Skip to main content

The Bleomycin Model of Pulmonary Fibrosis

  • Protocol
  • First Online:
Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1627))

Abstract

Interstitial lung disease (ILD) comprises a large number of chronic lung disease characterized by varying degrees of inflammation and fibrosis. Mostly they are idiopathic including idiopathic pulmonary fibrosis (IPF), which is a specific disorder characterized by progressive fibrosis leading commonly to end-stage lung disease, respiratory failure, and fatal outcome. IPF and many of these fibrotic ILDs lack effective therapy despite recent approval of two drugs to slow progression in certain IPF patients. Because there are no natural models for IPF, the use of animal models that reproduce key known features of the disease is warranted. Thus, different animal models have been developed to investigate key mechanisms underlying pathogenesis of pulmonary fibrosis and identify potential therapeutic targets for IPF. While no animal model can recapitulate all features of human disease, several are available to address select features of IPF and other fibrotic ILDs. Historically, among the first to be developed and used widely is the bleomycin model, which is the best-characterized and currently most extensively used animal model due to its ability to reproduce many aspects of IPF and other fibrotic ILDs, good reproducibility, and ease of induction. Studies using the bleomycin model have identified many of the cellular and molecular mechanisms now recognized as being important in pathogenesis of IPF and other fibrotic ILDs, as well as novel therapies for these diseases, including two recent drugs approved for treatment of IPF. This chapter will describe commonly used techniques for induction of the model by endotracheal administration of bleomycin through surgical and nonsurgical (transoral instillation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345(7):517–525. doi:10.1056/NEJMra003200

    Article  CAS  PubMed  Google Scholar 

  2. Phan SH (2003) Fibroblast phenotypes in pulmonary fibrosis. Am J Respir Cell Mol Biol 29(3 Suppl):S87–S92

    CAS  PubMed  Google Scholar 

  3. Hinz B, Phan SH, Thannickal VJ et al (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170(6):1807–1816. doi:10.2353/ajpath.2007.070112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moeller A, Ask K, Warburton D et al (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40(3):362–382. doi:10.1016/j.biocel.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  5. Walters DM, Kleeberger SR (2008) Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protoc Pharmacol Chapter 5:Unit 5.46. doi:10.1002/0471141755.ph0546s40

  6. Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(2):L152–L160. doi:10.1152/ajplung.00313.2007

    Article  CAS  PubMed  Google Scholar 

  7. Umezawa H, Ishizuka M, Maeda K et al (1967) Studies on bleomycin. Cancer 20(5):891–895

    Article  CAS  PubMed  Google Scholar 

  8. Umezawa H, Maeda K, Takeuchi T et al (1966) New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 19(5):200–209

    CAS  Google Scholar 

  9. Yagoda A, Mukherji B, Young C et al (1972) Bleomycin, an antitumor antibiotic. Clinical experience in 274 patients. Ann Intern Med 77(6):861–870

    Article  CAS  PubMed  Google Scholar 

  10. Blum RH, Carter SK, Agre K (1973) A clinical review of bleomycin – a new antineoplastic agent. Cancer 31(4):903–914

    Google Scholar 

  11. Umezawa H (1974) Chemistry and mechanism of action of bleomycin. Fed Proc 33(11):2296–2302

    CAS  PubMed  Google Scholar 

  12. Rudders RA, Hensley GT (1973) Bleomycin pulmonary toxicity. Chest 63(4):627–628

    Article  CAS  PubMed  Google Scholar 

  13. Sostman HD, Matthay RA, Putman CE (1977) Cytotoxic drug-induced lung disease. Am J Med 62(4):608–615

    Article  CAS  PubMed  Google Scholar 

  14. Onuma T, Holland JF, Masuda H et al (1974) Microbiological assay of bleomycin: inactivation, tissue distribution, and clearance. Cancer 33(5):1230–1238

    Article  CAS  PubMed  Google Scholar 

  15. Phan SH, Thrall RS, Ward PA (1980) Bleomycin-induced pulmonary fibrosis in rats: biochemical demonstration of increased rate of collagen synthesis. Am Rev Respir Dis 121(3):501–506. doi:10.1164/arrd.1980.121.3.501

    Article  CAS  PubMed  Google Scholar 

  16. Phan SH, Thrall RS, Williams C (1981) Bleomycin-induced pulmonary fibrosis. Effects of steroid on lung collagen metabolism. Am Rev Respir Dis 124(4):428–434. doi:10.1164/arrd.1981.124.4.428

    CAS  PubMed  Google Scholar 

  17. Phan SH, Thrall RS (1982) The role of soluble factors in bleomycin-induced pulmonary fibrosis. Am J Pathol 106(2):156–164

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fleischman RW, Baker JR, Thompson GR et al (1971) Bleomycin-induced interstitial pneumonia in dogs. Thorax 26(6):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adamson IY, Bowden DH (1974) The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 77(2):185–197

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Snider GL, Hayes JA, Korthy AL (1978) Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin: pathology and stereology. Am Rev Respir Dis 117(6):1099–1108. doi:10.1164/arrd.1978.117.6.1099

