Skip to main content
Log in

Around LTD Hypothesis in Motor Learning

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Long-term depression (LTD) at parallel fiber-Purkinje neuron synapses has been regarded as a primary cellular mechanism for motor learning. However, this hypothesis has been challenged. Demonstration of normal motor learning under LTD-suppressed conditions suggested that motor learning can occur without LTD. Synaptic plasticity mechanisms other than LTD have been found at various synapses in the cerebellum. Animals may achieve motor learning using several types of synaptic plasticity in the cerebellum including LTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Albus J. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  3. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol. 1982;324:113–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Sakurai M. Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol. 1987;394:463–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Hirano T. Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci Lett. 1990;119:141–4.

    Article  CAS  PubMed  Google Scholar 

  6. Ito M. Cerebellar control of the vestibulo-ocular reflex—around the flocculus hypothesis. Ann Rev Neurosci. 1982;5:275–96.

    Article  CAS  PubMed  Google Scholar 

  7. du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG. Learning and memory in the vestibulo-ocular reflex. Ann Rev Neurosci. 1995;18:409–41.

    Article  PubMed  Google Scholar 

  8. Thompson RF. In search of memory traces. Ann Rev Psychol. 2005;56:1–23.

    Article  Google Scholar 

  9. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    CAS  PubMed  Google Scholar 

  10. Ito M. The cerebellum: brain for an implicit self. New Jersey: FT Press; 2011. p. 1–285.

    Google Scholar 

  11. Hirano T. Long-term depression and other synaptic plasticity in the cerebellum. Proc Japan Acad B. 2013;89:183–95.

    Article  CAS  Google Scholar 

  12. Welsh JP, Yamaguchi H, Zeng XH, Kojo M, Nakada Y, Takagi A, et al. Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proc Natl Acad Sci USA. 2005;102:17166–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE, Simek AA, et al. Reevaluating the role of LTD in cerebellar motor learning. Neuron. 2011;70:43–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4:467–75.

    CAS  PubMed  Google Scholar 

  15. Dean P, Porrill J, Ekerot CF, Jörntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11:30–43.

    Article  CAS  PubMed  Google Scholar 

  16. Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.

    Article  CAS  PubMed  Google Scholar 

  17. Robinson DA. The use of control systems analysis in the neurophysiology of eye movements. Ann Rev Neurosci. 1981;4:463–503.

    Article  CAS  PubMed  Google Scholar 

  18. Hirano T. Cerebellar regulation mechanisms learned from studies on GluRδ2. Mol Neurobiol. 2006;33:1–16.

    Article  CAS  PubMed  Google Scholar 

  19. Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell. 1994;7:377–88.

    Google Scholar 

  20. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Disturbed motor coordination, Purkinje cell synapse formation and cerebellar long-term depression of mice defective in the δ2 subunit of the glutamate receptor channel. Cell. 1995;81:245–52.

    Article  CAS  PubMed  Google Scholar 

  21. Kishimoto Y, Kawahara S, Suzuki M, Mori H, Mishina M, Kirino Y. Classical eyeblink conditioning in glutamate receptor subunit δ2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. Eur J Neurosci. 2001;13:1249–53.

    Article  CAS  PubMed  Google Scholar 

  22. Katoh A, Yoshida T, Himeshima Y, Mishina M, Hirano T. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor δ2 subunit or Purkinje cells. Eur J Neurosci. 2005;21:1315–26.

    Article  PubMed  Google Scholar 

  23. Miyata M, Kim H, Hashimoto K, Lee T, Cho S, Jiang H, et al. Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase Cβ4 mutant mice. Eur J Neurosci. 2001;13:1945–54.

    Article  CAS  PubMed  Google Scholar 

  24. Lev-Ram V, Nebyelul Z, Ellisman MH, Huang PL, Tsien RY. Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learn Mem. 1997;4:169–77.

    Article  CAS  PubMed  Google Scholar 

  25. Katoh A, Kitazawa H, Itohara S, Nagao S. Inhibition of nitric oxide synthesis and gene knockout of neuronal nitric oxide synthase impaired adaptation of mouse optokinetic response eye movements. Learn Mem. 2000;7:220–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, et al. Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol. 2003;163:295–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GH, Andreev D, et al. αCaMKII is essential for cerebellar LTD and motor learning. Neuron. 2006;51:835–43.

