ishikawa T, Lee J, Kakei S. The cerebro-cerebellum as a locus of forward model. A review. Front Syst Neurosci. 2020;14:19.

    Article  PubMed  Google Scholar 

  200. Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411:97–118.

    Article  CAS  PubMed  Google Scholar 

  201. Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, et al. Cerebellar modules and their role as operational cerebellar processing units: a consensus paper [corrected]. Cerebellum. 2018;17(5):654–82.

    Article  PubMed  PubMed Central  Google Scholar 

  202. De Zeeuw CI, Lisberger SG, Raymond JL. Diversity and dynamics in the cerebellum. Nat Neurosci. 2021;24:160–7.

    Article  PubMed  Google Scholar 

  203. Hirano T. Around LTD hypothesis in motor learning. Cerebellum. 2014;13(5):645–50.

    Article  PubMed  Google Scholar 

  204. Schmahmann JD. From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.

    Article  CAS  PubMed  Google Scholar 

  205. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    Article  CAS  PubMed  Google Scholar 

  206. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–8.

    Article  PubMed  Google Scholar 

  208. Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800.

    Article  PubMed  Google Scholar 

  209. Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P. Synaptic pathology in Alzheimer’s disease: Relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm. 1996;103(5):603–18.

    Article  CAS  PubMed  Google Scholar 

  210. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Arnold Anteraper S, Guell X, D’Mello A, Joshi N, Whitfield- Gabrieli S, Joshi G. Disrupted cerebro-cerebellar intrinsic functional connectivity in young adults with high-functioning autism spectrum disorder: a data-driven, whole-brain, high temporal resolution fMRI study. Brain Connect. 2019;9(1):48–59.

    Article  PubMed  Google Scholar 

  212. Moberget T, Doan NT, Alnæs D, Kaufmann T, Córdova-Palomera A, Lagerberg TV, et al. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry. 2018;23(6):1512–20.

    Article  CAS  PubMed  Google Scholar 

  213. Andersen BB, Gundersen HJ, Pakkenberg B. Aging of the human cerebellum: a stereological study. J Comp Neurol. 2003;466(3):356–65.

    Article  PubMed  Google Scholar 

  214. Fernández-Ruiz J, Hall C, Vergara P, Díaz R. Prism adaptation in normal aging: slower adaptation rate and larger aftereffect. Brain Res Cogn Brain Res. 2009;9(3):223–6.

    Article  Google Scholar 

  215. King BR, Fogel SM, Albouy G, Doyon J. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Front Hum Neurosci. 2013;7:142.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Hashimoto Y, Honda T, Matsumura K, Nakao M, Soga K, Katano K, et al. Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movement. PLoS One. 2015;10(3):e0119376.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Van Dun K, Mitoma H, Manto M. Cerebellar cortex as a therapeutic target for neurostimulation. Cerebellum. 2018;17(6):777–87.

    Article  PubMed  Google Scholar 

  218. Nuzzo C, Ruggiero F, Cortese F, Cova I, Priori A, Ferrucci R. Non-invasive cerebellar stimulation in cerebellar disorders. CNS Neurol Disord Drug Targets. 2018;17(3):193–8.

    Article  PubMed  Google Scholar 

  219. Sadeghihassanabadi F, Frey BM, Backhaus W, Choe CU, Zittel S, Schön G, Bönstrup M, Cheng B, Thomalla G, Gerloff C, Schulz R. Structural cerebellar reserve positively influences outcome after severe stroke. Brain Commun. 2022;4(6):fcac203.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Pini L, Manenti R, Cotelli M, Pizzini FB, Frisoni GB, Pievani M. Non-invasive brain stimulation in dementia: a complex network story. NDD [Internet]. 2018 [cited 2019 May 28];18:281–301. Available from: https://www.karger.com/Article/FullText/495945

  221. Koppelmans V, Hoogendam YY, Hirsiger S, Mérillat S, Jäncke L, Seidler RD. Regional cerebellar volumetric correlates of manual motor and cognitive function. Brain Struct Function. 2017;222:1929–44. https://doi.org/10.1007/s00429-016-1317-7.

    Article  Google Scholar 

  222. Reuter-Lorenz PA, Park DC. Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci. 2010;65B:405–15.

    Article  PubMed Central  Google Scholar 

  223. Holviala J, Kraemer WJ, Sillanpää E, Karppinen H, Avela J, Kauhanen A, et al. Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men. Eur J Appl Physiol. 2012;112:1335–47. https://doi.org/10.1007/s00421-011-2089-7.