    CAS  PubMed  Google Scholar 

  21. Thrall RS, McCormick JR, Jack RM et al (1979) Bleomycin-induced pulmonary fibrosis in the rat: inhibition by indomethacin. Am J Pathol 95(1):117–130

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Organ L, Bacci B, Koumoundouros E et al (2015) Structural and functional correlations in a large animal model of bleomycin-induced pulmonary fibrosis. BMC Pulm Med 15:81. doi:10.1186/s12890-015-0071-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chandler DB, Hyde DM, Giri SN (1983) Morphometric estimates of infiltrative cellular changes during the development of bleomycin-induced pulmonary fibrosis in hamsters. Am J Pathol 112(2):170–177

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lown JW, Sim SK (1977) The mechanism of the bleomycin-induced cleavage of DNA. Biochem Biophys Res Commun 77(4):1150–1157. doi:10.1016/S0006-291X(77)80099-5

    Article  CAS  PubMed  Google Scholar 

  25. Claussen CA, Long EC (1999) Nucleic acid recognition by metal complexes of bleomycin. Chem Rev 99(9):2797–2816. doi:10.1002/chin.199948318

    Article  CAS  PubMed  Google Scholar 

  26. Liu T, Chung MJ, Ullenbruch M et al (2007) Telomerase activity is required for bleomycin-induced pulmonary fibrosis in mice. J Clin Invest 117(12):3800–3809. doi:10.1172/JCI32369

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Usuki J, Fukuda Y (1995) Evolution of three patterns of intra-alveolar fibrosis produced by bleomycin in rats. Pathol Int 45(8):552–564. doi:10.1111/j.1440-1827.1995.tb03503.x

    Article  CAS  PubMed  Google Scholar 

  28. Munger JS, Huang X, Kawakatsu H et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3):319–328. S0092-8674(00)80545-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Bauer Y, Tedrow J, de Bernard S et al (2015) A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 52(2):217–231. doi:10.1165/rcmb.2013-0310OC

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wollin L, Wex E, Pautsch A et al (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45(5):1434–1445. doi:10.1183/09031936.00174914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. King CS, Nathan SD (2015) Practical considerations in the pharmacologic treatment of idiopathic pulmonary fibrosis. Curr Opin Pulm Med 21(5):479–489. doi:10.1097/MCP.0000000000000190

    Article  CAS  PubMed  Google Scholar 

  32. Grimminger F, Gunther A, Vancheri C (2015) The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 45(5):1426–1433. doi:10.1183/09031936.00149614

    Article  CAS  PubMed  Google Scholar 

  33. Iyer SN, Wild JS, Schiedt MJ et al (1995) Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med 125(6):779–785

    CAS  PubMed  Google Scholar 

  34. Mackinnon AC, Gibbons MA, Farnworth SL et al (2012) Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185(5):537–546. doi:10.1164/rccm.201106-0965OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peters DM, Vadasz I, Wujak L et al (2014) TGF-beta directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 111(3):E374–E383. doi:10.1073/pnas.1306798111

    Article  CAS  PubMed  Google Scholar 

  36. Sebti SM, Mignano JE, Jani JP et al (1989) Bleomycin hydrolase: molecular cloning, sequencing, and biochemical studies reveal membership in the cysteine proteinase family. Biochemistry 28(16):6544–6548

    Article  CAS  PubMed  Google Scholar 

  37. Phan SH, Kunkel SL (1992) Lung cytokine production in bleomycin-induced pulmonary fibrosis. Exp Lung Res 18(1):29–43. doi:10.3109/01902149209020649

    Article  CAS  PubMed  Google Scholar 

  38. Haston CK, Amos CI, King TM et al (1996) Inheritance of susceptibility to bleomycin-induced pulmonary fibrosis in the mouse. Cancer Res 56(11):2596–2601

    CAS  PubMed  Google Scholar 

  39. Thannickal VJ (2013) Mechanistic links between aging and lung fibrosis. Biogerontology 14(6):609–615. doi:10.1007/s10522-013-9451-6

    Article  CAS  PubMed  Google Scholar 

  40. Degryse AL, Tanjore H, XC X et al (2010) Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 299(4):L442–L452. doi:10.1152/ajplung.00026.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng R, Sridhar S, Tyagi G et al (2013) Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for “active” disease. PLoS One 8(4):e59348. doi:10.1371/journal.pone.0059348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williamson JD, Sadofsky LR, Hart SP (2015) The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res 41(2):57–73. doi:10.3109/01902148.2014.979516

    Article  CAS  PubMed  Google Scholar 

  43. Chua F, Gauldie J, Laurent GJ (2005) Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 33(1):9–13. doi:10.1165/rcmb.2005-0062TR

    Article  CAS  PubMed  Google Scholar 

  44. Borzone G, Moreno R, Urrea R et al (2001) Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 163(7):1648–1653. doi:10.1164/ajrccm.163.7.2006132

