Skip to main content
Log in

Neural Scaffolding as the Foundation for Stable Performance of Aging Cerebellum

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Although recently conceptualized as a neural node essential for a vast spectrum of associative and cognitive processes, the cerebellum has largely eluded attention in the research of aging, where it is marginalized mainly to structural analyses. In the current cross-sectional study of 67 healthy subjects of various ages (20 to 76 years), we sought to provide a comprehensive, multimodal account of age-related changes in the cerebellum during predictive motor timing, which was previously shown to engage this structure. We combined behavioral assessments of performance with functional MRI and voxel-based morphometry using an advanced method to avoid cerebellar deformation and registration imprecisions inherent to the standard processing at the whole-brain level. Higher age was surprisingly associated with stable behavioral performance during predictive motor timing, despite the massive decrease of infratentorial gray matter volume of a far higher extent than in the supratentorial region, affecting mainly the posterior cerebellar lobe. Nonetheless, this very area showed extensive hyperactivation directly correlated with age. The same region had decreased connectivity with the left caudate and increased connectivity with the left fusiform gyrus, the right pallidum, the hippocampus, and the lingual gyrus. Hence, we propose to extend the scaffolding theory of aging, previously limited mainly to the frontal cortices, to include also the cerebellum, which is likewise suffering from atrophy to a far greater extent than the rest of the brain and is similarly counteracting it by bilateral hyperactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MRI:

Magnetic resonance imaging

fMRI:

Functional magnetic resonance imaging

VBM:

Voxel-based morphometry

BOLD:

Blood-oxygen-level dependent

References

  1. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33.

    Article  CAS  PubMed  Google Scholar 

  2. Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010;16(5):754–60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harper S. Economic and social implications of aging societies. Science. 2014;346(6209):587–91.

    Article  CAS  PubMed  Google Scholar 

  4. Naccarato M, Calautti C, Jones PS, Day DJ, Carpenter TA, Baron JC. Does healthy aging affect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. Neuroimage. 2006;32(3):1250–6.

    Article  CAS  PubMed  Google Scholar 

  5. Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, et al. Neurophysiological correlates of age-related changes in human motor function. Neurology. 2002;58(4):630–5. https://doi.org/10.1212/WNL.58.4.630.

    Article  CAS  PubMed  Google Scholar 

  6. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  7. Filip P, Lungu OV, Manto M-U, Bareš M. Linking essential tremor to the cerebellum: physiological evidence. Cerebellum. 2016;15(6):774–80.

    Article  PubMed  Google Scholar 

  8. Marcián V, Filip P, Bareš M, Brázdil M. Cerebellar dysfunction and Ataxia in patients with epilepsy: coincidence, consequence, or cause? Tremor Hyperkinetic Mov. 2016;6:376. https://doi.org/10.7916/D8KH0NBT.

    Article  Google Scholar 

  9. Bernard JA, Seidler RD. Moving forward: age effects on the cerebellum underlie cognitive and motor declines. Neurosci Biobehav Rev. 2014;42:193–207.

    Article  PubMed  Google Scholar 

  10. Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. Am J Neuroradiol. 2001;22(6):1161–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang Y, Whitman GT, Lopez I, Baloh RW. Brain volume changes on longitudinal magnetic resonance imaging in normal older people. J Neuroimaging. 2001;11(4):393–400. https://doi.org/10.1111/j.1552-6569.2001.tb00068.x.

    Article  CAS  PubMed  Google Scholar 

  12. Bernard JA, Seidler RD. Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum. 2013;12(5):721–37. https://doi.org/10.1007/s12311-013-0481-z.

    Article  PubMed  Google Scholar 

  13. Bernard JA, Peltier SJ, Wiggins JL, Jaeggi SM, Buschkuehl M, Fling BW, et al. Disrupted cortico-cerebellar connectivity in older adults. NeuroImage. 2013;83:103–19. https://doi.org/10.1016/j.neuroimage.2013.06.042.

    Article  PubMed  Google Scholar 

  14. Ferreira LK, Busatto GF. Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev. 2013;37(3):384–400. https://doi.org/10.1016/j.neubiorev.2013.01.017.

    Article  PubMed  Google Scholar 

  15. Tian L, Ma L, Wang L. Alterations of functional connectivities from early to middle adulthood: clues from multivariate pattern analysis of resting-state fMRI data. NeuroImage. 2016;129:389–400. https://doi.org/10.1016/j.neuroimage.2016.01.039.

    Article  PubMed  Google Scholar 

  16. Filip P, Lošák J, Kašpárek T, Vaníček J, Bareš M. Neural network of predictive motor timing in the context of gender differences. Neural Plast. 2016;2016:1–9.

    Article  CAS  Google Scholar 

  17. Filip P, Gallea C, Lehéricy S, Bertasi E, Popa T, Mareček R, et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord. 2017;32(5):757–68.

    Article  PubMed  Google Scholar 

  18. Husárová I, Mikl M, Lungu OV, Mareček R, Vaníček J, Bareš M. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson’s disease patients and controls during predictive motor timing. J Neuroimaging. 2013;23(4):452–62.

    Article  PubMed  Google Scholar 

  19. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain J Neurol. 1998;121(4):561–79.