    Article  CAS  PubMed  Google Scholar 

  224. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiol. 2016;127:1031–48.

    Article  CAS  Google Scholar 

  225. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol (Lond). 2000;527:633–9.

    Article  CAS  PubMed  Google Scholar 

  226. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166:23–30.

    Article  PubMed  Google Scholar 

  227. Lindberg PG, Verneau M, Boterff QL, Cuenca-Maia M, Baron J-C, Maier MA. Age- and task-dependent effects of cerebellar tDCS on manual dexterity and motor learning–a preliminary study. Neurophysiologie Clin. 2022;52(5):354–65.

    Article  Google Scholar 

  228. Yosephi MH, Ehsani F, Zoghi M, Jaberzadeh S. Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: Primary motor cortex versus cerebellar stimulation. Brain Stim. 2018;11:1239–50.

    Article  Google Scholar 

  229. Hardwick RM, Celnik PA. Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiol Aging. 2014;35:2217–21.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Weightman M, Brittain J-S, Punt D, Miall RC, Jenkinson N. Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb. Brain Stim. 2020;13:707–16.

    Article  Google Scholar 

  231. Hulst T, John L, Küper M, van der Geest JN, Göricke SL, Donchin O, et al. Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force-field reaching adaptation. J Neurophysiol. 2017;118:732–48.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Rauscher M, Yavari F, Batsikadze G, Ludolph N, Ilg W, Nitsche MA, et al. Lack of cerebellar tDCS effects on learning of a complex whole body dynamic balance task in middle-aged (50–65 years) adults. Neurol Res Pract. 2020;2:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Oldrati V, Schutter DJLG. Targeting the Human Cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2018;17:228–36.

    Article  PubMed  Google Scholar 

  234. Raz N, Torres IJ, Spencer WD, White K, Acker JD. Age-related regional differences in cerebellar vermis observed in vivo. Arch Neurol. 1992;49:412–6.

    Article  CAS  PubMed  Google Scholar 

  235. Shah SA, Doraiswamy PM, Husain MM, Figiel GS, Boyko OB, McDonald WM, et al. Assessment of posterior fossa structures with midsagittal MRI: The effects of age. Neurobiol Aging. 1991;12:371–4.

    Article  CAS  PubMed  Google Scholar 

  236. Abe O, Yamasue H, Aoki S, Suga M, Yamada H, Kasai K, et al. Aging in the CNS: Comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging. 2008;29:102–16.

    Article  PubMed  Google Scholar 

  237. Lee JY, Lyoo IK, Kim SU, Jang HS, Lee DW, Jeon HJ, et al. Intellect declines in healthy elderly subjects and cerebellum. Psychiatry Clin Neurosci. 2005;59:45–51.

    Article  PubMed  Google Scholar 

  238. Paul R, Grieve SM, Chaudary B, Gordon N, Lawrence J, Cooper N, et al. Relative contributions of the cerebellar vermis and prefrontal lobe volumes on cognitive function across the adult lifespan. Neurobiol Aging. 2009;30:457–65.

    Article  PubMed  Google Scholar 

  239. Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, et al. Cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol. 2012;107:134–47.

    Article  PubMed  Google Scholar 

  240. Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol. 2014;125:577–84.

    Article  PubMed  Google Scholar 

  241. Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14:27–30.

    Article  PubMed  Google Scholar 

  242. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific non-invasive direct current stimulation. J Neurosci. 2009;29:9115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Galea JM, Vazquez A, Pasricha N, Orban de Xivry J-J, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex. 2011;21:1761–70.

    Article  PubMed  Google Scholar 

  244. Rampersad SM, Janssen AM, Lucka F, Aydin Ü, Lanfer B, Lew S, et al. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehab Eng. 2014;22:441–52.

    Article  Google Scholar 

  245. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016;22:83–97.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Rezaee Z, Dutta A. Cerebellar Lobules Optimal Stimulation (CLOS): a computational pipeline to optimize cerebellar lobule-specific electric field distribution. Front Neurosci. 2019;13:266.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Summers JJ, Kang N, Cauraugh JH. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Res Rev. 2016;25:42–54.

    Article  PubMed  Google Scholar 

  248. Habich A, Fehér KD, Antonenko D, Boraxbekk C-J, Flöel A, Nissen C, et al. Stimulating aged brains with transcranial direct current stimulation: opportunities and challenges. Psychiatry Res: neuroimaging. 2020;306:111179.

    Article  PubMed  Google Scholar 

  249. Klaus J, Schutter DJLG. Electrode montage-dependent intracranial variability in electric fields induced by cerebellar transcranial direct current stimulation. Sci Rep. 2021;11:22183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Rezaee Z, Dutta A. Lobule-specific dosage considerations for cerebellar transcranial direct current stimulation during healthy aging: a computational modeling study using age-specific magnetic resonance imaging templates. Neuromodulation. 2020;23:341–65.

    Article  PubMed  Google Scholar 

  251. Mahdavi S, Towhidkhah F. Computational human head models of tDCS: influence of brain atrophy on current density distribution. Brain Stim. 2018;11:104–7.

    Article  Google Scholar 

  252. Jessica DS. Resting-state fMRI as a biomarker for Alzheimer’s disease? Alzheimers Res Ther. 2012;4(2):8.

    Google Scholar 

  253. De Sanctis P, Solis-Escalante T, Seeber M, Wagner J, Ferris DP, Gramann K. Time to move: Brain dynamics underlying natural action and cognition. Eur J Neurosci. 2021;54(12):8075–80.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Delaux A, de Saint Aubert JB, Ramanoël S, Bécu M, Gehrke L, Klug M, Chavarriaga R, Sahel JA, Gramann K, Arleo A. Mobile brain/body imaging of landmark-based navigation with high-density EEG. Eur J Neurosci. 2021;54(12):8256–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Rocco G, Delaire E, Ramanoël S, Meste O, Magnié-Mauro MN, Grova C, Lebrun J. Densifying optodes montage to enhance cerebellar fNRIS. Boston, USA: The Society for functional Near Infrared Spectroscopy (fNIRS); 2022.

    Google Scholar 

  256. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, Zago S, Priori A. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26:786–99.

    Article  PubMed  Google Scholar 

  257. To WT, De Ridder D, Hart J Jr, Vanneste S. Changing brain networks through non-invasive neuromodulation. Front Hum Neurosci. 2018;12:128.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Maldonado T, Jackson TB, Bernard JA. Anodal cerebellar stimulation increases cortical activation: evidence for cerebellar scaffolding of cortical processing. Hum Brain Mapp. 2023;44(4):1666–82.

    Article  PubMed  Google Scholar 

  259. Beuriat PA, Cristofori I, Gordon B, Grafman J. The shifting role of the cerebellum in executive, emotional and social processing across the lifespan. Behav Brain Funct. 2022;18(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

KS and MY are supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research (21H04422).

VMD is supported by the National Institute on Aging (U19AG073172, U19AG065169, R21AG077307), the National Science Foundation (2112455), and the Alzheimer’s Association (AARG-NTF-21-852145).

JAB is supported by the National Institute on Aging (R01AG064010).

Author information

Authors and Affiliations

Author notes

  1. Christophe Habas is deceased. This paper is dedicated to his/her memory.

    • Christophe Habas
Authors

Contributions

Concept and preparation: MM. Draft: all. Discussion, corrections, and approval of the final version: all.

Corresponding author

Correspondence to Mario Manto.

Ethics declarations

Ethical Approval

Regarding the data presented in the “Cerebellum and the Physio-cognitive Decline Syndrome (Chih-Ping Chung, Liang-Kung Chen)” section, the Institutional Review Board of National Yang Ming University, Taipei, Taiwan, approved the study (IRB No. YM109161F). Regarding data presented in the “What Potential Does Lifelong Musical Instrument Training Possess To Avoid Age-Related Cerebellar Atrophy? (Masatoshi Yamashita, Kaoru Sekiyama)” section, the Institutional Review Board of Fukui University approved the study (IRB No. 29-P-7). All participants provided written informed consent. All methods were carried out in accordance with relevant guidelines and regulations.

Competing Interests

The authors declare no competing interests.

Disclosure

The views expressed in this article do not necessarily represent the views of the NIH, HHS, or the United States Government.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arleo, A., Bareš, M., Bernard, J.A. et al. Consensus Paper: Cerebellum and Ageing. Cerebellum 23, 802–832 (2024). https://doi.org/10.1007/s12311-023-01577-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-023-01577-7

Keywords

Navigation