Skip to main content

Advertisement

Log in

Cerebello-Hippocampal Interactions in the Human Brain: A New Pathway for Insights Into Aging

  • REVIEW
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is recognized as being important for optimal behavioral performance across task domains, including motor function, cognition, and affect. Decades of work have highlighted cerebello-thalamo-cortical circuits, from both structural and functional perspectives. However, these circuits of interest have been primarily (though not exclusively) focused on targets in the cerebral cortex. In addition to these cortical connections, the circuit linking the cerebellum and hippocampus is of particular interest. Recently, there has been an increased interest in this circuit, thanks in large part to novel findings in the animal literature demonstrating that neuronal firing in the cerebellum impacts that in the hippocampus. Work in the human brain has provided evidence for interactions between the cerebellum and hippocampus, though primarily this has been in the context of spatial navigation. Given the role of both regions in cognition and aging, and emerging evidence indicating that the cerebellum is impacted in age-related neurodegenerative disease such as Alzheimer’s, I propose that further attention to this circuit is warranted. Here, I provide an overview of cerebello-hippocampal interactions in animal models and from human imaging and outline the possible utility of further investigations to improve our understanding of aging and age-related cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64. https://doi.org/10.1146/annurev-neuro-070918-050258.

    Article  CAS  PubMed  Google Scholar 

  2. Schmahmann J, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  3. Timmann D, Brandauer B, Hermsdörfer J, Ilg W, Konczak J, Gerwig M, Gizewski ER, Schoch B. Lesion-symptom mapping of the human cerebellum. The Cerebellum. 2008;7(4):602–6. https://doi.org/10.1007/s12311-008-0066-4.

    Article  CAS  PubMed  Google Scholar 

  4. Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, Schoch B. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162(3):836–51. https://doi.org/10.1016/j.neuroscience.2009.01.040.

    Article  CAS  PubMed  Google Scholar 

  5. Balsters JH, Whelan CD, Robertson IH, Ramnani N. Cerebellum and cognition: evidence for the encoding of higher order rules. Cerebral Cortex (New York, NY : 1991). 2013;23(6):1433–43. https://doi.org/10.1093/cercor/bhs127.

    Article  PubMed  Google Scholar 

  6. King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(August):1371–8. https://doi.org/10.1038/s41593-019-0436-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039.

    Article  PubMed  Google Scholar 

  8. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59:1560–70. https://doi.org/10.1016/j.neuroimage.2011.08.065.

    Article  PubMed  Google Scholar 

  9. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72. https://doi.org/10.1016/j.neuroimage.2013.09.033.

    Article  PubMed  Google Scholar 

  10. Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, Guell X, Heleven E, Lupo M, Ma Q, Michelutti M, Olivito G, Pu M, Rice LC, Schmahmann JD, Siciliano L, Sokolov AA, Stoodley CJ, Van Dun K, Leggio M. Consensus Paper: Cerebellum and Social Cognition. The Cerebellum. 2020;19(6):833–68. https://doi.org/10.1007/s12311-020-01155-1.

    Article  PubMed  Google Scholar 

  11. Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Lee Wiggins J, Jaeggi SM, Buschkuehl M, Monk CS, Jonides J, Peltier SJ. Resting state cortico-cerebellar functional connectivity networks: A comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012. https://doi.org/10.3389/fnana.2012.00031.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Thomas Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45. https://doi.org/10.1152/jn.00339.2011.-The.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9. https://doi.org/10.1152/jn.00626.2002.

    Article  PubMed  Google Scholar 

  14. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex (New York, NY : 1991). 2010;20(4):953–65. https://doi.org/10.1093/cercor/bhp157.

    Article  PubMed  Google Scholar 

  16. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, Carlson S. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76. https://doi.org/10.1162/jocn.2009.21382.

    Article  PubMed  Google Scholar 

  17. Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17(1):438–58. https://doi.org/10.1523/jneurosci.17-01-00438.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steele CJ, Anwander A, Bazin P, Trampel R, Schaefer A, Turner R, Ramnani N, Villringer A. Human cerebellar sub-millimeter diffusion imaging reveals the motor and non-motor topography dentate nucleus. Cereb Cortex 2017;7(9):4537–48. https://doi.org/10.1093/cercor/bhw258

  19. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34. https://doi.org/10.1146/annurev.neuro.31.060407.125606.

    Article  CAS  PubMed  Google Scholar 

  20. Babayan BM, Watilliaux A, Viejo G, Paradis AL, Girard B, Rondi-Reig L. A hippocampo-cerebellar centred network for the learning and execution of sequence-based navigation. Sci Rep. 2017;7(1):1–16. https://doi.org/10.1038/s41598-017-18004-7.

    Article  CAS  Google Scholar 

  21. Bernard JA, Nguyen AD, Hausman HK, Maldonado T, Ballard HK, Jackson TB, Eakin SM, Lokshina Y, Goen JRM. Shaky scaffolding: age differences in cerebellar activation revealed through activation likelihood estimation meta-analysis. Hum Brain Mapp. 2020;41(18):5255–81. https://doi.org/10.1002/hbm.25191.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iglói K, Doeller CF, Paradis AL, Benchenane K, Berthoz A, Burgess N, Rondi-Reig L. Interaction between hippocampus and cerebellum crus i in sequence-based but not place-based navigation. Cereb Cortex. 2015;25(11):4146–54. https://doi.org/10.1093/cercor/bhu132.

    Article  PubMed  Google Scholar 

  23. Rochefort C, Lefort J, Rondi-Reig L. The cerebellum: A new key structure in the navigation system. Front Neural Circuits. 2013;7(FEBRUARY 2013):1–12. https://doi.org/10.3389/fncir.2013.00035.

    Article  Google Scholar 

  24. Rondi-Reig L, Le Marec N, Caston J, Mariani J. The role of climbing and parallel fibers inputs to cerebellar cortex in navigation. Behav Brain Res. 2002;132(1):11–8. https://doi.org/10.1016/S0166-4328(01)00381-3.

    Article  PubMed  Google Scholar 

  25. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15. https://doi.org/10.1016/J.NEURON.2013.10.044.

    Article  CAS  PubMed  Google Scholar 

  26. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75. https://doi.org/10.1016/J.NEULET.2018.07.005

  27. Holmes G. The cerebellum of man. Brain. 1939;62(1):1–30. https://doi.org/10.1093/brain/62.1.1.

    Article  Google Scholar 

  28. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54. https://doi.org/10.1037/0735-7044.100.4.443.

    Article  CAS  PubMed  Google Scholar 

  29. Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008. https://doi.org/10.1037/0735-7044.103.5.998.

    Article  CAS  PubMed  Google Scholar 

  30. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44(2):113–28. https://doi.org/10.1016/S0166-4328(05)80016-6.

    Article  CAS  PubMed  Google Scholar 

  31. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21(16):6283–91. https://doi.org/10.1523/jneurosci.21-16-06283.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110(3):149–53. https://doi.org/10.1016/j.bandl.2009.07.006.

    Article  PubMed  Google Scholar 

  33. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44. https://doi.org/10.1016/j.cortex.2009.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bernard JA, Orr JM, Mittal VA. Differential motor and prefrontal cerebello-cortical network development: Evidence from multimodal neuroimaging. NeuroImage. 2016;124:591–601. https://doi.org/10.1016/j.neuroimage.2015.09.022.

  35. Rousseau P-N, Chakravarty MM, Steele CJ. Mapping pontocerebellar connectivity with diffusion MRI. Neuroimage. 2022;264: 119684. https://doi.org/10.1016/j.neuroimage.2022.119684.

    Article  PubMed  Google Scholar 

  36. Bernard JA, Peltier SJ, Benson BL, Wiggins JL, Jaeggi SM, Buschkuehl M, Jonides J, Monk CS, Seidler RD. Dissociable functional networks of the human dentate nucleus. Cerebral Cortex. 2014;24(8):2151. https://doi.org/10.1093/cercor/bht065.

