Skip to main content
Log in

A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This review focuses on the functional and anatomical links between the cerebellum and the hippocampus and the role of their interplay in goal-directed navigation and spatial cognition. We will describe the interactions between the cerebellum and the hippocampus at different scales: a macroscopic scale revealing the joint activations of these two structures at the level of neuronal circuits, a mesoscopic scale highlighting the synchronization of neuronal oscillations, and finally a cellular scale where we will describe the activity of hippocampal neuronal assemblies following a targeted manipulation of the cerebellar system. We will take advantage of this framework to summarize the different anatomical pathways that may sustain this multiscale interaction. We will finally consider the possible influence of the cerebellum on pathologies traditionally associated with hippocampal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sereno MI, Diedrichsen J, Tachrount M, Testa-Silva G, D’Arceuil H, De Zeeuw C. The human cerebellum has almost 80% of the surface area of the neocortex. Proc Natl Acad Sci. 2020;117:19538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. The Cerebellum. 2012;11:457–87.

    Article  PubMed  Google Scholar 

  3. Rondi-Reig L, Paradis AL, Lefort JM, Babayan BM, Tobin C. How the cerebellum may monitor sensory information for spatial representation. Front Syst Neurosci. 2014;8:1–13.

    Article  Google Scholar 

  4. Schmahmann J. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  5. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review Cortex. 2010;46:845–57.

    Article  CAS  PubMed  Google Scholar 

  6. Schmahmann JD. An emerging concept. Arch Neurol. 1991;48:1178.

    Article  CAS  PubMed  Google Scholar 

  7. Botez MI. The neuropsychology of the cerebellum: an emerging concept. Arch Neurol. 1992;49:1229–30.

    Article  CAS  PubMed  Google Scholar 

  8. Molinari M. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.

    Article  PubMed  Google Scholar 

  9. Molinari M, Leggio MG. Cerebellar information processing and visuospatial functions. The Cerebellum. 2007;6:214–20.

    Article  PubMed  Google Scholar 

  10. Lalonde R. Visuospatial abilities. 1997. p. 191–215.

  11. Petrosini L. The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol. 1998;56:191–210.

    Article  CAS  PubMed  Google Scholar 

  12. Rondi-Reig L, Burguière E. Is the cerebellum ready for navigation? 2005. p. 199–212.

  13. Glickstein M, Doron K. Cerebellum: connections and functions. The Cerebellum. 2008;7:589–94.

    Article  PubMed  Google Scholar 

  14. Rondi-Reig L, Delhaye-Bouchaud N, Mariani J, Caston J. Role of the inferior olivary complex in motor skills and motor learning in the adult rat. Neuroscience. 1997;77:955–63.

    Article  CAS  PubMed  Google Scholar 

  15. Rogers DC, Fisher EMC, Brown SDM, Peters J, Hunter AJ, Martin JE. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome. 1997;8:711–3.

    Article  CAS  PubMed  Google Scholar 

  16. Silva AJ, Paylor R, Wehner JM, Tonegawa S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science (80). 1992;257:206–11.

    Article  CAS  Google Scholar 

  17. Molinari M, Petrosini L, Grammaldo LG. Spatial event processing. 1997. p. 217–30.

  18. Rondi-Reig L, Le Marec N, Caston J, Mariani J. The role of climbing and parallel fibers inputs to cerebellar cortex in navigation. Behav Brain Res. 2002;132:11–8.

    Article  PubMed  Google Scholar 

  19. Petrosini L, Molinari M, Dell’Anna ME. Cerebellar contribution to spatial event processing: Morris water maze and T-maze. Eur J Neurosci. 1996;8:1882–96.

    Article  CAS  PubMed  Google Scholar 

  20. Leggio MG, Neri P, Graziano A, Mandolesi L, Molinari M, Petrosini L. Cerebellar contribution to spatial event processing: characterization of procedural learning. Exp Brain Res. 1999;127:1–11.

    Article  CAS  PubMed  Google Scholar 

  21. Gasbarri A, Pompili A, Pacitti C, Cicirata F. Comparative effects of lesions to the ponto-cerebellar and olivo-cerebellar pathways on motor and spatial learning in the rat. Neuroscience. 2003;116:1131–40.