    Article  CAS  PubMed  Google Scholar 

  45. Lawson WE, Polosukhin VV, Stathopoulos GT et al (2005) Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice following intratracheal bleomycin. Am J Pathol 167(5):1267–1277. doi:10.1016/S0002-9440(10)61214-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Della Latta V, Cecchettini A, Del Ry S et al (2015) Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res 97:122–130. doi:10.1016/j.phrs.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  47. Limjunyawong N, Mitzner W, Horton MR (2014) A mouse model of chronic idiopathic pulmonary fibrosis. Physiol Rep 2(2):e00249. doi:10.1002/phy2.249

    Article  PubMed  PubMed Central  Google Scholar 

  48. Foster WM, Walters DM, Longphre M et al (2001) Methodology for the measurement of mucociliary function in the mouse by scintigraphy. J Appl Physiol (1985) 90(3):1111–1117

    CAS  Google Scholar 

  49. Hu B, Wu Z, Nakashima T et al (2012) Mesenchymal-specific deletion of C/EBPbeta suppresses pulmonary fibrosis. Am J Pathol 180(6):2257–2267. doi:10.1016/j.ajpath.2012.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chaudhary NI, Schnapp A, Park JE (2006) Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med 173(7):769–776. doi:10.1164/rccm.200505-717OC

    Article  CAS  PubMed  Google Scholar 

  51. Phan SH, Armstrong G, Sulavik MC et al (1983) A comparative study of pulmonary fibrosis induced by bleomycin and an O2 metabolite producing enzyme system. Chest 83(5 Suppl):44S–45S. doi:10.1378/chest.83.5.44S

    Article  CAS  PubMed  Google Scholar 

  52. Schrier DJ, Kunkel RG, Phan SH (1983) The role of strain variation in murine bleomycin-induced pulmonary fibrosis. Am Rev Respir Dis 127(1):63–66. doi:10.1164/arrd.1983.127.1.63

    Article  CAS  PubMed  Google Scholar 

  53. Scotton CJ, Chambers RC (2010) Bleomycin revisited: towards a more representative model of IPF? Am J Physiol Lung Cell Mol Physiol 299(4):L439–L441. doi:10.1152/ajplung.00258.2010

    Article  CAS  PubMed  Google Scholar 

  54. Mouratis MA, Aidinis V (2011) Modeling pulmonary fibrosis with bleomycin. Curr Opin Pulm Med 17(5):355–361. doi:10.1097/MCP.0b013e328349ac2b

    Article  CAS  PubMed  Google Scholar 

  55. Degryse AL, Lawson WE (2011) Progress toward improving animal models for idiopathic pulmonary fibrosis. Am J Med Sci 341(6):444–449. doi:10.1097/MAJ.0b013e31821aa000

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gharaee-Kermani M, Ullenbruch M, Phan SH (2005) Animal models of pulmonary fibrosis. Methods Mol Med 117:251–259. doi:10.1385/1-59259-940-0:251

    PubMed  Google Scholar 

  57. Liu T, Dhanasekaran SM, Jin H et al (2004) FIZZ1 stimulation of myofibroblast differentiation. Am J Pathol 164(4):1315–1326. doi:10.1016/S0002-9440(10)63218-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gharaee-Kermani M, Hatano K, Nozaki Y et al (2005) Gender-based differences in bleomycin-induced pulmonary fibrosis. Am J Pathol 166(6):1593–1606. doi:10.1016/S0002-9440(10)62470-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu T, Jin H, Ullenbruch M et al (2004) Regulation of found in inflammatory zone 1 expression in bleomycin-induced lung fibrosis: role of IL-4/IL-13 and mediation via STAT-6. J Immunol 173(5):3425–3431. doi:10.4049/jimmunol.173.5.3425

    Article  CAS  PubMed  Google Scholar 

  60. Liu T, Yu H, Ding L et al (2015) Conditional knockout of telomerase reverse transcriptase in mesenchymal cells impairs mouse pulmonary fibrosis. PLoS One 10(11):e0142547. doi:10.1371/journal.pone.0142547

    Article  PubMed  PubMed Central  Google Scholar 

  61. Choi JE, Lee SS, Sunde DA et al (2009) Insulin-like growth factor-I receptor blockade improves outcome in mouse model of lung injury. Am J Respir Crit Care Med 179(3):212–219. doi:10.1164/rccm.200802-228OC

    Article  CAS  PubMed  Google Scholar 

  62. Koh RY, Lim CL, Uhal BD et al (2015) Inhibition of transforming growth factor-beta via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol Med Rep 11(5):3808–3813. doi:10.3892/mmr.2015.3193

    CAS  PubMed  Google Scholar 

  63. Huang WT, Akhter H, Jiang C et al (2015) Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis. Exp Gerontol 61:62–75. doi:10.1016/j.exger.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  64. Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244–248. doi:10.1016/j.lfs.2015.10.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HL052285 and HL112880. We thank Zhe Wu and Lisa Riggs for their excellent technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianju Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, T., De Los Santos, F.G., Phan, S.H. (2017). The Bleomycin Model of Pulmonary Fibrosis. In: Rittié, L. (eds) Fibrosis. Methods in Molecular Biology, vol 1627. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7113-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7113-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7112-1

  • Online ISBN: 978-1-4939-7113-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics