Skip to main content
Log in

Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis?

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neutrophil extracellular trap (NET) formation is a hallmark of many disorders that involve neutrophil recruitment, tissue damage, and inflammation. As NET formation is often associated with neutrophil death, the term “NETosis” has become popular. Upon discovery that neutrophils may survive NET release, apparent misnomers, such as “vital NETosis,” have been proposed. Meanwhile, it has become obvious that certain stimuli can trigger neutrophil necroptosis, a process associated with NET-like chromatin release. Here, we discuss the relationship between NET release and neutrophil death in view highlighting that many assays used in the field do not properly distinguish between the two. An updated nomenclature is needed replacing the term “NETosis” to meet the growing variety of settings leading to chromatin release with and without neutrophil death. Dissecting which triggers of NET release involve which signaling pathway will help to define drugable molecular targets that inhibit NET release and/or neutrophil necrosis in specific disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175. doi:10.1038/nri3399

    Article  CAS  PubMed  Google Scholar 

  2. Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JA, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116:625–627. doi:10.1182/blood-2010-01-259028

    Article  CAS  PubMed  Google Scholar 

  3. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM (2003) Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19(4):583–593

    Article  CAS  PubMed  Google Scholar 

  4. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80(8):2012–2020

    CAS  PubMed  Google Scholar 

  5. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31(8):318–324. doi:10.1016/j.it.2010.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huber AR, Kunkel SL, Todd RF 3rd, Weiss SJ (1991) Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254(5028):99–102

    Article  CAS  PubMed  Google Scholar 

  7. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. doi:10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  8. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120. doi:10.1038/cdd.2011.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265(1):130–142. doi:10.1111/imr.12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. doi:10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  11. Yipp BG, Kubes P (2013) NETosis: how vital is it? Blood 122(16):2784–2794. doi:10.1182/blood-2013-04-457671

    Article  CAS  PubMed  Google Scholar 

  12. Zhao W, Fogg DK, Kaplan MJ (2015) A novel image-based quantitative method for the characterization of NETosis. J Immunol Methods 423:104–110. doi:10.1016/j.jim.2015.04.027

    Article  CAS  PubMed  Google Scholar 

  13. Takei H, Araki A, Watanabe H, Ichinose A, Sendo F (1996) Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol 59(2):229–240

    CAS  PubMed  Google Scholar 

  14. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. doi:10.1083/jcb.200606027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V (2014) A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 8(3):883–896. doi:10.1016/j.celrep.2014.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Köcktritz-Blickwede MV, Chow O, Ghochani M, Nizet V (2010) Visualization and functional evaluation of phagocyte extracellular traps. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology, vol 37. Elsevier Ltd., pp I39–I60. doi:10.1016/S0580-9517(10)37007-3

  17. Arai Y, Yamashita K, Mizugishi K, Watanabe T, Sakamoto S, Kitano T, Kondo T, Kawabata H, Kadowaki N, Takaori-Kondo A (2013) Serum neutrophil extracellular trap levels predict thrombotic microangiopathy after allogeneic stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 19(12):1683–1689. doi:10.1016/j.bbmt.2013.09.005

    Article  CAS  Google Scholar 

  18. Mori Y, Yamaguchi M, Terao Y, Hamada S, Ooshima T, Kawabata S (2012) alpha-Enolase of Streptococcus pneumoniae induces formation of neutrophil extracellular traps. J Biol Chem 287(13):10472–10481. doi:10.1074/jbc.M111.280321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Francois M, Le Cabec V, Dupont MA, Sansonetti PJ, Maridonneau-Parini I (2000) Induction of necrosis in human neutrophils by Shigella flexneri requires type III secretion, IpaB and IpaC invasins, and actin polymerization. Infect Immun 68(3):1289–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207(9):1853–1862. doi:10.1084/jem.20100239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213. doi:10.1083/jcb.200806072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, Wang Y (2012) PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 3:307. doi:10.3389/fimmu.2012.00307

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kumar SV, Kulkarni OP, Mulay SR, Darisipudi MN, Romoli S, Thomasova D, Scherbaum CR, Hohenstein B, Hugo C, Muller S, Liapis H, Anders HJ (2015) Neutrophil extracellular trap-related extracellular histones cause vascular necrosis in severe GN. J Am Soc Nephrol JASN 26(10):2399–2413. doi:10.1681/ASN.2014070673

    Article  CAS  PubMed  Google Scholar 

  24. Knight JS, Zhao W, Luo W, Subramanian V, O’Dell AA, Yalavarthi S, Hodgin JB, Eitzman DT, Thompson PR, Kaplan MJ (2013) Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Investig 123(7):2981–2993. doi:10.1172/JCI67390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knuckley B, Causey CP, Jones JE, Bhatia M, Dreyton CJ, Osborne TC, Takahara H, Thompson PR (2010) Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 49(23):4852–4863. doi:10.1021/bi100363t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Causey CP, Jones JE, Slack JL, Kamei D, Jones LE, Subramanian V, Knuckley B, Ebrahimi P, Chumanevich AA, Luo Y, Hashimoto H, Sato M, Hofseth LJ, Thompson PR (2011) The development of N-alpha-(2-carboxyl)benzoyl-N(5)-(2-fluoro-1-iminoethyl)-l-ornithine amide (o-F-amidine) and N-alpha-(2-carboxyl)benzoyl-N(5)-(2-chloro-1-iminoethyl)-l-ornithine amide (o-Cl-amidine) as second generation protein arginine deiminase (PAD) inhibitors. J Med Chem 54(19):6919–6935. doi:10.1021/jm2008985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hemmers S, Teijaro JR, Arandjelovic S, Mowen KA (2011) PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS One 6(7):e22043. doi:10.1371/journal.pone.0022043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179(1):199–210. doi:10.1016/j.ajpath.2011.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neeli I, Radic M (2013) Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol 4:38. doi:10.3389/fimmu.2013.00038

