Skip to main content
Log in

Guardians Turned Culprits: NETosis and Its Influence on Pulmonary Fibrosis Development

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a debilitating, life-threatening irreversible lung disease characterized by the excessive accumulation of fibrotic tissue in the lungs, impairing their function. The exact mechanisms underlying Pulmonary fibrosis (PF) are multifaceted and not yet fully understood. Reports show that during COVID-19 pandemic, PF was dramatically increased due to the hyperactivation of the immune system. Neutrophils and macrophages are the patrolling immune cells that keep the microenvironment balanced. Neutrophil extracellular traps (NETs) are a normal protective mechanism of neutrophils. The chief components of the NETs include DNA, citrullinated histones, and anti-microbial peptides which are released by the activated neutrophils. However, it is becoming increasingly evident that hyperactivation of immune cells can also turn into criminals when it comes to pathological state. Dysregulated NETosis may contribute to sustained inflammation, overactivation of fibroblasts, and ultimately promoting collagen deposition which is the characteristic feature of PF. The role of NETs along with inflammation is attaining greater attention. However, seldom researches are related to the relationship between NETs causing PF. This review highlights the cellular mechanism of NETs-induced pulmonary fibrosis, which could give a better understanding of molecular targets which may be helpful for treating NETs-induced PF.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kumar, V. (2020). Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Frontiers in Immunology, 11, 1722. https://doi.org/10.3389/fimmu.2020.01722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burn, G. L., Foti, A., Marsman, G., Patel, D. F., & Zychlinsky, A. (2021). The Neutrophil. Immunity, 54(7), 1377–1391. https://doi.org/10.1016/j.immuni.2021.06.006

    Article  CAS  PubMed  Google Scholar 

  3. Summers, C., Rankin, S. M., Condliffe, A. M., Singh, N., Peters, A. M., & Chilvers, E. R. (2010). Neutrophil kinetics in health and disease. Trends in Immunology, 31(8), 318–324. https://doi.org/10.1016/j.it.2010.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, N., He, S., Zheng, Y., & Wang, L. (2023). The value of NLR versus MLR in the short-term prognostic assessment of HBV-related acute-on-chronic liver failure. International Immunopharmacology, 121, 110489. https://doi.org/10.1016/j.intimp.2023.110489

    Article  CAS  PubMed  Google Scholar 

  5. Phatale, V., Famta, P., Srinivasarao, D. A., Vambhurkar, G., Jain, N., Pandey, G., et al. (2023). Neutrophil membrane-based nanotherapeutics: propitious paradigm shift in the management of cancer. Life Sciences. https://doi.org/10.1016/j.lfs.2023.122021

    Article  PubMed  Google Scholar 

  6. Poto, R., Shamji, M., Marone, G., Durham, S. R., Scadding, G. W., & Varricchi, G. (2022). Neutrophil extracellular traps in asthma: friends or foes? Cells, 11(21), 3521. https://doi.org/10.3390/cells11213521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Desai, J., Mulay, S. R., Nakazawa, D., & Anders, H.-J. (2016). Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cellular and molecular life sciences: CMLS, 73(11–12), 2211–2219. https://doi.org/10.1007/s00018-016-2195-0

    Article  CAS  PubMed  Google Scholar 

  8. Zawrotniak, M., & Rapala-Kozik, M. (2013). Neutrophil extracellular traps (NETs)—formation and implications. Acta Biochimica Polonica. https://doi.org/10.18388/abp.2013_1983

    Article  PubMed  Google Scholar 

  9. Leppkes, M., Schick, M., Hohberger, B., Mahajan, A., Knopf, J., Schett, G., et al. (2019). Updates on NET formation in health and disease. Seminars in Arthritis and Rheumatism, 49(3 Supplement), S43–S48. https://doi.org/10.1016/j.semarthrit.2019.09.011

    Article  PubMed  Google Scholar 

  10. Pietronigro, E. C., Della Bianca, V., Zenaro, E., & Constantin, G. (2017). NETosis in Alzheimer’s Disease. Frontiers in Immunology, 8, 211. https://doi.org/10.3389/fimmu.2017.00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogelgesang, A., Grunwald, U., Langner, S., Jack, R., Bröker, B. M., Kessler, C., & Dressel, A. (2008). Analysis of lymphocyte subsets in patients with stroke and their influence on infection after stroke. Stroke, 39(1), 237–241. https://doi.org/10.1161/STROKEAHA.107.493635