    Article  CAS  PubMed  Google Scholar 

  28. Kuroyanagi T, Yokoyama M, Hirano T. Postsynaptic glutamate receptor δ family contributes to presynaptic terminal differentiation and establishment of synaptic transmission. Proc Natl Acad Sci U S A. 2009;106:4912–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yamashita M, Kawaguchi S, Hirano T. Contribution of postsynaptic GluD2 to presynaptic R-type Ca2+ channel function, glutamate release and long-term potentiation at parallel fiber to Purkinje cell synapses. Cerebellum. 2013;12:657–66.

    Article  CAS  PubMed  Google Scholar 

  30. De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, van Alphen AM, Linden DJ, et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron. 1998;20:495–508.

    Article  PubMed  Google Scholar 

  31. Takeuchi T, Ohtsuki G, Yoshida T, Fukaya M, Wainai T, Yamashita M, et al. Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin. PLoS One. 2008;3(e2297):1–11.

    Google Scholar 

  32. Hirano T. Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse. 1991;7:321–3.

    Article  CAS  PubMed  Google Scholar 

  33. Salin P, Malenka R, Nicoll R. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron. 1996;16:797–803.

    Article  CAS  PubMed  Google Scholar 

  34. Lev-Ram V, Wong S, Storm D, Tsien R. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci U S A. 2002;99:8389–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Coesmans M, Weber J, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    Article  CAS  PubMed  Google Scholar 

  36. Schonewille M, Belmeguenai A, Koekkoek SK, Houtman SH, Boele HJ, van Beugen BJ, et al. Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron. 2010;67:618–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. LyR BG, Schonewille M, Arabo A, Rondi-Reig L, Léna C, Casado M, et al. T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning. Proc Natl Acad Sci USA. 2013;110:20302–7.

    Article  Google Scholar 

  38. Kano M, Rexhausen U, Dreessen J, Konnerth A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature. 1992;356:601–4.

    Article  CAS  PubMed  Google Scholar 

  39. Kawaguchi S, Hirano T. Suppression of inhibitory synaptic potentiation by presynaptic activity through postsynaptic GABAB receptors in a Purkinje neuron. Neuron. 2000;27:339–47.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies G, et al. Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron. 2007;54:787–800.

    Article  CAS  PubMed  Google Scholar 

  41. Kitagawa Y, Hirano T, Kawaguchi S. Prediction and validation of a mechanism to control the threshold for inhibitory synaptic plasticity. Mol Systems Biol. 2009;5(280):1–16.

    Google Scholar 

  42. Kawaguchi S, Nagasaki N, Hirano T. Dynamic impact of temporal context of Ca2+ signals on inhibitory synaptic plasticity. Sci Rep. 2011;1(143):1–12.

    Google Scholar 

  43. Kuroda S, Schweighofer N, Kawato M. Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci. 2001;21:5693–702.

    CAS  PubMed  Google Scholar 

  44. Kawaguchi S, Hirano T. Signaling cascade regulating long-term potentiation of GABAA receptor responsiveness in cerebellar Purkinje neurons. J Neurosci. 2002;22:3969–76.

    CAS  PubMed  Google Scholar 

  45. Kawaguchi S, Hirano T. Integrin α3β1 suppresses long-term potentiation at inhibitory synapses on the cerebellar Purkinje neuron. Mol Cell Neurosci. 2006;31:416–26.

    Article  CAS  PubMed  Google Scholar 

  46. Kawaguchi S, Hirano T. Sustained GABARAP structural change underlies long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. J Neurosci. 2007;27:6788–99.

    Article  CAS  PubMed  Google Scholar 

  47. Sugiyama Y, Kawaguchi S, Hirano T. mGluR1-mediated facilitation of long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. Eur J Neurosci. 2008;27:884–96.

    Article  PubMed  Google Scholar 

  48. Tanaka S, Kawaguchi S, Shioi G, Hirano T. Long-term potentiation of inhibitory synaptic transmission onto cerebellar Purkinje neurons contributes to adaptation of vestibulo-ocular reflex. J Neurosci. 2013;33:17209–20.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M. The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci. 2002;22:1690–7.

    CAS  PubMed  Google Scholar 

  50. Duguid IC, Smart TG. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nat Neurosci. 2004;7:525–33.

    Article  CAS  PubMed  Google Scholar 

  51. Satoh H, Qu L, Suzuki H, Saitow F. Depolarization-induced depression of inhibitory transmission in cerebellar Purkinje cells. Physiol Report. 2013;1(e00061):1–16.