    Article  CAS  PubMed  Google Scholar 

  22. Goodlett CR, Hamre KM, West JR. Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res. 1992;47:129–41.

    Article  CAS  PubMed  Google Scholar 

  23. Lalonde R, Thifault S. Absence of an association between motor coordination and spatial orientation in lurcher mutant mice. Behav Genet. 1994;24:497–501.

    Article  CAS  PubMed  Google Scholar 

  24. Verschure PFMJ, Pennartz CMA, Pezzulo G. The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Philos Trans R Soc B Biol Sci. 2014;369:20130483.

    Article  Google Scholar 

  25. De Zeeuw CI, Hansel C, Bian F, Koekkoek SKE, Van Alphen AM, Linden DJ, et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron. 1998;20:495–508.

    Article  PubMed  Google Scholar 

  26. Schonewille M, Belmeguenai A, Koekkoek SK, Houtman SH, Boele HJ, van Beugen BJ, et al. Purkinje cell specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron Elsevier Inc. 2010;67:618–28.

    Article  CAS  Google Scholar 

  27. Burguiere E, Arabo A, Jarlier F, De Zeeuw CI, Rondi-Reig L. Role of the cerebellar cortex in conditioned goal-directed behavior. J Neurosci. 2010;30:13265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burguière E, Arleo A, Hojjati Mreza, Elgersma Y, De Zeeuw CI, Berthoz A, et al. Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit? Nat Neurosci. 2005;8:1292–4.

    Article  PubMed  CAS  Google Scholar 

  29. Galliano E, Potters J-W, Elgersma Y, Wisden W, Kushner SA, De Zeeuw CI, et al. Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks. J Neurosci. 2013;33:12599–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hitier M, Besnard S, Smith PF. Vestibular pathways involved in cognition. Front Integr Neurosci. 2014;8:1–16.

    Article  Google Scholar 

  31. Joyal C, Strazielle C, Lalonde R. Effects of dentate nucleus lesions on spatial and postural sensorimotor learning in rats. Behav Brain Res. 2001;122:131–7.

    Article  CAS  PubMed  Google Scholar 

  32. Locke TM, Soden ME, Miller SM, Hunker A, Knakal C, Licholai JA, et al. Dopamine D1 receptor–positive neurons in the lateral nucleus of the cerebellum contribute to cognitive behavior. Biol Psychiatry. 2018;84:401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaytán-Tocavén L, Olvera-Cortés M. Bilateral lesion of the cerebellar? Dentate nucleus impairs egocentric sequential learning but not egocentric navigation in the rat. Neurobiol Learn Mem. 2004;82:120–7.

    Article  PubMed  Google Scholar 

  34. Andre P, Zaccaroni M, Fiorenzani P, Della Seta D, Menzocchi M, Farabollini F. Offline consolidation of spatial memory: do the cerebellar output circuits play a role? A study utilizing a Morris water maze protocol in male Wistar rats. Brain Res. 2019;1718:148–58.

    Article  CAS  PubMed  Google Scholar 

  35. Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci. 2017;20:1434–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rondi-Reig L, Petit GH, Arleo A, Burguiere E. The starmaze: a new paradigm to characterize multiple spatial navigation strategies. 5th Int Conf Methods Tech Behav Res. Wageningen; 2005.

  37. Igloi K, Zaoui M, Berthoz A, Rondi-Reig L. Sequential egocentric strategy is acquired as early as allocentric strategy: parallel acquisition of these two navigation strategies. Hippocampus. 2009;19:1199–211.

    Article  PubMed  Google Scholar 

  38. Rondi-Reig L, Petit GH, Tobin C, Tonegawa S, Mariani J, Berthoz A. Impaired sequential egocentric and allocentric memories in forebrain-specific-NMDA receptor knock-out mice during a new task dissociating strategies of navigation. J Neurosci. 2006;26:4071–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Babayan BM, Watilliaux A, Viejo G, Paradis A-L, Girard B, Rondi-Reig L. A hippocampo-cerebellar centred network for the learning and execution of sequence-based navigation. Sci Rep. 2017;7:17812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iglói K, Doeller CF, Paradis A-L, Benchenane K, Berthoz A, Burgess N, et al. Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation. Cereb Cortex. 2015;25:4146–54.

    Article  PubMed  Google Scholar 

  41. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59:1560–70.

    Article  PubMed  Google Scholar 

  42. Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia. 2003;41:252–62.