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, Grone HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15(6):623–625. doi:10.1038/nm.1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakazawa D, Shida H, Tomaru U, Yoshida M, Nishio S, Atsumi T, Ishizu A (2014) Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol JASN 25(5):990–997. doi:10.1681/ASN.2013060606

    Article  CAS  PubMed  Google Scholar 

  32. Sayah DM, Mallavia B, Liu F, Ortiz-Munoz G, Caudrillier A, DerHovanessian A, Ross DJ, Lynch JP 3rd, Saggar R, Ardehali A, Ware LB, Christie JD, Belperio JA, Looney MR (2015) Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 191(4):455–463. doi:10.1164/rccm.201406-1086OC

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H (2011) Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 7(2):75–77. doi:10.1038/nchembio.496

    Article  CAS  PubMed  Google Scholar 

  34. Rohm M, Grimm MJ, D’Auria AC, Almyroudis NG, Segal BH, Urban CF (2014) NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect Immun 82(5):1766–1777. doi:10.1128/IAI.00096-14

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhofer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 20(5):511–517. doi:10.1038/nm.3547

    Article  CAS  PubMed  Google Scholar 

  36. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691. doi:10.1083/jcb.201006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A (2011) Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117(3):953–959. doi:10.1182/blood-2010-06-290171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Linkermann A, Green DR (2014) Necroptosis. New England J Med 370(5):455–465. doi:10.1056/NEJMra1310050

    Article  CAS  Google Scholar 

  39. Ebrahim M, Mulay SR, Anders HJ, Thomasova D (2015) MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration. Histol Histopathol 30(11):1271–1282. doi:10.14670/HH-11-636

    CAS  PubMed  Google Scholar 

  40. Wartha F, Henriques-Normark B (2008) ETosis: a novel cell death pathway. Sci Signal 1(21):pe25. doi:10.1126/stke.121pe25

    Article  PubMed  Google Scholar 

  41. Desai J, Vr SK, Mulay SR, Konrad L, Romoli S, Schauer C, Herrmann M, Bilyy R, Muller S, Popper B, Nakazawa D, Weidenbusch M, Thomasova D, Krautwald S, Linkermann A, Anders HJ (2015) Neutrophil extracellular trap formation can involve RIPK1-RIPK3-MLKL signalling. Eur J Immunol. doi:10.1002/eji.201545605

    PubMed  Google Scholar 

  42. Mulay SR, Desai J, Kumar VRS, Eberhard JN, Thomasova D, Romoli S, Grigorescu M, Kulkarni OP, Popper B, Vielhauer V, Zuchtriegel G, Reichel C, Bräsen JH, Romagnani P, Bilyy R, Munoz LE, Herrmann M, Liapis H, Krautwald S, Linkermann A, Anders HJ (2016) Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun 7:10274. doi:10.1038/ncomms10274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG, Hussain M, Zhang K, Kubes P (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185(12):7413–7425. doi:10.4049/jimmunol.1000675

    Article  CAS  PubMed  Google Scholar 

  44. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, Malawista SE, de Boisfleury Chevance A, Zhang K, Conly J, Kubes P (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18(9):1386–1393. doi:10.1038/nm.2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469. doi:10.1038/nm1565

    Article  CAS  PubMed  Google Scholar 

  46. Byrd AS, O’Brien XM, Johnson CM, Lavigne LM, Reichner JS (2013) An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol 190(8):4136–4148. doi:10.4049/jimmunol.1202671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peschel A, Hartl D (2012) Anuclear neutrophils keep hunting. Nat Med 18(9):1336–1338. doi:10.1038/nm.2918

    Article  CAS  PubMed  Google Scholar 

  48. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16(11):1438–1444. doi:10.1038/cdd.2009.96

    Article  CAS  PubMed  Google Scholar 

  49. Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, Nizet V (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8(5):445–454. doi:10.1016/j.chom.2010.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC (2012) Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol 92(4):841–849. doi:10.1189/jlb.1211601

    Article  CAS  PubMed  Google Scholar 

  51. Amini P, Stojkov D, Wang X, Wicki S, Kaufmann T, Wong WW, Simon HU, Yousefi S (2015) NET formation can occur independently of RIPK3 and MLKL signaling. Eur J Immunol. doi:10.1002/eji.201545615

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Anders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, J., Mulay, S.R., Nakazawa, D. et al. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis?. Cell. Mol. Life Sci. 73, 2211–2219 (2016). https://doi.org/10.1007/s00018-016-2195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2195-0

Keywords

Navigation