    Article  Google Scholar 

  20. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46(1):39–46. https://doi.org/10.1016/j.neuroimage.2009.01.045.

    Article  PubMed  Google Scholar 

  21. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33(1):127–38. https://doi.org/10.1016/j.neuroimage.2006.05.056.

    Article  PubMed  Google Scholar 

  22. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  CAS  PubMed  Google Scholar 

  23. Bares M, Lungu OV, Liu T, Waechter T, Gomez CM, Ashe J. The neural substrate of predictive motor timing in spinocerebellar ataxia. Cerebellum. 2011;10(2):233–44. https://doi.org/10.1007/s12311-010-0237-y.

    Article  PubMed  Google Scholar 

  24. Filip P, Lungu OV, Shaw DJ, Kasparek T, Bareš M. The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plast. 2013;2013:1–10.

    Article  Google Scholar 

  25. Predictive motor timing and the cerebellar vermis in schizophrenia: an fMRI study | Schizophr Bull | Oxford Academic. https://academic.oup.com/schizophreniabulletin/article/42/6/1517/2399483. Accessed January 16, 2019.

  26. Schuirmann DJ. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokinet Biopharm. 1987;15(6):657–80.

    Article  CAS  PubMed  Google Scholar 

  27. Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res Exp. 2007;180(2):355–65.

    Article  Google Scholar 

  28. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997;6(3):218–29.

    Article  CAS  PubMed  Google Scholar 

  29. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25(4):1325–35.

    Article  PubMed  Google Scholar 

  30. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.

    Article  CAS  PubMed  Google Scholar 

  31. Wu T, Hallett M. The influence of normal human ageing on automatic movements. J Physiol. 2005;562(2):605–15. https://doi.org/10.1113/jphysiol.2004.076042.

    Article  CAS  PubMed  Google Scholar 

  32. Welford AT, Norris AH, Shock NW. Speed and accuracy of movement and their changes with age. Acta Psychol. 1969;30(C):3–15.

    Article  CAS  Google Scholar 

  33. Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 2001;22(4):581–94. https://doi.org/10.1016/S0197-4580(01)00217-2.

    Article  CAS  PubMed  Google Scholar 

  34. Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, et al. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging. 2005;26(9):1261–70. https://doi.org/10.1016/j.neurobiolaging.2005.05.020.

    Article  PubMed  Google Scholar 

  35. Sullivan EV, Deshmukh A, Desmond JE, Lim KO, Pfefferbaum A. Cerebellar volume decline in normal aging, alcoholism, and Korsakoff’s syndrome: relation to ataxia. Neuropsychology. 2000;14(3):341–52. https://doi.org/10.1037//0894-4105.14.3.341.

    Article  CAS  PubMed  Google Scholar 

  36. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.

    Article  PubMed  Google Scholar 

  37. Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging. 2002;17(1):85–100.

    Article  PubMed  Google Scholar 

  38. Ward NS, Frackowiak RSJ. Age-related changes in the neural correlates of motor performance. Brain J Neurol. 2003;126(0 4):873–88.

    Article  CAS  Google Scholar 

  39. Taniwaki T, Okayama A, Yoshiura T, Togao O, Nakamura Y, Yamasaki T, et al. Age-related alterations of the functional interactions within the basal ganglia and cerebellar motor loops in vivo. NeuroImage. 2007;36(4):1263–76. https://doi.org/10.1016/j.neuroimage.2007.04.027.

    Article  PubMed  Google Scholar 

  40. Bo J, Peltier SJ, Noll DC, Seidler RD. Age differences in symbolic representations of motor sequence learning. Neurosci Lett. 2011;504(1):68–72. https://doi.org/10.1016/j.neulet.2011.08.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Driver J, Spence C. Multisensory perception: beyond modularity and convergence. Curr Biol. 2000;10(20):R731–5.

    Article  CAS  PubMed  Google Scholar 

  42. Schroeter ML, Zysset S, Kruggel F, Von Cramon DY. Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. Neuroimage. 2003;19(3):555–64.

    Article  PubMed  Google Scholar 

  43. Huettel SA, Singerman JD, McCarthy G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage. 2001;13(1):161–75.

    Article  CAS  PubMed  Google Scholar 

  44. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173–96.

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Zeeuw CI, Ten Brinke MM. Motor learning and the cerebellum. Cold Spring Harb Perspect Biol. 2015;7(9):a021683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

Download references

Acknowledgments

The authors are grateful to the patients and their families for their support of this research.

Funding

This work was supported by the EU H2020 Marie Skłodowska RISE project #691110 (MICROBRADAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Filip.

Ethics declarations

The study was approved by the Institutional Review Board of the University Hospital of St. Anne (Brno, Czech Republic) and by the Institutional Review Board of the University of Minnesota (Minneapolis, USA).

Conflict of Interests

There are no potential conflicts of interests regarding this paper and no financial or personal relationships that might bias this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filip, P., Gallea, C., Lehéricy, S. et al. Neural Scaffolding as the Foundation for Stable Performance of Aging Cerebellum. Cerebellum 18, 500–510 (2019). https://doi.org/10.1007/s12311-019-01015-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01015-7

Keywords

Navigation