    Article  PubMed  Google Scholar 

  43. Penhune VB, Steele CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226:579–91.

    Article  PubMed  Google Scholar 

  44. Onuki Y, Van Someren EJW, De Zeeuw CI, Van der Werf YD. Hippocampal–cerebellar interaction during spatio-temporal prediction. Cereb Cortex. 2015;25:313–21.

    Article  PubMed  Google Scholar 

  45. Hauser MFA, Heba S, Schmidt-Wilcke T, Tegenthoff M, Manahan-Vaughan D. Cerebellar-hippocampal processing in passive perception of visuospatial change: an ego- and allocentric axis? Hum Brain Mapp. John Wiley & Sons, Ltd. 2020;41:1153–66.

    Google Scholar 

  46. Paleja M, Girard TA, Herdman KA, Christensen BK. Two distinct neural networks functionally connected to the human hippocampus during pattern separation tasks. Brain Cogn. 2014;92:101–11.

    Article  Google Scholar 

  47. Fouquet C, Tobin C, Rondi-Reig L. A new approach for modeling episodic memory from rodents to humans: the temporal order memory. Behav Brain Res. 2010;215:172–9.

    Article  PubMed  Google Scholar 

  48. Eichenbaum H, Cohen NJ. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron. 2014;83:764–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Redish AD. Beyond the cognitive map: from place cells to episodic memory. Cambridge: The MIT Press; 1999.

  50. Iglói K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N. Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc Natl Acad Sci. 2010;107:14466–71.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Spiers HJ. Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. Brain. 2001;124:2476–89.

    Article  CAS  PubMed  Google Scholar 

  52. Yu W, Krook-Magnuson E. Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci. 2015;9.

  53. Rochefort C, Lefort J, Rondi-Reig L. The cerebellum: a new key structure in the navigation system. Front Neural Circuits. 2013;7.

  54. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–5.

    Article  PubMed  Google Scholar 

  55. O’Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford, UK: Oxford University Press; 1978.

    Google Scholar 

  56. Chen G, King JA, Burgess N, O’Keefe J. How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci U S A. 2013;110:378–83.

    Article  CAS  PubMed  Google Scholar 

  57. Knierim JJ, Kudrimoti HS, Mcnaughton BL. Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells. J Neurophysiol. 1998;80:425–46.

    Article  CAS  PubMed  Google Scholar 

  58. Acharya L, Aghajan ZM, Vuong C, Moore JJ, Mehta MR. Causal influence of visual cues on hippocampal directional selectivity. Cell Elsevier Inc. 2016;164:197–207.

    CAS  Google Scholar 

  59. Jayakumar RP, Madhav MS, Savelli F, Blair HT, Cowan NJ, Knierim JJ. Recalibration of path integration in hippocampal place cells. Nature Springer US. 2019;566:533–7.

    CAS  Google Scholar 

  60. Lefort JM, Vincent J, Tallot L, Jarlier F, De Zeeuw CI, Rondi-Reig L, et al. Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation. Nat Commun Springer US. 2019;10:1–13.

    CAS  Google Scholar 

  61. Rochefort C, Arabo A, André M, Poucet B, Save E, Rondi-Reig L. Cerebellum shapes hippocampal spatial code. Science (80- ). 2011;311:385–90.

    Article  CAS  Google Scholar 

  62. De Zeeuw CI, Ten Brinke MM. Motor learning and the cerebellum. Cold Spring Harb Perspect Biol. 2015;7:a021683.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Suvrathan A, Payne HL, Raymond JL. Timing rules for synaptic plasticity matched to behavioral function. Neuron. 2016;92:959–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dean P, Porrill J. Evaluating the adaptive-filter model of the cerebellum. J Physiol. 2011;589:3459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeidler Z, Hoffmann K, Krook-Magnuson E. HippoBellum: acute cerebellar modulation alters hippocampal dynamics and function. J Neurosci. 2020;40:6910–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Choe KY, Sanchez CF, Harris NG, Otis TS, Mathews PJ. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain. Neuroimage Elsevier Ltd. 2018;173:370–83.

    Article  Google Scholar 

  67. Whiteside JA, Snider RS. Relation of cerebellum to upper brain stem. J Neurophysiol. 1953;16:397–413.

    Article  CAS  PubMed  Google Scholar 

  68. Harper JW, Heath RG. Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol. 1973;39:285–92.

    Article  CAS  PubMed  Google Scholar 

  69. Snider RS, Maiti A. Cerebellar contributions to the papez circuit. J Neurosci Res. 1976;2:133–46.

    Article  CAS  PubMed  Google Scholar 

  70. Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry. 1978;13:501–29.

    CAS  PubMed  Google Scholar 

  71. Newman PP, Reza H. Functional relationships between the hippocampus and the cerebellum: an electrophysiological study of the cat. J Physiol. 1979;287:405–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Watson TC, Obiang P, Torres-Herraez A, Watilliaux A, Coulon P, Rochefort C, et al. Anatomical and physiological foundations of cerebello-hippocampal interaction. Elife. 2019;8.

  73. Arrigo A, Mormina E, Anastasi GP, Gaeta M, Calamuneri A, Quartarone A, et al. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Front Hum Neurosci. 2014;8.

  74. Liu W, Zhang Y, Yuan W, Wang J, Li S. A direct hippocampo-cerebellar projection in chicken. Anat Rec Adv Integr Anat Evol Biol. 2012;295:1311–20.

    Article  Google Scholar 

  75. Korotkova T, Ponomarenko A, Monaghan CK, Poulter SL, Cacucci F, Wills T, et al. Reconciling the different faces of hippocampal theta: the role of theta oscillations in cognitive, emotional and innate behaviors. Neurosci Biobehav Rev. 2018;85:65–80.

    Article  PubMed  Google Scholar 

  76. Fujita H, Kodama T, du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife. 2020;9.

  77. Olucha-Bordonau FE, Teruel V, Barcia-González J, Ruiz-Torner A, Valverde-Navarro AA, Martínez-Soriano F. Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol. 2003;464:62–97.

    Article  PubMed  Google Scholar 

  78. Teruel-Martí V, Cervera-Ferri A, Nuñez A, Valverde-Navarro AA, Olucha-Bordonau FE, Ruiz-Torner A. Anatomical evidence for a ponto-septal pathway via the nucleus incertus in the rat. Brain Res. 2008;1218:87–96.

    Article  PubMed  CAS  Google Scholar 

  79. Goto M, Swanson LW, Canteras NS. Connections of the nucleus incertus. J Comp Neurol. 2001;438:86–122.

    Article  CAS  PubMed  Google Scholar 

  80. Martínez-Bellver S, Cervera-Ferri A, Luque-García A, Martínez-Ricós J, Valverde-Navarro A, Bataller M, et al. Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat. J Physiol. 2017;595:1775–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Trenk A, Walczak M, Szlaga A, Pradel K, Blasiak A, Blasiak T. Bidirectional communication between the pontine nucleus incertus and the medial septum is carried out by electrophysiologically-distinct neuronal populations. J Neurosci. 2022;42:2234–52.

    Article  CAS  PubMed  Google Scholar 

  82. Bott J-B, Robinson J, Manseau F, Gauthier-Lafrenière E, Williams S. Medial septum glutamate neurons are essential for spatial goal-directed memory. bioRxiv Prepr. 2022;

  83. Nategh M, Nikseresht S, Khodagholi F, Motamedi F. Nucleus incertus inactivation impairs spatial learning and memory in rats. Physiol Behav. 2015;139:112–20.

    Article  CAS  PubMed  Google Scholar 

  84. Paul SM, Heath RG, Ellison JP. Histochemical demonstration of a direct pathway from the fastigial nucleus to the septal region. Exp Neurol. 1973;40:798–805.

    Article  CAS  PubMed  Google Scholar 

  85. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJH. Topography of cerebellar nuclear projections to the brain stem in the rat. 2000. p. 141–72.

  86. Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990;299:106–22.

    Article  CAS  PubMed  Google Scholar 

  87. Aznar S, Qian Z-X, Knudsen G. Non-serotonergic dorsal and median raphe projection onto parvalbumin- and calbindin-containing neurons in hippocampus and septum. Neuroscience. 2004;124:573–81.

    Article  CAS  PubMed  Google Scholar 

  88. Vertes RP. PHA-L analysis of projections from the supramammillary nucleus in the rat. J Comp Neurol. 1992;326:595–622.

    Article  CAS  PubMed  Google Scholar 

  89. Kirk IJ, McNaughton N. Supramammillary cell firing and hippocampal rhythmical slow activity. NeuroReport. 1991;2:723.

    Article  CAS  PubMed  Google Scholar 

  90. Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience. 1997;81:893–926.

