Skip to main content
Log in

Functional Gradients of the Cerebellum: a Review of Practical Applications

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Gradient-based analyses have contributed to the description of cerebellar functional neuroanatomy. More recently, functional gradients of the cerebellum have been used as a multi-purpose tool for neuroimaging research. Here, we provide an overview of the many practical applications of cerebellar functional gradient analyses. These practical applications include examination of intra-cerebellar and cerebellar-extracerebellar organization; transformation of functional gradients into parcellations with discrete borders; projection of functional gradients calculated within cerebellar structures to other extracerebellar structures; interpretation of cerebellar neuroimaging findings using qualitative and quantitative methods; detection of differences in patient populations; and other more complex practical applications of cerebellar gradient-based analyses. This review may serve as an introduction and catalog of options for neuroscientists who wish to design and analyze imaging studies using functional gradients of the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guell X, Schmahmann J, Gabrieli J, Ghosh S. Functional gradients of the cerebellum. Elife. 2018;7:e36652.

    Article  Google Scholar 

  2. Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods. Proc Natl Acad Sci. 2005;102(21):7432–7.

    Article  CAS  Google Scholar 

  3. Langs G, Golland P, Ghosh SS. Predicting activation across individuals with resting-state functional connectivity based multi-atlas label fusion. Med Image Comput Comput Assist Interv. 2015;9350:313–320.

  4. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci. 2016;113(44):12574–9.

    Article  CAS  Google Scholar 

  5. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The WU-Minn human connectome project: an overview. Neuroimage. 2013;80:62–79.

    Article  Google Scholar 

  6. Diedrichsen J, Zotow E. Surface-based display of volume-averaged cerebellar imaging data. PLoS One. 2015;10(7):e0133402. https://doi.org/10.1371/journal.pone.0133402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guell X, DE Gabrieli J, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage. 2018;172:437–49.

    Article  Google Scholar 

  8. Buckner R, Krienen F, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.

    Article  Google Scholar 

  9. Guell X, D’Mello AM, Hubbard NA, Romeo RR, Gabrieli JDE, Whitfield-Gabrieli S, et al. Functional territories of human dentate nucleus. Cereb Cortex. 2020;30(4):2401–2417.

  10. Bukhari Q, Ruf SF, Guell X, Whitfield-Gabrieli S, Anteraper S. Interaction between cerebellum and cerebral cortex, evidence from dynamic causal modeling. Cerebellum. 2021. https://doi.org/10.1007/s12311-021-01284-1.

    PubMed  Google Scholar 

  11. Guell X, Goncalves M, Kaczmarzyk J, Gabrieli J, Schmahmann J, Ghosh S. LittleBrain: a gradient-based tool for the topographical interpretation of cerebellar neuroimaging findings. PLoS One. 2019;14(1):e0210028.

    Article  CAS  Google Scholar 

  12. Gellersen HM, Guell X, Sami S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. NeuroImage Clin. 2021;30:102605.

  13. Guell X, Anteraper SA, Gardner AJ, Whitfield-Gabrieli S, Kay-Lambkin Fs, Iverson GL, et al. Functional connectivity changes in retired rugby league players: a data-driven functional magnetic resonance imaging study. J Neurotrauma. 2020;37(16):1788–96. https://doi.org/10.1089/neu.2019.6782.

    Article  PubMed  Google Scholar 

  14. Guell X, Anteraper SA, Ghosh SS, Gabrieli JDE, Schmahmann JD. Neurodevelopmental and psychiatric symptoms in patients with a cyst compressing the cerebellum: an ongoing enigma. Cerebellum. 2020;19(1):16–29. https://doi.org/10.1007/s12311-019-01050-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D’Mello AM, Centanni TM, Gabrieli JDE, Christodoulou JA. Cerebellar contributions to rapid semantic processing in reading. Brain Lang. 2020;208:104828. https://doi.org/10.1016/j.bandl.2020.104828.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dong D, Luo C, Guell X, Wang Y, He H, Duan M, et al. Compression of cerebellar functional gradients in schizophrenia. Schizophr Bull. 2020;46(5):1282–95. https://doi.org/10.1093/schbul/sbaa016.