    Article  PubMed  Google Scholar 

  12. Henke, M. O., & Ratjen, F. (2007). Mucolytics in cystic fibrosis. Paediatric Respiratory Reviews, 8(1), 24–29. https://doi.org/10.1016/j.prrv.2007.02.009

    Article  PubMed  Google Scholar 

  13. Looney, M. R., Nguyen, J. X., Hu, Y., Van Ziffle, J. A., Lowell, C. A., & Matthay, M. A. (2009). Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. The Journal of Clinical Investigation, 119(11), 3450–3461. https://doi.org/10.1172/JCI38432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meijer, M., Rijkers, G. T., & van Overveld, F. J. (2013). Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert Review of Clinical Immunology, 9(11), 1055–1068. https://doi.org/10.1586/1744666X.2013.851347

    Article  CAS  PubMed  Google Scholar 

  15. Fadini, G. P., Menegazzo, L., Rigato, M., Scattolini, V., Poncina, N., Bruttocao, A., et al. (2016). NETosis delays diabetic wound healing in mice and humans. Diabetes, 65(4), 1061–1071. https://doi.org/10.2337/db15-0863

    Article  CAS  PubMed  Google Scholar 

  16. Megens, R. T. A., Vijayan, S., Lievens, D., Döring, Y., van Zandvoort, M. A. M. J., Grommes, J., et al. (2012). Presence of luminal neutrophil extracellular traps in atherosclerosis. Thrombosis and Haemostasis, 107(3), 597–598. https://doi.org/10.1160/TH11-09-0650

    Article  CAS  PubMed  Google Scholar 

  17. Menegazzo, L., Scattolini, V., Cappellari, R., Bonora, B. M., Albiero, M., Bortolozzi, M., et al. (2018). The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetologica, 55(6), 593–601. https://doi.org/10.1007/s00592-018-1129-8

    Article  CAS  PubMed  Google Scholar 

  18. Ponzetto, A., & Figura, N. (2018). Thrombosis of the portal venous system in cirrhotic patients. Annals of Hepatology, 17(6), 1078–1080. https://doi.org/10.5604/01.3001.0012.7209

    Article  PubMed  Google Scholar 

  19. Brazil, J. C., Louis, N. A., & Parkos, C. A. (2013). The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflammatory Bowel Diseases, 19(7), 1556–1565. https://doi.org/10.1097/MIB.0b013e318281f54e

    Article  PubMed  Google Scholar 

  20. Powe, C. E., Levine, R. J., & Karumanchi, S. A. (2011). Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation, 123(24), 2856–2869. https://doi.org/10.1161/CIRCULATIONAHA.109.853127

    Article  PubMed  Google Scholar 

  21. Arpinati, L., Shaul, M. E., Kaisar-Iluz, N., Mali, S., Mahroum, S., & Fridlender, Z. G. (2020). NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice. Cancer Immunology, Immunotherapy, 69(2), 199–213. https://doi.org/10.1007/s00262-019-02474-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pandolfi, L., Bozzini, S., Frangipane, V., Percivalle, E., De Luigi, A., Violatto, M. B., et al. (2021). Neutrophil extracellular traps induce the epithelial-mesenchymal transition: implications in Post-COVID-19 fibrosis. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2021.663303

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology, 13(3), 159–175. https://doi.org/10.1038/nri3399

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen, G. T., Green, E. R., & Mecsas, J. (2017). Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Frontiers in Cellular and Infection Microbiology, 7, 373. https://doi.org/10.3389/fcimb.2017.00373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng, M. Y., Miralda, I., Armstrong, C. L., Uriarte, S. M., & Bagaitkar, J. (2019). The roles of NADPH oxidase in modulating neutrophil effector responses. Molecular Oral Microbiology., 34, 27–38. https://doi.org/10.1111/omi.12252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stafforini, D. M., McIntyre, T. M., Zimmerman, G. A., & Prescott, S. M. (2003). Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Critical Reviews in Clinical Laboratory Sciences, 40(6), 643–672. https://doi.org/10.1080/714037693

    Article  CAS  PubMed  Google Scholar 

  27. Huang, J., Hong, W., Wan, M., & Zheng, L. (2022). Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm, 3(3), e162. https://doi.org/10.1002/mco2.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hann, J., Bueb, J.-L., Tolle, F., & Bréchard, S. (2020). Calcium signaling and regulation of neutrophil functions: still a long way to go. Journal of Leukocyte Biology, 107(2), 285–297. https://doi.org/10.1002/JLB.3RU0719-241R