    CAS  PubMed  Google Scholar 

  91. Hoffmann LC, Berry SD. Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci. 2009;106:21371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wikgren J, Nokia MS, Penttonen M. Hippocampo–cerebellar theta band phase synchrony in rabbits. Neuroscience. 2010;165:1538–45.

    Article  CAS  PubMed  Google Scholar 

  93. Hoffmann LC, Cicchese JJ, Berry SD. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning. Front Syst Neurosci. 2015;9.

  94. McCartney H, Johnson AD, Weil ZM, Givens B. Theta reset produces optimal conditions for long-term potentiation. Hippocampus. 2004;14:684–7.

    Article  PubMed  Google Scholar 

  95. Nokia MS, Mikkonen JE, Penttonen M, Wikgren J. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Front Behav Neurosci. 2012;6.

  96. Torres-Herraez A, Watson TC, Rondi-Reig L. Delta oscillations coordinate intracerebellar and cerebello-hippocampal network dynamics during sleep. J Neurosci. 2022;42:2268–81.

    Article  CAS  PubMed  Google Scholar 

  97. Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–94.

    Article  CAS  PubMed  Google Scholar 

  98. Pavlides C, Winson J. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci. 1989;9:2907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science (80- ). 1994;265:5–8.

    Article  Google Scholar 

  100. Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci Nature Publishing Group. 2009;12:1222–3.

    Article  CAS  Google Scholar 

  101. Todorova R, Zugaro M. Isolated cortical computations during delta waves support memory consolidation. Science (80- ). 2019;366:377–81.

    Article  CAS  Google Scholar 

  102. McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar lobulus simplex and Crus I differentially represent phase and phase difference of prefrontal cortical and hippocampal oscillations. Cell Rep. 2019;27:2328-2334.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Lena C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33:6552–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Streng ML, Tetzlaff MR, Krook-Magnuson E. Distinct fastigial output channels and their impact on temporal lobe seizures. J Neurosci. 2021;41:10091–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Taube JS. The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci. 2007;30:181–207.

    Article  CAS  PubMed  Google Scholar 

  106. Winter SS, Taube JS. Head direction cells: from generation to integration. Space,Time Mem Hippocampal Form. Vienna: Springer Vienna; 2014. p. 83–106.

  107. Giannetti S, Molinari M. Cerebellar input to the posterior parietal cortex in the rat. Brain Res Bull. 2002;58:481–9.

    Article  PubMed  Google Scholar 

  108. Cullen KE, Taube JS. Our sense of direction: progress, controversies and challenges. Nat Neurosci. 2017;20:1465–73.

    Article  CAS  PubMed  Google Scholar 

  109. Taube JS, Muller RU, Ranck JB. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci. 1990;10:436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ranck JB. Head-direction cells in the deep cell layers of the dorsal presubiculum in freely moving rats. Soc Neurosci Abstr. 1984;10:599.

    Google Scholar 

  111. Sharp PE, Blair HT, Cho J. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci. 2001;24:289–94.

    Article  CAS  PubMed  Google Scholar 

  112. Calton JL, Stackman RW, Goodridge JP, Archey WB, Dudchenko PA, Taube JS. Hippocampal place cell instability after lesions of the head direction cell network. J Neurosci. 2003;23:9719–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Winter SS, Clark BJ, Taube JS. Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science (80- ). 2015;347:870–4.

    Article  CAS  Google Scholar 

  114. Wills TJ, Cacucci F, Burgess N, O’Keefe J. Development of the hippocampal cognitive map in preweanling rats. Science (80-). 2010;328:1573–6.

    Article  CAS  Google Scholar 

  115. Manni E, Petrosini L. Luciani’s work on the cerebellum a century later. Trends Neurosci. 1997;20:112–6.

    Article  CAS  PubMed  Google Scholar 

  116. Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neurosci. 2004;10:247–59.

    Google Scholar 

  117. Laurens J, Meng H, Angelaki DE. Computation of linear acceleration through an internal model in the macaque cerebellum. Nat Neurosci. 2013;16:1701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Laurens J, Meng H, Angelaki DE. Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron. 2013;80:1508–18.

    Article  CAS  PubMed  Google Scholar 

  119. Dugué GP, Tihy M, Gourévitch B, Léna C. Cerebellar re-encoding of self-generated head movements. Elife. 2017;6.

  120. Yoder RM, Taube JS. The vestibular contribution to the head direction signal and navigation. Front Integr Neurosci. 2014;8:32.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Stackman RW. Passive transport disrupts directional path integration by rat head direction cells. J Neurophysiol. 2003;90:2862–74.

    Article  PubMed  Google Scholar 

  122. Sharp PE, Tinkelman A, Cho J. Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of gudden in the rat: implications for path integration in the head direction cell circuit. Behav Neurosci. 2001;115:571–88.

    Article  CAS  PubMed  Google Scholar 

  123. Butler WN, Smith KS, van der Meer MAA, Taube JS. The head-direction signal plays a functional role as a neural compass during navigation. Curr Biol Elsevier Ltd. 2017;27:1259–67.

    Article  CAS  Google Scholar 

  124. Fallahnezhad M, Le Méro J, Zenelaj X, Vincent J, Rochefort C, Rondi-Reig L. Cerebellar control of a unitary head direction sense. bioRxiv Prepr. 2021;6.

  125. Stacho M, Manahan-Vaughan D. Mechanistic flexibility of the retrosplenial cortex enables its contribution to spatial cognition. Trends Neurosci The Author(s). 2022;45:284–96.

    Article  CAS  Google Scholar 

  126. Alexander AS, Nitz DA. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat Neurosci Nature Publishing Group. 2015;18:1143–51.

    Article  CAS  Google Scholar 

  127. Alexander AS, Carstensen LC, Hinman JR, Raudies F, William Chapman G, Hasselmo ME. Egocentric boundary vector tuning of the retrosplenial cortex. Sci Adv. 2020;6.

  128. Jacob P-Y, Casali G, Spieser L, Page H, Overington D, Jeffery K. An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat Neurosci. 2016;

  129. Kelly E, Meng F, Fujita H, Morgado F, Kazemi Y, Rice LC, et al. Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nat Neurosci. 2020;23:1102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kropff E, Carmichael JE, Moser MB, Moser EI. Speed cells in the medial entorhinal cortex. Nature. 2015;523:419–24.

    Article  CAS  PubMed  Google Scholar 

  131. Mittelstaedt M, Mittelstaedt H. Homing by path integration in a mammal. Naturwissenschaften. 1980;67:566–7.

    Article  Google Scholar 

  132. Voogd J, Barmack NH. Oculomotor cerebellum. Oculomotor cerebellum Progress in Brain Research. 2006;151:231–68.

    PubMed  Google Scholar 

  133. Proville RD, Spolidoro M, Guyon N, Dugue GP, Selimi F, Isope P, Popa D, Lena C. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17:1233–9.

    Article  CAS  PubMed  Google Scholar 

  134. Cerminara NL, Apps R, Marple-Horvat DE. An internal model of a moving visual target in the lateral cerebellum. J Physiol. 2009;587:429–42.

    Article  CAS  PubMed  Google Scholar 

  135. Cerminara NL, Apps R. Behavioural significance of cerebellar modules. The Cerebellum. 2011;10:484–94.

    Article  PubMed  Google Scholar 

  136. Kostadinov D, Häusser M. Reward signals in the cerebellum: origins, targets, and functional implications. Neuron. 2022;110:1290–303.

    Article  CAS  PubMed  Google Scholar 

  137. Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, et al. Consensus paper: experimental neurostimulation of the cerebellum. The Cerebellum. 2019;18:1064–97.

    Article  PubMed  Google Scholar 

  138. Rondi-Reig L. The cerebellum on the epilepsy frontline. Trends Neurosci. 2022;45:337–8.

    Article  CAS  PubMed  Google Scholar 

  139. Iaria G. Burles F. Definition: topographical disorientation. Cortex. 2021;137:330.

    Article  PubMed  Google Scholar 

  140. Burles F, Iaria G. Behavioural and cognitive mechanisms of developmental topographical disorientation. Sci Rep. 2020;10:20932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jacobs HIL, Hedden T, Schultz AP, Sepulcre J, Perea RD, Amariglio RE, et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci. 2018;21:424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The National Agency for Research ANR-17-CE16-0019–03 (SynPredict) and ANR-18-CE16-0010–02 (RewInhib) supported LRR and MF. ANR-17-CE37-0015–02 (Navi-GPS) and SATT Lutech supported LRR and ALP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Rondi-Reig.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rondi-Reig, L., Paradis, AL. & Fallahnezhad, M. A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. Cerebellum 21, 826–837 (2022). https://doi.org/10.1007/s12311-022-01422-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01422-3

Keywords

Navigation