    Article  PubMed  Google Scholar 

  37. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97. https://doi.org/10.1093/cercor/bhp135.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Boles Ponto LL, Watkins GL, Hichwa RD. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93(18):9985–90. https://doi.org/10.1073/pnas.93.18.9985.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Andreasen NC, Paradiso S, O’Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24(2):203–18. https://doi.org/10.1093/oxfordjournals.schbul.a033321.

    Article  CAS  PubMed  Google Scholar 

  40. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiat. 2008;64(2):81–8. https://doi.org/10.1016/j.biopsych.2008.01.003.

    Article  PubMed  Google Scholar 

  41. Bernard JA, Mittal VA. Dysfunctional activation of the cerebellum in schizophrenia: A functional neuroimaging meta-analysis. Clin Psychol Sci. 2015;3(4):545. https://doi.org/10.1177/2167702614542463.

    Article  PubMed  Google Scholar 

  42. Bernard JA, Orr JM, Mittal VA. Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. NeuroImage: Clinical. 2017;14:622. https://doi.org/10.1016/j.nicl.2017.03.001.

    Article  PubMed  Google Scholar 

  43. Kent JS, Kim DJ, Newman SD, Bolbecker AR, O’Donnell BF, Hetrick WP. Investigating cerebellar neural function in schizophrenia using delay eyeblink conditioning: a pilot fMRI study. Psychiatry Res - Neuroimaging. 2020;304(June):111133. https://doi.org/10.1016/j.pscychresns.2020.111133.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lundin NB, Kim D-J, Tullar RL, Moussa-Tooks AB, Kent JS, Newman SD, Purcell JR, Bolbecker AR, O’Donnell BF, Hetrick WP. Cerebellar activation deficits in schizophrenia during an eyeblink conditioning task. Schizophrenia Bulletin Open. 2021;2(1):1–12. https://doi.org/10.1093/schizbullopen/sgab040.

    Article  Google Scholar 

  45. Parker KL, Narayanan NS, Andreasen NC. The therapeutic potential of the cerebellum in schizophrenia. Front Syst Neurosci. 2014;8:163. https://doi.org/10.3389/fnsys.2014.00163.

  46. D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage: Clinical. 2015;7:631–9. https://doi.org/10.1016/j.nicl.2015.02.007.

    Article  PubMed  Google Scholar 

  47. Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132(9):2413–25. https://doi.org/10.1093/brain/awp088.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20(12):1744–51. https://doi.org/10.1038/s41593-017-0004-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hove MJ, Zeffiro TA, Biederman J, Li Z, Schmahmann J, Valera EM. Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder. NeuroImage: Clinical. 2015;8:422–8. https://doi.org/10.1016/j.nicl.2015.05.005.

    Article  PubMed  Google Scholar 

  50. Kucyi A, Hove MJ, Biederman J, Van Dijk KRA, Valera EM. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder: cerebellar default network and ADHD. Hum Brain Mapp. 2015;36(9):3373–86. https://doi.org/10.1002/hbm.22850.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Festini SB, Bernard JA, Kwak Y, Peltier S, Bohnen NI, Müller MLTM, Dayalu P, Seidler RD. Altered cerebellar connectivity in parkinson’s patients ON and OFF L-DOPA medication. Front Human Neurosci. 2015;9:214. https://doi.org/10.3389/fnhum.2015.00214.

  52. Gilat M, Bell PT, Ehgoetz Martens KA, Georgiades MJ, Hall JM, Walton CC, Lewis SJG, Shine JM. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson’s disease. NeuroImage. 2017;152(November 2016):207–20. https://doi.org/10.1016/j.neuroimage.2017.02.073.

    Article  CAS  PubMed  Google Scholar 

  53. Wu T, Hallett M. The cerebellum in parkinson’s disease. Brain. 2013;136(3):696–709. https://doi.org/10.1093/brain/aws360.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen L-K, Chung C-P, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Manto M. Consensus paper: cerebellum and ageing. The Cerebellum. 2023. https://doi.org/10.1007/s12311-023-01577-7.