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Y., Zhang, H., Hu, X., Cai, W., Ni, W., & Zhou, K. (2022). Role of NETosis in central nervous system injury. Oxidative Medicine and Cellular Longevity, 2022, 3235524. https://doi.org/10.1155/2022/3235524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Angeletti, A., Volpi, S., Bruschi, M., Lugani, F., Vaglio, A., Prunotto, M., et al. (2021). Neutrophil extracellular traps-DNase balance and autoimmunity. Cells, 10(10), 2667. https://doi.org/10.3390/cells10102667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suzuki, M., Ikari, J., Anazawa, R., Tanaka, N., Katsumata, Y., Shimada, A., et al. (2020). PAD4 deficiency improves bleomycin-induced neutrophil extracellular traps and fibrosis in mouse lung. American Journal of Respiratory Cell and Molecular Biology, 63(6), 806–818. https://doi.org/10.1165/rcmb.2019-0433OC

    Article  CAS  PubMed  Google Scholar 

  32. Guillotin, F., Fortier, M., Portes, M., Demattei, C., Mousty, E., Nouvellon, E., et al. (2023). Vital NETosis vs suicidal NETosis during normal pregnancy and preeclampsia. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2022.1099038

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tan, C., Aziz, M., & Wang, P. (2021). The vitals of NETs. Journal of Leukocyte Biology, 110(4), 797–808. https://doi.org/10.1002/JLB.3RU0620-375R

    Article  CAS  PubMed  Google Scholar 

  34. Tian, C., Liu, Y., Li, Z., Zhu, P., & Zhao, M. (2022). Mitochondria related cell death modalities and disease. Frontiers in Cell and Developmental Biology, 10, 832356. https://doi.org/10.3389/fcell.2022.832356

    Article  PubMed  PubMed Central  Google Scholar 

  35. Potey, P. M., Rossi, A. G., Lucas, C. D., & Dorward, D. A. (2019). Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. The Journal of Pathology, 247(5), 672–685. https://doi.org/10.1002/path.5221

    Article  PubMed  Google Scholar 

  36. Mazumder, S., Barman, M., Bandyopadhyay, U., & Bindu, S. (2020). Sirtuins as endogenous regulators of lung fibrosis: a current perspective. Life Sciences, 258, 118201. https://doi.org/10.1016/j.lfs.2020.118201

    Article  CAS  PubMed  Google Scholar 

  37. Hayton, C., & Chaudhuri, N. (2017). current treatments in the management of idiopathic pulmonary fibrosis: pirfenidone and nintedanib. Clinical Medicine Insights Therapeutics. https://doi.org/10.1177/1179559X17719126

    Article  Google Scholar 

  38. Fathimath Muneesa, M., Shaikh, S. B., Jeena, T. M., & Bhandary, Y. P. (2021). Inflammatory mediators in various molecular pathways involved in the development of pulmonary fibrosis. International Immunopharmacology, 96, 107608. https://doi.org/10.1016/j.intimp.2021.107608

    Article  CAS  PubMed  Google Scholar 

  39. Craig, A., Mai, J., Cai, S., & Jeyaseelan, S. (2009). Neutrophil recruitment to the lungs during bacterial pneumonia. Infection and Immunity, 77(2), 568–575. https://doi.org/10.1128/IAI.00832-08

    Article  CAS  PubMed  Google Scholar 

  40. Porto, B. N., & Stein, R. T. (2016). Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Frontiers in Immunology, 7, 311. https://doi.org/10.3389/fimmu.2016.00311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andrade, B., Jara-Gutiérrez, C., Paz-Araos, M., Vázquez, M. C., Díaz, P., & Murgas, P. (2022). The relationship between reactive oxygen species and the cGAS/STING signaling pathway in the inflammaging process. International Journal of Molecular Sciences, 23(23), 15182. https://doi.org/10.3390/ijms232315182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saffarzadeh, M., Juenemann, C., Queisser, M. A., Lochnit, G., Barreto, G., Galuska, S. P., et al. (2012). Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PloS One, 7(2), e32366. https://doi.org/10.1371/journal.pone.0032366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng, O. Z., & Palaniyar, N. (2013). NET balancing: a problem in inflammatory lung diseases. Frontiers in Immunology, 4, 1. https://doi.org/10.3389/fimmu.2013.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singhal, A., & Kumar, S. (2022). Neutrophil and remnant clearance in immunity and inflammation. Immunology, 165(1), 22–43. https://doi.org/10.1111/imm.13423

