Skip to main content

Advertisement

Log in

Cerebellar Volume Is Associated with Cognitive Decline in Mild Cognitive Impairment: Results from ADNI

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a disease with dysfunctional brain network. Previous studies found the cerebellar volume changes over the course of AD disease progression; however, whether cerebellar volume change contributes to the cognitive decline in AD, or its earlier disease stage (i.e., mild cognitive impairment [MCI]) remains unclear. In ADNI, cognitive function was assessed using Alzheimer’s Disease Assessment Scale-Cognitive Behavior section (ADAS-Cog). We used linear regression and linear mixed effects models to examine whether cerebellar volume is associated with either baseline cognition or with cognitive changes over time in MCI or in AD. We used logistic regression to assess the relationship between cerebellar volume and disease progression to MCI and AD. We found that cerebellar volume is associated with cognition in patients with MCI, after adjusting for age, gender, education, hippocampal volume, and APOE4 status. Consistently, cerebellar volume is associated with increased odds of the disease stages of MCI and AD when compared to controls. However, cerebellar volume is not associated with cognitive changes over time in either MCI or AD. In summary, cerebellar volume may contribute to cognition level in MCI, but not in AD, indicating that the cerebellar network might modulate the cognitive function in the early stage of the disease. The cerebellum may be a potential target for neuromodulation in treating MCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drzezga A. The network degeneration hypothesis: spread of neurodegenerative patterns along neuronal brain networks. J Nucl Med. 2018;59:1645–8.

    Article  CAS  PubMed  Google Scholar 

  2. Hoenig MC, Bischof GN, Seemiller J, Hammes J, Kukolja J, Onur ÖA, et al. Networks of tau distribution in Alzheimer's disease. Brain. 2018;141:568–81.

    Article  PubMed  Google Scholar 

  3. Gould RL, Arroyo B, Brown RG, Owen AM, Bullmore ET, Howard RJ. Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology. 2006;67:1011–7.

    Article  CAS  PubMed  Google Scholar 

  4. Thomann PA, Schlafer C, Seidl U, Santos VD, Essig M, Schroder J. The cerebellum in mild cognitive impairment and Alzheimer's disease - a structural MRI study. J Psychiatr Res. 2008;42:1198–202.

    Article  PubMed  Google Scholar 

  5. Braak H, Braak E, Bohl J, Lang W. Alzheimer's disease: amyloid plaques in the cerebellum. J Neurol Sci. 1989;93:277–87.

    Article  CAS  PubMed  Google Scholar 

  6. Li YT, Woodruff-Pak DS, Trojanowski JQ. Amyloid plaques in cerebellar cortex and the integrity of Purkinje cell dendrites. Neurobiol Aging. 1994;15:1–9.

    Article  CAS  PubMed  Google Scholar 

  7. Wang HY, D'Andrea MR, Nagele RG. Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells. Neurobiol Aging. 2002;23:213–23.

    Article  CAS  PubMed  Google Scholar 

  8. Fukutani Y, Cairns NJ, Rossor MN, Lantos PL. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer's disease. Neurosci Lett. 1996;214:33–6.

    Article  CAS  PubMed  Google Scholar 

  9. Sjobeck M, Englund E. Alzheimer's disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord. 2001;12:211–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wegiel J, Wisniewski HM, Dziewiatkowski J, Badmajew E, Tarnawski M, Reisberg B, et al. Cerebellar atrophy in Alzheimer's disease-clinicopathological correlations. Brain Res. 1999;818:41–50.

    Article  CAS  PubMed  Google Scholar 

  11. Baloyannis SJ, Manolidis SL, Manolidis LS. Synaptic alterations in the vestibulocerebellar system in Alzheimer's disease--a Golgi and electron microscope study. Acta Otolaryngol. 2000;120:247–50.

    Article  CAS  PubMed  Google Scholar 

  12. Mavroudis I. Cerebellar pathology in Alzheimer's disease. Hell J Nucl Med. 2019;22(Suppl):174–9.

    PubMed  Google Scholar 

  13. Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to Alzheimer's disease and frontotemporal dementia. Brain. 2016;139:1527–38.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schmahmann JD. Cerebellum in Alzheimer's disease and frontotemporal dementia: not a silent bystander. Brain. 2016;139:1314–8.