    Article  PubMed  Google Scholar 

  55. Bernard JA. Don’t forget the little brain: a framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev. 2022;137(November 2021):104639. https://doi.org/10.1016/j.neubiorev.2022.104639.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bernard JA, Ballard HK, Jackson TB. Cerebellar dentate connectivity across adulthood: a large-scale resting state functional connectivity investigation. Cerebral Cortex Commun. 2021;2(3):1–13. https://doi.org/10.1093/texcom/tgab050.

    Article  Google Scholar 

  57. Bernard JA, Peltier SJ, Wiggins JL, Jaeggi SM, Buschkuehl M, Fling BW, Kwak Y, Jonides J, Monk CS, Seidler RD. Disrupted cortico-cerebellar connectivity in older adults. NeuroImage. 2013;83:103–19. https://doi.org/10.1016/j.neuroimage.2013.06.042.

  58. Bernard JA, Seidler RD. Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum. 2013;12(5):721–37. https://doi.org/10.1007/s12311-013-0481-z.

    Article  PubMed  Google Scholar 

  59. Bernard JA, Seidler RD. Moving forward: age effects on the cerebellum underlie cognitive and motor declines. Neurosci Biobehav Rev. 2014;42:193–207.

    Article  PubMed  Google Scholar 

  60. Han S, An Y, Carass A, Prince JL, Resnick SM. NeuroImage longitudinal analysis of regional cerebellum volumes during normal aging. Neuroimage. 2020;220(June):117062. https://doi.org/10.1016/j.neuroimage.2020.117062.

    Article  PubMed  Google Scholar 

  61. Jernigan TL, Archibald SL, Fennema-notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 2001;22:581–94.

    Article  CAS  PubMed  Google Scholar 

  62. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U. Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage. 2010;51(2):501–11. https://doi.org/10.1016/j.neuroimage.2010.03.020.

    Article  PubMed  Google Scholar 

  63. Ballard HK, Jackson TB, Hicks TH, Bernard JA. The association of reproductive stage with lobular cerebellar network connectivity across female adulthood. Neurobiol Aging. 2022;117:139–50. https://doi.org/10.1016/j.neurobiolaging.2022.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jackson TB, Maldonado T, Eakin SM, Orr JM, Bernard JA. Cerebellar and prefrontal-cortical engagement during higher-order rule learning in older adulthood. Neuropsychologia. 2020;148(February):107620. https://doi.org/10.1016/j.neuropsychologia.2020.107620.

    Article  PubMed  Google Scholar 

  65. Gellersen HM, Guell X, Sami S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. NeuroImage: Clinical. 2021;30(January):102605. https://doi.org/10.1016/j.nicl.2021.102605.

    Article  PubMed  Google Scholar 

  66. Jacobs HIL, Hopkins DA, Mayrhofer HC, Bruner E, Van Leeuwen FW, Raaijmakers W, Schmahmann JD. The cerebellum in alzheimer’s disease: evaluating its role in cognitive decline. Brain. 2018;141(1):37–47. https://doi.org/10.1093/brain/awx194.

    Article  PubMed  Google Scholar 

  67. Schmahmann JD. Cerebellum in alzheimer’s disease and frontotemporal dementia: not a silent bystander. Brain. 2016;139(5):1312–24. https://doi.org/10.1093/brain/aww053.

    Article  Google Scholar 

  68. Lin CY, Chen CH, Tom SE, Kuo SH. Cerebellar volume is associated with cognitive decline in mild cognitive impairment: Results from ADNI. Cerebellum. 2020;19(2):217–25. https://doi.org/10.1007/s12311-019-01099-1.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tabatabaei-Jafari H, Walsh E, Shaw ME, Cherbuin N. The cerebellum shrinks faster than normal ageing in Alzheimer’s disease but not in mild cognitive impairment. Human Brain Mapping. 2017;38(November 2016):3141. https://doi.org/10.1002/hbm.23580.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Toniolo S, Serra L, Olivito G, Caltagirone C, Mercuri NB, Marra C, Cercignani M, Bozzali M. Cerebellar white matter disruption in alzheimer’s disease patients: a diffusion tensor imaging study. Journal of Alzheimer’s Disease. 2020;74(2):615–24. https://doi.org/10.3233/JAD-191125.