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, S., Jia, X., Zhang, Q., Zhang, L., Yang, J., Hu, C., et al. (2020). Neutrophil extracellular traps activate lung fibroblast to induce polymyositis-related interstitial lung diseases via TLR9-miR-7-Smad2 pathway. Journal of Cellular and Molecular Medicine, 24(2), 1658–1669. https://doi.org/10.1111/jcmm.14858

    Article  CAS  PubMed  Google Scholar 

  46. Martins-Cardoso, K., Almeida, V. H., Bagri, K. M., Rossi, M. I. D., Mermelstein, C. S., König, S., & Monteiro, R. Q. (2020). Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial-mesenchymal transition. Cancers, 12(6), 1542. https://doi.org/10.3390/cancers12061542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stehr, A. M., Wang, G., Demmler, R., Stemmler, M. P., Krug, J., Tripal, P., et al. (2022). Neutrophil extracellular traps drive epithelial-mesenchymal transition of human colon cancer. The Journal of Pathology, 256(4), 455–467. https://doi.org/10.1002/path.5860

    Article  CAS  PubMed  Google Scholar 

  48. Arroyo, R., Khan, M. A., Echaide, M., Pérez-Gil, J., & Palaniyar, N. (2019). SP-D attenuates LPS-induced formation of human neutrophil extracellular traps (NETs), protecting pulmonary surfactant inactivation by NETs. Communications Biology, 2(1), 1–13. https://doi.org/10.1038/s42003-019-0662-5

    Article  CAS  Google Scholar 

  49. Crouch, E., & Wright, J. R. (2001). Surfactant proteins A and D and pulmonary host defense. Annual Review of Physiology, 63(1), 521–554. https://doi.org/10.1146/annurev.physiol.63.1.521

    Article  CAS  PubMed  Google Scholar 

  50. Hao, Y., Baker, D., & Ten Dijke, P. (2019). TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. International Journal of Molecular Sciences, 20(11), 2767. https://doi.org/10.3390/ijms20112767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, I.-S., Yang, W.-S., & Kim, C.-H. (2023). Physiological properties, functions, and trends in the matrix metalloproteinase inhibitors in inflammation-mediated human diseases. Current Medicinal Chemistry, 30(18), 2075–2112. https://doi.org/10.2174/0929867329666220823112731

    Article  CAS  PubMed  Google Scholar 

  52. Paez-Ribes, M., González-Gualda, E., Doherty, G. J., & Muñoz-Espín, D. (2019). Targeting senescent cells in translational medicine. EMBO Molecular Medicine, 11(12), 10234. https://doi.org/10.15252/emmm.201810234

    Article  CAS  Google Scholar 

  53. Plataki, M., Koutsopoulos, A. V., Darivianaki, K., Delides, G., Siafakas, N. M., & Bouros, D. (2005). Expression of apoptotic and antiapoptotic markers in epithelial cells in idiopathic pulmonary fibrosis. Chest, 127(1), 266–274. https://doi.org/10.1378/chest.127.1.266

    Article  PubMed  Google Scholar 

  54. Uhal, B. D., Joshi, I., Hughes, W. F., Ramos, C., Pardo, A., & Selman, M. (1998). Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. The American Journal of Physiology. https://doi.org/10.1152/ajplung.1998.275.6.L1192

    Article  PubMed  Google Scholar 

  55. Hagimoto, N., Kuwano, K., Nomoto, Y., Kunitake, R., & Hara, N. (1997). Apoptosis and expression of Fas/Fas ligand mRNA in bleomycin-induced pulmonary fibrosis in mice. American Journal of Respiratory Cell and Molecular Biology, 16(1), 91–101. https://doi.org/10.1165/ajrcmb.16.1.8998084

    Article  CAS  PubMed  Google Scholar 

  56. Wang, R., Ibarra-Sunga, O., Verlinski, L., Pick, R., & Uhal, B. D. (2000). Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. American Journal of Physiology-Lung Cellular and Molecular Physiology, 279(1), L143–L151. https://doi.org/10.1152/ajplung.2000.279.1.L143