    Article  PubMed  Google Scholar 

  15. KH E, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35:593–615.

    Article  Google Scholar 

  16. Stoodley CJ, D'Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20:1744–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  18. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  19. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  20. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  21. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20:236–60.

    Article  PubMed  Google Scholar 

  22. Hickey CL, Sherman JC, Goldenberg P, Kritzer A, Caruso P, Schmahmann JD, et al. Cerebellar cognitive affective syndrome: insights from Joubert syndrome. Cerebellum Ataxias. 2018;5:5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141:248–70.

    Article  PubMed  Google Scholar 

  24. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75.

    Article  CAS  PubMed  Google Scholar 

  25. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64.

    Article  CAS  PubMed  Google Scholar 

  26. Tabatabaei-Jafari H, Walsh E, Shaw ME, Cherbuin N. Alzheimer's disease neuroimaging I. the cerebellum shrinks faster than normal ageing in Alzheimer's disease but not in mild cognitive impairment. Hum Brain Mapp. 2017;38:3141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27:685–91.

    Article  PubMed  PubMed Central  Google Scholar 

  28. O'Brien LM, Ziegler DA, Deutsch CK, Kennedy DN, Goldstein JM, Seidman LJ, et al. Adjustment for whole brain and cranial size in volumetric brain studies: a review of common adjustment factors and statistical methods. Harv Rev Psychiatry. 2006;14:141–51.

    Article  PubMed  Google Scholar 

  29. Voevodskaya O, Simmons A, Nordenskjöld R, Kullberg J, Ahlström H, Lind L, et al. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease. Front Aging Neurosci. 2014;6:264.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vellas B, Andrieu S, Sampaio C, Wilcock G, European Task Force g. Disease-modifying trials in Alzheimer's disease: a European task force consensus. Lancet Neurol 2007;6:56–62.

    Article  PubMed  Google Scholar 

  31. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer's disease. Am J Psychiatry. 1984;141:1356–64.

    Article  CAS  PubMed  Google Scholar 

  32. Mohs RC, Knopman D, Petersen RC, Ferris SH, Ernesto C, Grundman M, et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer's Disease Assessment Scale that broaden its scope. The Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11(Suppl 2):S13–21.

    Article  PubMed  Google Scholar 

  33. Battista P, Salvatore C, Castiglioni I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. Behav Neurol. 2017;2017:1850909.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Podhorna J, Krahnke T, Shear M, Harrison JE. Alzheimer's disease neuroimaging I. Alzheimer's Disease Assessment Scale-Cognitive subscale variants in mild cognitive impairment and mild Alzheimer's disease: change over time and the effect of enrichment strategies. Alzheimers Res Ther. 2016;8:8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hashimoto R, Meguro K, Lee E, Kasai M, Ishii H, Yamaguchi S. Effect of age and education on the trail making test and determination of normative data for Japanese elderly people: the Tajiri project. Psychiatry Clin Neurosci. 2006;60:422–8.

    Article  PubMed  Google Scholar 

  36. Romer AL, Knodt AR, Houts R, Brigidi BD, Moffitt TE, Caspi A, et al. Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders. Mol Psychiatry. 2018;23:1084–90.

    Article  CAS  PubMed  Google Scholar 

  37. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–14.

    Article  CAS  PubMed  Google Scholar 

  38. Poulin SP, Bergeron D, Dickerson BC. Alzheimer's disease neuroimaging I. risk factors, neuroanatomical correlates, and outcome of neuropsychiatric symptoms in Alzheimer's disease. J Alzheimers Dis. 2017;60:483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:1977–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jack CR Jr, Petersen RC, Xu Y, O'Brien PC, Smith GE, Ivnik RJ, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000;55:484–9.