    Article  PubMed Central  Google Scholar 

  17. Hong SJ, de Wael RV, Bethlehem RAI, Lariviere S, Paquola C, Valk SL, et al. Atypical functional connectome hierarchy in autism. Nat Commun. 2019;10:1022.

  18. Dong D, Yao D, Wang Y, Hong SJ, Genon S, Xin F, et al. Compressed sensorimotor-to-transmodal hierarchical organization in schizophrenia. Psychol Med. 2021;8:1–14.

  19. Benkarim O, Paquola C, Park B, Hong S-J, Royer J, Vos de Wael R, et al. Connectivity alterations in autism reflect functional idiosyncrasy. Commun Biol. 2021;4:1078.

    Article  Google Scholar 

  20. Guell X, Schmahmann JD, Gabrieli JDE. Functional Specialization is Independent of Microstructural Variation in Cerebellum but Not in Cerebral Cortex. bioRxiv. 2018. Available from: https://doi.org/10.1101/424176

  21. Schmahmann J, Guell X, Stoodley C, Halko M. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64.

    Article  CAS  Google Scholar 

  22. Guell X, Gabrieli JDE, Schmahmann JD. Embodied cognition and the cerebellum: perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex. 2018;100:140–8.

    Article  Google Scholar 

  23. Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–8.

    Article  Google Scholar 

  24. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178. https://doi.org/10.1001/archneur.1991.00530230086029.

    Article  CAS  PubMed  Google Scholar 

  25. Guell X, Schmahmann JD, Gabrieli JDE, Ghosh SS, Geddes MR. Asymmetric functional gradients in the human subcortex. bioRxiv. 2020. Available from: https://doi.org/10.1101/2020.09.04.283820

  26. Marquand AF, Haak KV, Beckmann CF. Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nat Hum Behav. 2017;1:0146.

  27. Haak KV, Marquand AF, Beckmann CF. Connectopic mapping with resting-state fMRI. Neuroimage. 2018;170:83–94.

    Article  Google Scholar 

  28. Bajada CJ, Jackson RL, Haroon HA, Azadbakht H, Parker GJM, Lambon Ralph MA, et al. A graded tractographic parcellation of the temporal lobe. Neuroimage. 2017;155:503–12.

    Article  Google Scholar 

  29. Cerliani L, Thomas RM, Jbabdi S, Siero JCW, Nanetti L, Crippa A, et al. Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex. Hum Brain Mapp. 2012;33(9):2005–34.

    Article  Google Scholar 

  30. Logothetis NK, Wandell BA. Interpreting the BOLD signal. Ann Rev Physiol. 2004;66(1):735–69. https://doi.org/10.1146/annurev.physiol.66.082602.092845.

    Article  CAS  Google Scholar 

  31. Vos de Wael R, Benkarim O, Paquola C, Lariviere S, Royer J, Tavakol S, et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun Biol. 2020;3:103.

Download references

Acknowledgements

The author expresses his deep gratitude to Jeremy Schmahmann, MD, John Gabrieli, PhD, and Satrajit Ghosh, PhD for their mentorship and support that were essential for the development of many of the concepts presented here. The author also gratefully acknowledges the thoughtful critique of this manuscript offered by Jeremy Schmahmann, MD. Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 National Institutes of Health and Centers that support the Nation Institutes of Health Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. This work was supported in part by La Caixa Foundation (XG) and by the Massachusetts General Hospital Fund for Medical Discovery Award (XG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Guell.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guell, X. Functional Gradients of the Cerebellum: a Review of Practical Applications. Cerebellum 21, 1061–1072 (2022). https://doi.org/10.1007/s12311-021-01342-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01342-8

Keywords

Navigation