    Article  CAS  PubMed  Google Scholar 

  57. Uhal, B. D. (2008). The role of apoptosis in pulmonary fibrosis. European Respiratory Review, 17(109), 138–144. https://doi.org/10.1183/09059180.00010906

    Article  Google Scholar 

  58. Yu, Y., Tang, D., & Kang, R. (2015). Oxidative stress-mediated HMGB1 biology. Frontiers in Physiology. https://doi.org/10.3389/fphys.2015.00093

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hsieh, Y.-T., Chou, Y.-C., Kuo, P.-Y., Tsai, H.-W., Yen, Y.-T., Shiau, A.-L., & Wang, C.-R. (2022). Down-regulated miR-146a expression with increased neutrophil extracellular traps and apoptosis formation in autoimmune-mediated diffuse alveolar hemorrhage. Journal of Biomedical Science, 29, 62. https://doi.org/10.1186/s12929-022-00849-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pergolizzi, J. V., LeQuang, J. A., Varrassi, M., Breve, F., Magnusson, P., & Varrassi, G. (2023). What do we need to know about rising rates of idiopathic pulmonary fibrosis? A narrative review and update. Advances in Therapy, 40(4), 1334–1346. https://doi.org/10.1007/s12325-022-02395-9

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kaplan, M. J., & Radic, M. (2012). Neutrophil extracellular traps (NETs): double-edged swords of innate immunity. Journal of Immunology, 189(6), 2689–2695. https://doi.org/10.4049/jimmunol.1201719

    Article  CAS  Google Scholar 

  62. Gray, R. D., McCullagh, B. N., & McCray, P. B. (2015). NETs and CF lung disease: current status and future prospects. Antibiotics, 4(1), 62–75. https://doi.org/10.3390/antibiotics4010062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. French, J. K., Hurst, N. P., Zalewski, P. D., Valente, L., & Forbes, I. J. (1987). Calcium ionophore A23187 enhances human neutrophil superoxide release, stimulated by phorbol dibutyrate, by converting phorbol ester receptors from a low- to high-affinity state. FEBS Letters, 212(2), 242–246. https://doi.org/10.1016/0014-5793(87)81353-4

    Article  CAS  PubMed  Google Scholar 

  64. Ferrari, G., Pang, L. Y., De Moliner, F., Vendrell, M., Reardon, R. J. M., Higgins, A. J., et al. (2022). Effective penetration of a liposomal formulation of bleomycin through ex-vivo skin explants from two different species. Cancers, 14(4), 1083. https://doi.org/10.3390/cancers14041083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saccone, N., Bass, J., & Ramirez, M. L. (2022). Bleomycin-induced lung injury after intravenous iron administration. Cureus, 14(7), e27531. https://doi.org/10.7759/cureus.27531

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang, H., Zhang, Y., Wang, Q., Wei, X., Wang, H., & Gu, K. (2021). The regulatory mechanism of neutrophil extracellular traps in cancer biological behavior. Cell & Bioscience, 11(1), 193. https://doi.org/10.1186/s13578-021-00708-z

    Article  CAS  Google Scholar 

  67. Burger, R. M., Peisach, J., & Horwitz, S. B. (1981). Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. The Journal of Biological Chemistry, 256(22), 11636–11644.

    Article  CAS  PubMed  Google Scholar 

  68. Yan, S., Li, M., Liu, B., Ma, Z., & Yang, Q. (2023). Neutrophil extracellular traps and pulmonary fibrosis: an update. Journal of Inflammation, 20(1), 2. https://doi.org/10.1186/s12950-023-00329-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manzoor, S., Mariappan, N., Zafar, I., Wei, C.-C., Ahmad, A., Surolia, R., et al. (2020). Cutaneous lewisite exposure causes acute lung injury. Annals of the New York Academy of Sciences, 1479(1), 210–222. https://doi.org/10.1111/nyas.14346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, C., Srivastava, R. K., Weng, Z., Croutch, C. R., Agarwal, A., Elmets, C. A., et al. (2016). Molecular mechanism underlying pathogenesis of lewisite-induced cutaneous blistering and inflammation. The American Journal of Pathology, 186(10), 2637–2649. https://doi.org/10.1016/j.ajpath.2016.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Surolia, R., Li, F. J., Wang, Z., Kashyap, M., Srivastava, R. K., Traylor, A. M., et al. (2021). NETosis in the pathogenesis of acute lung injury following cutaneous chemical burns. JCI Insight, 6(10), e147564. https://doi.org/10.1172/jci.insight.147564