    Article  PubMed  Google Scholar 

  41. Carmichael O, Schwarz C, Drucker D, Fletcher E, Harvey D, Beckett L, et al. Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Arch Neurol. 2010;67:1370–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, et al. Cerebellar LTD and pattern recognition by Purkinje cells. Neuron. 2007;54:121–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shim HG, Jang DC, Lee J, Chung G, Lee S, Kim YG, et al. Long-term depression of intrinsic excitability accompanied by synaptic depression in cerebellar Purkinje cells. J Neurosci. 2017;37:5659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuo SH, Lin CY, Wang J, Sims PA, Pan MK, Liou JY, et al. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases. Acta Neuropathol. 2017;133:121–38.

    Article  PubMed  Google Scholar 

  45. Wolff JR, Missler M. Synaptic reorganization in developing and adult nervous systems. Ann Anat. 1992;174:393–403.

    Article  CAS  PubMed  Google Scholar 

  46. Morara S, Colangelo AM, Provini L. Microglia-induced maladaptive plasticity can be modulated by neuropeptides in vivo. Neural Plast. 2015;2015:135342.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jones TA. Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017;18:267–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohan A, Vanneste S. Adaptive and maladaptive neural compensatory consequences of sensory deprivation-from a phantom percept perspective. Prog Neurobiol. 2017;153:1–17.

    Article  PubMed  Google Scholar 

  49. Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: from astrocytopathy to astrogliosis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;87:126–46.

    Article  Google Scholar 

  50. Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72:443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bauer PM, Hanson JL, Pierson RK, Davidson RJ, Pollak SD. Cerebellar volume and cognitive functioning in children who experienced early deprivation. Biol Psychiatry. 2009;66:1100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80:807–15.

    Article  CAS  PubMed  Google Scholar 

  53. Colloby SJ, O'Brien JT, Taylor JP. Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimers disease: a VBM-DARTEL study. Psychiatry Res. 2014;223:187–91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Toniolo S, Serra L, Olivito G, Marra C, Bozzali M, Cercignani M. Patterns of cerebellar Gray matter atrophy across Alzheimer's disease progression. Front Cell Neurosci. 2018;12:430.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zheng W, Liu X, Song H, Li K, Wang Z. Altered functional connectivity of cognitive-related cerebellar subregions in Alzheimer's disease. Front Aging Neurosci. 2017;9:143.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician. Neurologist. 2012;18:356–63.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008;71:493–8.

    Article  CAS  PubMed  Google Scholar 

  58. Cotelli M, Calabria M, Manenti R, Rosini S, Zanetti O, Cappa SF, et al. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 2011;82:794–7.

    Article  PubMed  Google Scholar 

  59. Turriziani P, Smirni D, Zappala G, Mangano GR, Oliveri M, Cipolotti L. Enhancing memory performance with rTMS in healthy subjects and individuals with mild cognitive impairment: the role of the right dorsolateral prefrontal cortex. Front Hum Neurosci. 2012;6:62.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Elder GJ, Taylor JP. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimers Res Ther. 2014;6:74.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Chen has received funding from the National Institute of Health: NINDS #R01 MH118281 (principal investigator), NINDS #R01 MH100351 (principal investigator), and NINDS #R56 AG061163 (principal investigator). Dr. Tom has received funding from the National Institutes on Aging: NINDS #K01 AG050723. Dr. Kuo has received funding from the National Institutes of Health: NINDS #R01 NS104423 (principal investigator), NINDS #K08 NS083738 (principal investigator), and the Louis V. Gerstner Jr. Scholar Award, Parkinson’s Foundation, and International Essential Tremor Foundation.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Chi-Ying Lin: study concept, data analysis and interpretation, manuscript draft and revision; Chi-Hua Chen: study concept, data acquisition, analysis and interpretation, and critical revision of the manuscript for important intellectual content; Sarah E. Tom: data analysis and interpretation, critical revision of the manuscript of important intellectual content; Sheng-Han Kuo: study concept, data acquisition, analysis and interpretation, critical revision of the manuscript for important intellectual content, and study supervision.

Corresponding author

Correspondence to Sheng-Han Kuo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Chen, CH., Tom, S.E. et al. Cerebellar Volume Is Associated with Cognitive Decline in Mild Cognitive Impairment: Results from ADNI. Cerebellum 19, 217–225 (2020). https://doi.org/10.1007/s12311-019-01099-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01099-1

Keywords

Navigation