    Google Scholar 

  52. Hirano T, Kawaguchi S. Regulation and functional roles of rebound potentiation at cerebellar stellate cell-Purkinje cell synapse. Front Cell Neurosci. 2014;8(42):1–8.

    Google Scholar 

  53. Jörntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron. 2002;34:797–806.

    Article  PubMed  Google Scholar 

  54. Jörntell H, Ekerot CF. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci. 2003;23:9620–31.

    PubMed  Google Scholar 

  55. Ekerot CF, Jörntell H. Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J Neurosci. 2001;13:1303–10.

    Article  CAS  PubMed  Google Scholar 

  56. Barmack NH, Yakhnitsa V. Functions of interneurons in mouse cerebellum. J Neurosci. 2008;28:114–1152.

    Article  Google Scholar 

  57. Hansel C, Linden DJ. Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron. 2000;26:473–82.

    Article  CAS  PubMed  Google Scholar 

  58. D'Angelo E, Rossi P, Gall D, Prestori F, Nieus T, Maffei A, et al. Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res. 2005;148:69–80.

    Article  PubMed  Google Scholar 

  59. D’Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2008;32:30–40.

    Article  PubMed  Google Scholar 

  60. Ohtsuki G, Piochon C, Adelman JP, Hansel C. SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Neuron. 2012;75:108–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Armano S, Rossi P, Taglietti V, D’Angelo E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. J Neurosci. 2000;20:5208–16.

    CAS  PubMed  Google Scholar 

  62. Zhang W, Shin JH, Linden DJ. Persistent changes in the intrinsic excitability of rat deep cerebellar nuclear neurons induced by EPSP or IPSP bursts. J Physiol. 2004;561:703–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Murashima M, Hirano T. Entire course and distinct phases of day-lasting depression of mEPSC amplitudes in cultured Purkinje neurons. J Neurosci. 1999;19:7317–25.

    Google Scholar 

  64. Okamoto T, Endo S, Shirao T, Nagao S. Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning. J Neurosci. 2011;31:8958–66.

    Article  CAS  PubMed  Google Scholar 

  65. Pugh J, Raman I. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 2006;51:113–23.

    Article  CAS  PubMed  Google Scholar 

  66. Menzies JRW, Porrill J, Dutia M, Dean P. Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation. PLoS One. 2010;5(e13182):1–17.

    Google Scholar 

  67. McElvain LE, Bagnall MW, Sakatos A, du Lac S. Bidirectional plasticity gated by hyperpolarization controls the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron. 2010;68:763–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Ke MC, Guo CC, Raymond JL. Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci. 2009;1:1171–9.

    Article  Google Scholar 

  69. Nguyen-Vu TDB, Kimpo RR, Rinaldi JM, Kohli A, Zeng H, Deisseroth K, et al. Cerebellar Purkinje cell activity drives motor learning. Nat Neurosci. 2013;16:1734–6.

    Article  CAS  PubMed  Google Scholar 

  70. Wada N, Kishimoto Y, Watanabe D, Kano M, Hirano T, Funabiki K, et al. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proc Natl Acad Sci U S A. 2007;104:16690–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wada N, Funabiki K, Nakanishi S. Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning. Proc Natl Acad Sci U S A. 2014;111:5373–8.

    Article  CAS  PubMed  Google Scholar 

  72. Wang W, Nakadate K, Masugi-Tokita M, Shutoh F, Aziz W, Tarusawa E, et al. Distinct cerebellar engrams in short-term and long-term motor learning. Proc Natl Acad Sci U S A. 2014;111:E187–8.

    Google Scholar 

  73. Aziz W, Wang W, Kesaf S, Mohamed AA, Fukazawa Y, Shigemoto R. Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. Proc Natl Acad Sci U S A. 2014;111:E194–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Drs. K. Funabiki, T. Yamazaki, S. Kawaguchi, Y. Tagawa, and H. Tanaka for their constructive comments on the manuscript and Ms. Y. Tanaka for preparation of a figure.

Conflict of Interest

I declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoo Hirano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, T. Around LTD Hypothesis in Motor Learning. Cerebellum 13, 645–650 (2014). https://doi.org/10.1007/s12311-014-0581-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0581-4

Keywords

Navigation