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cui, X., Zhang, Y., Lu, Y., & Xiang, M. (2022). ROS and endoplasmic reticulum stress in pulmonary disease. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2022.879204

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang, P., Liu, D., Zhou, Z., Liu, F., Shen, Y., You, Q., et al. (2023). The role of protein arginine deiminase 4-dependent neutrophil extracellular traps formation in ulcerative colitis. Frontiers in Immunology, 14, 1144976. https://doi.org/10.3389/fimmu.2023.1144976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. O’Sullivan, K. M., & Holdsworth, S. R. (2021). Neutrophil extracellular traps: A potential therapeutic target in MPO-ANCA associated vasculitis? Frontiers in Immunology, 12, 635188. https://doi.org/10.3389/fimmu.2021.635188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. d’Alessandro, M., Conticini, E., Bergantini, L., Cameli, P., Cantarini, L., Frediani, B., & Bargagli, E. (2022). Neutrophil extracellular traps in ANCA-associated vasculitis and interstitial lung disease: a scoping review. Life (Basel, Switzerland), 12(2), 317. https://doi.org/10.3390/life12020317

    Article  CAS  PubMed  Google Scholar 

  76. Hornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H., Rock, K. L., et al. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 9(8), 847–856. https://doi.org/10.1038/ni.1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, T., Zhang, Z., Li, X., Dong, G., Zhang, M., Xu, Z., & Yang, J. (2020). Neutrophil extracellular traps: signaling properties and disease relevance. Mediators of Inflammation, 2020, 9254087. https://doi.org/10.1155/2020/9254087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janiuk, K., Jabłońska, E., & Garley, M. (2021). Significance of NETs formation in COVID-19. Cells, 10(1), 151. https://doi.org/10.3390/cells10010151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peukert, K., Steinhagen, F., Fox, M., Feuerborn, C., Schulz, S., Seeliger, B., et al. (2022). Tetracycline ameliorates silica-induced pulmonary inflammation and fibrosis via inhibition of caspase-1. Respiratory Research, 23(1), 21. https://doi.org/10.1186/s12931-022-01937-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zou, Y., Chen, X., Xiao, J., Bo Zhou, D., Xiao Lu, X., Li, W., et al. (2018). Neutrophil extracellular traps promote lipopolysaccharide-induced airway inflammation and mucus hypersecretion in mice. Oncotarget, 9(17), 13276–13286. https://doi.org/10.18632/oncotarget.24022

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ciesielska, A., Matyjek, M., & Kwiatkowska, K. (2021). TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences: CMLS, 78(4), 1233–1261. https://doi.org/10.1007/s00018-020-03656-y

    Article  CAS  PubMed  Google Scholar 

  82. Tsukamoto, H., Takeuchi, S., Kubota, K., Kobayashi, Y., Kozakai, S., Ukai, I., et al. (2018). Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1–IKKϵ–IRF3 axis activation. Journal of Biological Chemistry, 293(26), 10186–10201. https://doi.org/10.1074/jbc.M117.796631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Krinsky, N., Sizikov, S., Nissim, S., Dror, A., Sas, A., Prinz, H., et al. (2023). NETosis induction reflects COVID-19 severity and long COVID: insights from a 2-center patient cohort study in Israel. Journal of Thrombosis and Haemostasis: JTH, 21(9), 2569–2584. https://doi.org/10.1016/j.jtha.2023.02.033

    Article  PubMed  Google Scholar 

  84. Vorobjeva, N. V., & Chernyak, B. V. (2020). NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry Biokhimiia, 85(10), 1178–1190. https://doi.org/10.1134/S0006297920100065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Holmes, C. L., Shim, D., Kernien, J., Johnson, C. J., Nett, J. E., & Shelef, M. A. (2019). Insight into neutrophil extracellular traps through systematic evaluation of citrullination and peptidylarginine deiminases. Journal of Immunology Research, 2019, 2160192. https://doi.org/10.1155/2019/2160192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jo, A., & Kim, D. W. (2023). Neutrophil extracellular traps in airway diseases: pathological roles and therapeutic implications. International Journal of Molecular Sciences, 24(5), 5034. https://doi.org/10.3390/ijms24055034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ciesielski, O., Biesiekierska, M., Panthu, B., Soszyński, M., Pirola, L., & Balcerczyk, A. (2022). Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives. Cellular and Molecular Life Sciences: CMLS, 79(2), 94. https://doi.org/10.1007/s00018-022-04126-3