    Article  CAS  PubMed  Google Scholar 

  71. Toniolo S, Serra L, Olivito G, Marra C, Bozzali M, Cercignani M. Patterns of cerebellar gray matter atrophy across alzheimer’s disease progression. Front Cell Neurosci. 2018;12:430. https://doi.org/10.3389/fncel.2018.00430.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to alzheimer’s disease and frontotemporal dementia. Brain. 2016;139(5):1527–38. https://doi.org/10.1093/brain/aww003.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Olivito G, Serra L, Marra C, Di Domenico C, Caltagirone C, Toniolo S, Cercignani M, Leggio M, Bozzali M. Cerebellar dentate nucleus functional connectivity with cerebral cortex in alzheimer’s disease and memory: a seed-based approach. Neurobiol Aging. 2020;89:32–40. https://doi.org/10.1016/j.neurobiolaging.2019.10.026.

    Article  PubMed  Google Scholar 

  74. Iwata K, Snider RS. Cerebello-hippocampal influences on the electroencephalogram. Electroencephalogr Clin Neurophysiol. 1959;11(3):439–46. https://doi.org/10.1016/0013-4694(59)90043-4.

    Article  CAS  PubMed  Google Scholar 

  75. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA. 2010;107(18):8452–6. https://doi.org/10.1073/pnas.1000496107.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  76. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3. https://doi.org/10.1038/nn1544.

    Article  CAS  PubMed  Google Scholar 

  77. Habas C. Research note: A resting-state, cerebello- amygdaloid intrinsically connected network. Cerebellum & Ataxias. 2018;5:4.

  78. Habas C, Cabanis EA. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T. Neuroradiology. 2007;49(10):849–63. https://doi.org/10.1007/s00234-007-0267-4.

    Article  PubMed  Google Scholar 

  79. Salamon N, Sicotte N, Drain A, Frew A, Alger JR, Jen J, Perlman S, Salamon G. White matter fiber tractography and color mapping of the normal human cerebellum with diffusion tensor imaging. J Neuroradiol. 2007;34(2):115–28. https://doi.org/10.1016/j.neurad.2007.03.002.

    Article  CAS  PubMed  Google Scholar 

  80. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6(7):750.

    Article  CAS  PubMed  Google Scholar 

  81. Bernard JA, Orr JM, Mittal VA. Abnormal hippocampal-thalamic white matter tract development and positive symptom course in individuals at ultra-high risk for psychosis. NPJ Schizophr. 2015;1(1):1–6. https://doi.org/10.1038/npjschz.2015.9.

    Article  Google Scholar 

  82. Arrigo A, Mormina E, Anastasi GP, Gaeta M, Calamuneri A, Quartarone A, De Salvo S, Bruschetta D, Rizzo G, Trimarchi F, Milardi D. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Front Human Neurosci. 2014;8(DEC):1–11. https://doi.org/10.3389/fnhum.2014.00987.

    Article  Google Scholar 

  83. Bohne P, Schwarz MK, Herlitze S, Mark MD. A new projection from the deep cerebellar nuclei to the hippocampus via the ventrolateral and laterodorsal thalamus in mice. Front Neural Circuits. 2019;13:51. https://doi.org/10.3389/fncir.2019.00051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Watson TC, Obiang P, Torres-Herraez A, Watilliaux A, Coulon P, Rochefort C, Rondi-Reig L. Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife. 2019;8:1–28. https://doi.org/10.7554/eLife.41896.001.

    Article  Google Scholar 

  85. Rochefort C, Arabo A, André M, Poucet B, Save E, Rondi-Reig L. Cerebellum shapes hippocampal spatial code. Science. 2011;334(6054):385–9. https://doi.org/10.1126/science.1207403.

    Article  CAS  PubMed  ADS  Google Scholar 

  86. Yu W, Krook-Magnuson E. Cognitive collaborations: Bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci. 2015;9(DEC):1–10. https://doi.org/10.3389/fnsys.2015.00177.

    Article  Google Scholar 

  87. Krook-Magnuson E, Szabo GG, Armstrong C, Oijala M, Soltesz I. Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy. Eneuro. 2014;1(1):ENEURO.0005-14.2014. https://doi.org/10.1523/ENEURO.0005-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zeidler Z, Hoffmann K, Krook-Magnuson E. HippoBellum: acute cerebellar modulation alters hippocampal dynamics and function. J Neurosci. 2020;40(36):6910–26. https://doi.org/10.1523/JNEUROSCI.0763-20.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hoffmann LC, Berry SD. Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci. 2009;106(50):21371–6. https://doi.org/10.1073/pnas.0908403106.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci USA. 2008;105(23):8108–13. https://doi.org/10.1073/pnas.0800374105.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;10(6):427–55. https://doi.org/10.1101/lm.59603.

    Article  PubMed  Google Scholar 

  92. Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10(4):443–58. https://doi.org/10.1037/0894-4105.10.4.443.

    Article  Google Scholar 

  93. Woodruff-Pak DS, Papka M, Romano S, Li YT. Eyeblink classical conditioning in alzheimer’s disease and cerebrovascular dementia. Neurobiol Aging. 1996;17(4):505–12. https://doi.org/10.1016/0197-4580(96)00070-X.

    Article  CAS  PubMed  Google Scholar 

  94. Woodruff-Pak DS, Thompson RF. Classical conditioning of the eyeblink response in the delay paradigm in adults aged 18–83 years. Psychol Aging. 1988;3(3):219–29. https://doi.org/10.1037/0882-7974.3.3.219.

    Article  CAS  PubMed  Google Scholar 

  95. Torres-Herraez A, Watson TC, Rondi-Reig L. Delta oscillations coordinate intracerebellar and cerebello-hippocampal network dynamics during sleep. J Neurosci. 2022;42(11):2268–81. https://doi.org/10.1523/JNEUROSCI.1479-21.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rondi-Reig L, Paradis A-L, Fallahnezhad M. A liaison brought to light: cerebellum-hippocampus. Partners for Spatial Cognition The Cerebellum. 2022;21(5):826–37. https://doi.org/10.1007/s12311-022-01422-3.

    Article  PubMed  Google Scholar 

  97. Onuki Y, Van Someren EJW, De Zeeuw CI, Van der Werf YD. Hippocampal-cerebellar interaction during spatio-temporal prediction. Cereb Cortex. 2015;25(2):313–21. https://doi.org/10.1093/cercor/bht221.

    Article  PubMed  Google Scholar 

  98. Paleja M, Girard TA, Herdman KA, Christensen BK. Two distinct neural networks functionally connected to the human hippocampus during pattern separation tasks. Brain Cogn. 2014;92:101–11. https://doi.org/10.1016/j.bandc.2014.10.009.

    Article  Google Scholar 

  99. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosc. 2009;29(26):8586–94. https://doi.org/10.1523/JNEUROSCI.1868-09.2009.

    Article  CAS  Google Scholar 

  100. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex (New York, NY : 1991). 2005;15(11):1676–89. https://doi.org/10.1093/cercor/bhi044.

    Article  PubMed  Google Scholar 

  101. Adler DH, Wisse LEM, Ittyerah R, Pluta JB, Ding SL, Xie L, Wang J, Kadivar S, Robinson JL, Schuck T, Trojanowski JQ, Grossman M, Detre JA, Elliott MA, Toledo JB, Liu W, Pickup S, Miller MI, Das SR, Yushkevich PA. Characterizing the human hippocampus in aging and alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology. Proc Natl Acad Sci USA. 2018;115(16):4252–7. https://doi.org/10.1073/pnas.1801093115.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM, Baumgartner RN, Sutherland RJ. The aging hippocampus: cognitive, biochemical and structural findings. Cereb Cortex. 2003;13(12):1344–51. https://doi.org/10.1093/cercor/bhg081.

    Article  PubMed  Google Scholar 

  103. Heckmann JM. Novel presenilin 1 mutation with profound neurofibrillary pathology in an indigenous southern african family with early-onset alzheimer’s disease. Brain. 2004;127(1):133–42. https://doi.org/10.1093/brain/awh009.

    Article  PubMed  Google Scholar 

  104. Kim H, Cheong E, Jo S, Lee S, Shim W, Kwon M, Kim JS, Kim BJ, Lee J. The cerebellum could serve as a potential imaging biomarker of dementia conversion in patients with amyloid-negative amnestic mild cognitive impairment. Euro J Neurol. 2021;28:1–8. https://doi.org/10.1111/ene.14770.

    Article  Google Scholar 

  105. Sepulveda-Falla D, Barrera-Ocampo A, Hagel C, Korwitz A, Vinueza-Veloz MF, Zhou K, Schonewille M, Zhou H, Velazquez-Perez L, Rodriguez-Labrada R, Villegas A, Ferrer I, Lopera F, Langer T, De Zeeuw CI, Glatzel M. Familial alzheimer’s disease–associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Investig. 2014;124(4):1552–67. https://doi.org/10.1172/JCI66407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xia M, Gao C, Wang H, Shang J, Liu R, You Y, Zang W, Zhang J. Novel PSEN1 (P284S) mutation causes alzheimer’s disease with CerebellarAmyloid β-protein deposition. Curr Alzheimer Res. 2022;19(7):523–9. https://doi.org/10.2174/1567205019666220718151357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35(4):625–41. https://doi.org/10.1016/S0896-6273(02)00830-9.

    Article  CAS  PubMed  Google Scholar 

  108. Henke K, Weber B, Kneifel S, Wieser HG, Buck A. Human hippocampus associates information in memory. Proc Natl Acad Sci. 1999;96(10):5884–9. https://doi.org/10.1073/pnas.96.10.5884.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Kircher T, Weis S, Leube D, Freymann K, Erb M, Jessen F, Grodd W, Heun R, Krach S. Anterior hippocampus orchestrates successful encoding and retrieval of non-relational memory: an event-related fMRI study. Eur Arch Psychiatry Clin Neurosci. 2008;258(6):363–72. https://doi.org/10.1007/s00406-008-0805-z.

    Article  PubMed  Google Scholar 

  110. Lee ACH, Brodersen KH, Rudebeck SR. Disentangling spatial perception and spatial memory in the hippocampus: a univariate and multivariate pattern analysis fMRI study. J Cogn Neurosci. 2013;25(4):534–46. https://doi.org/10.1162/jocn_a_00301.

    Article  PubMed  Google Scholar 

  111. Doyon J, Gabitov E, Vahdat S, Lungu O, Boutin A. Current issues related to motor sequence learning in humans. Curr Opin Behav Sci. 2018;20:89–97. https://doi.org/10.1016/j.cobeha.2017.11.012.

    Article  Google Scholar 

  112. Schendan HE, Searl MM, Melrose RJ, Stern CE. An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron. 2003;37(6):1013–25. https://doi.org/10.1016/S0896-6273(03)00123-5.

    Article  CAS  PubMed  Google Scholar 

  113. Woodruff-Pak DS, Foy MR, Akopian GG, Lee KH, Zach J, Nguyen KPT, Comalli DM, Kennard JA, Agelan A, Thompson RF. Differential effects and rates of normal aging in cerebellum and hippocampus. Proc Natl Acad Sci USA. 2010;107(4):1624–9. https://doi.org/10.1073/pnas.0914207107.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  114. Jacobs J, Weidemann CT, Miller JF, Solway A, Burke JF, Wei X-X, Suthana N, Sperling MR, Sharan AD, Fried I, Kahana MJ. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci. 2013;16(9):1188–90. https://doi.org/10.1038/nn.3466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sunthana N, Zulfi H, John S, Roy M, Eric B, Barbara K, Itzhak F. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl j Med. 2012;366:502–10.

Download references

Acknowledgements

The author thanks L. Hoffman and I. Olson for their comments and insights related to this manuscript and its content.

Funding

This work was supported by NIH R01AG064010 to JAB.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was conceptualized and authored by J.A.B.

Corresponding author

Correspondence to Jessica A. Bernard.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, J.A. Cerebello-Hippocampal Interactions in the Human Brain: A New Pathway for Insights Into Aging. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01670-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01670-5

Keywords

Navigation