    Article  CAS  PubMed  Google Scholar 

  88. Veras, F. P., Gomes, G. F., Silva, B. M. S., Caetité, D. B., Almeida, C. J. L. R., Silva, C. M. S., et al. (2023). Targeting neutrophils extracellular traps (NETs) reduces multiple organ injury in a COVID-19 mouse model. Respiratory Research, 24, 66. https://doi.org/10.1186/s12931-023-02336-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sharma, P., Garg, N., Sharma, A., Capalash, N., & Singh, R. (2019). Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. International Journal of Medical Microbiology: IJMM, 309(8), 151354. https://doi.org/10.1016/j.ijmm.2019.151354

    Article  CAS  PubMed  Google Scholar 

  90. Lee, Y. Y., Park, H. H., Park, W., Kim, H., Jang, J. G., Hong, K. S., et al. (2021). Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials, 267, 120389. https://doi.org/10.1016/j.biomaterials.2020.120389

    Article  CAS  PubMed  Google Scholar 

  91. Sallai, K., Nagy, E., Derfalvy, B., Müzes, G., & Gergely, P. (2005). Antinucleosome antibodies and decreased deoxyribonuclease activity in sera of patients with systemic lupus erythematosus. Clinical and Diagnostic Laboratory Immunology, 12(1), 56–59. https://doi.org/10.1128/CDLI.12.1.56-59.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nishino, T., & Morikawa, K. (2002). Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene, 21(58), 9022–9032. https://doi.org/10.1038/sj.onc.1206135

    Article  CAS  PubMed  Google Scholar 

  93. Li, Y., Wang, W., Yang, F., Xu, Y., Feng, C., & Zhao, Y. (2019). The regulatory roles of neutrophils in adaptive immunity. Cell Communication and Signaling, 17(1), 147. https://doi.org/10.1186/s12964-019-0471-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, H., Daouk, S., Kebbe, J., Chaudry, F., Harper, J., & Brown, B. (2022). Low-dose versus high-dose dexamethasone for hospitalized patients with COVID-19 pneumonia: a randomized clinical trial. PLoS ONE, 17(10), e0275217. https://doi.org/10.1371/journal.pone.0275217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, T., Li, Y., Sun, R., Hu, H., Liu, Y., Herrmann, M., et al. (2021). Receptor-mediated NETosis on neutrophils. Frontiers in Immunology, 12, 775267. https://doi.org/10.3389/fimmu.2021.775267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, Y. (2021). Role of neutrophils in cardiac injury and repair following myocardial infarction. Cells, 10(7), 1676. https://doi.org/10.3390/cells10071676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kenny, E. F., Herzig, A., Krüger, R., Muth, A., Mondal, S., Thompson, P. R., et al. (2017). Diverse stimuli engage different neutrophil extracellular trap pathways. eLife, 6, 24437. https://doi.org/10.7554/eLife.24437

    Article  Google Scholar 

  98. Hodgman, M. J., & Garrard, A. R. (2012). A review of acetaminophen poisoning. Critical Care Clinics, 28(4), 499–516. https://doi.org/10.1016/j.ccc.2012.07.006

    Article  PubMed  Google Scholar 

  99. Dekhuijzen, P. N. R., & van Beurden, W. J. C. (2006). The role for N-acetylcysteine in the management of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 1(2), 99–106. https://doi.org/10.2147/copd.2006.1.2.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Halasi, M., Wang, M., Chavan, T. S., Gaponenko, V., Hay, N., & Gartel, A. L. (2013). ROS inhibitor N-acetyl-l-cysteine antagonizes the activity of proteasome inhibitors. The Biochemical Journal, 454(2), 201–208. https://doi.org/10.1042/BJ20130282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Yenepoya Research Centre, Yenepoya (Deemed to be University) for providing the necessary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashodhar Bhandary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest financially or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varughese, A., Balnadupete, A., Ramesh, P. et al. Guardians Turned Culprits: NETosis and Its Influence on Pulmonary Fibrosis Development. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01171-0

Keywords

Navigation